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ABSTRACT

MOBILITY MODELING AND MANAGEMENT
FOR NEXT GENERATION WIRELESS NETWORKS

by
Woo-Jin Choi

Mobility modeling and management in wireless networks are the set of tasks

performed in order to model motion patterns, predict trajectories, get information

on mobiles' whereabouts and to make use of this information in handcuff, routing,

location management, resource allocation and other functions.

In the literature, the speed of mobile is often and misleadingly referred to as

the level of mobility, such as "high" or "low" mobility. This dissertation presents

an information theoretic approach to mobility modeling and management, in which

mobility is considered as a measure of uncertainty in mobile's trajectory, that is, the

mobility is low if the trajectory of a mobile is highly predictable even if the mobile

is moving with high speed. On the other hand, the mobility is high if the trajectory

of the mobile is highly erratic. Based on this mobility modeling concept, we classify

mobiles into predictable and non-predictable mobility classes and optimize network

operations for each mobility class. The dynamic mobility classification technique is

applied to various mobility related issues of the next generation wireless networks

such as location management, location-based services, and energy efficient routing

in multihop cellular networks.
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CHAPTER 1

INTRODUCTION

Mobility modeling in wireless networks is to estimate the impact of mobility on the

wireless systems and to evaluate the performance of resource allocation, handoff,

admission control and location management techniques. Collecting, processing and

making use of the mobility and location related information of mobile users are

tasks usually performed by central or distributed agents operating the network.

Optimization on the algorithms keeping track of users' location for the purpose of

delivering applications or services is the main theme of mobility management. The

specific purpose of analysis or optimization dictates the approach to be taken and

the complexity of the mobility model. This dissertation introduces a new mobility

modeling approach: Predictability-based Mobility Modeling. This new mobility

concept is used to optimize mobility management of the next generation wireless

networks. This chapter provides an overview of the conventional mobility modeling

techniques and presents a vision of the next generation wireless networks that call

for a new breed of mobility modeling and management techniques.

1.1 Conventional Mobility Modeling Techniques

In the conventional wireless networks, the primary application was voice. Depending

on the scope of mobility in a specific network operation that delivers calls or

maintains on-going call, the mobility modeling techniques are designed to evaluate

the performance of the operation. For example, the power allocation to combat

intra-cell interference in spread spectrum system concerns the location of users in a

single cell. The resource reservation for handcuff users concerns the mobility of users

in a group of neighboring cells [1]. Per-user location management schemes concern

the mobility of individual users. If there is a mobility model that concerns with

1
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individual as well as collective characteristics of users' motion pattern, the model

should describe the movement of each user and the spatial and temporal correlation

among different users. To cope with the obvious scalability problem, researchers

limit their scope of analysis to specific network operation. Simplifying assumptions

like stationary mobility (i.e., statistical properties that describe user mobility doesn't

change in time), uniform mobility (i.e., the same mobility characteristics are assumed

for all users) and uniform user population (i.e., the density of mobile users is uniform

over the entire network) are often introduced.

1.1.1 Constant Speed/Direction Mobility Model

As long as the movement of individual user is concerned, the simplest mobility model

is the constant speed and constant direction model in [2]. The speed of a mobile is

assumed to be constant, and only four orthogonal directions of motion along the

Cartesian axes are allowed. A mobile is equally likely to start moving in any of these

four directions at call initiation. The mobile keeps the same speed and direction for

the entire duration of a call. The handoffs probability, which is the probability that

a call goes through at least n handoffs during a call, is given as a function of the

cell radius, the speed of mobile, and the average call duration (See equation 4 and

5 in [2]). Since the channel occupancy time is smaller than both the call duration

and the time that the call is handed off to another cell, the channel occupancy time

distribution is calculated based on these two events that are not mutually exclusive.

It is shown in [2] that the channel occupancy time distribution is very close to an

exponential distribution.
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1.1.2 Random Waypoint Mobility Model

In the random waypoint mobility model [3], each mobile selects a random destination

in a given area and moves to the destination at a speed which is drawn from a uniform

distribution between 0 and some maximum speed. Arriving at its destination, the

mobile stays put for a time duration called pause time. When the pause time is over,

the mobile selects another destination and speed, and starts moving again.

1.1.3 Random Walk Mobility Model

In the random walk mobility model [4], it is assumed that individual user's cell

transition probability from one cell to every other cell is known. A concept called

shadow cluster is introduced where the shadow is comprised of individual user's

resource requirements along the predicted path of the user. Time-dependent cell

transition probability is used to calculate the resource requirement of each user.

Admission control is performed based on the current local traffic condition and the

predicted resource requirement for mobiles in the local area.

The mobility model in [5] uses time-invariant cell to cell transition probability

which is assumed to be known to the network. A mobile's dwell time in a cell is

exponentially distributed with parameter that depends on the user and the cell. The

future cell occupancy probability of a user is predicted using a given cell transition

probability matrix, and the location area of a user is selected based on the predicted

cell occupancy probability.

The resource allocation and admission control in [6] requires each mobile to

provide mobility information to the network. The mobility information consists of a

set of cells that the user is expected to visit during the life time of its connection.

In the symmetric random walk model, time is slotted with equal length, and

mobile makes at most one move during each time slot. In the one-dimensional version
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of symmetric random walk, a mobile moves to a neighboring cell in the right with

probability p and moves to a neighboring cell in the left with the same probability p

and stays in the current cell with probability 1— 2p. In two-dimensional random walk

with mesh topology, each cell has 4 neighboring cells. The probability that a mobile

stays put in the current cell during the next time slot is 1 — 4p. In the hexagonal

topology where each cell has 6 neighboring cells, the probability that a mobile stays

in the current cell is 1 — 6p. The symmetric random walk model has been used

extensively since it simplifies the analysis; however, a drawback of the symmetric

random walk model is that the movement of mobile is not biased in direction.

1.1.4 Brownian Motion Model

Brownian mobility model is used to describe movements of an individual user in [7]

[8]. In the one-dimensional version, a mobile user moves one "space step" Ax to the

right with probability p and to the left with probability q, and stays at the current

position with probability 1 — p — q for each "time step" At. Assuming that a mobile

started at time t = 0 at position x = 0, as the time and the space steps are made

infinitesimally small the displacement of the mobile at time t(> 0) is described by a

Gaussian density function:

In the Brownian mobility model, the variance of the Gaussian displacement distri-

bution, which is a measure of location uncertainty, is independent from the mean
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drift velocity p. In other words, the location uncertainty of high speed mobiles are

not necessarily large. In the dynamic location update scheme [10], mobile users

are classified based on the uncertainty in their motion pattern, and each mobile is

assigned a different location update scheme, that is, a predictive scheme for mobiles

whose trajectory is highly predictable and a non-predictive scheme for mobiles whose

trajectory is highly erratic.

1.1.5 Fractional Brownian Motion Model

The empirical transportation engineering studies [11] show that the mobile speed at a

given point in time has a Gaussian distribution where the mean is equal to the speed

limit of the street. Although the conventional Brownian motion model leads to a

Gaussian displacement distribution, in reality the mobile users are street bound and

speed regulated by the local speed limit, that is, mobiles in one street may accelerate

their speed while mobiles in another street may decelerate due to the geography of

street layout. The fractional Brownian motion (FBM) mobility model in [12] is a

generalization of the Brownian motion. The displacement of a mobile is described by

Gaussian distribution with mean

the Hurst parameter of the fractional Brownian motion. For a = 0.5, FBM models

non-accelerating motion patterns. For a > 0.5, FBM describes accelerating motion

pattern. For a < 0.5, FBM describes decelerating motion patterns.

1.1.6 Fluid Flow Mobility Model

The fluid flow mobility model [13] describes macroscopic movement behavior by

modeling traffic flow as if it is a flow of fluid. The amount of mobile traffic moving

out of a region is assumed to be proportional to (a) the average speed of mobiles,

(b) the length of the region boundary, and (c) the density of mobiles in the region.

Assuming that the movement direction of mobiles is uniformly distributed over (0,
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270, the average number of mobiles moving out of a region per unit time is described

as

where

p is the density of mobile (mobiles/unit area),

f is the length of the region boundary,

v is the average speed of mobiles.

In the dynamic location management scheme [14], the fluid mobility model

is used to determine the number of location updates per mobile per unit time for

different location area size. Dividing the number of mobiles moving out of a location

area per unit time by the average number of mobiles in the location area, the number

of location updates per mobile per unit time becomes

where	 is the length of location area boundary and A is the size of location

area. Assuming square shaped location area

frequency per mobile becomes

When the size of the location area is large (i.e., is large), the location update

frequency (1.5) is small, but the size of the paging area, in which the network pages

a mobile upon a call arrival, becomes large. If the size of the location area is small

(i.e., is small), the paging area becomes small, but the location update frequency

becomes large. The optimal location area size that minimizes overall signaling cost

is determined in [14].
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In the location area optimization problem [15], the same fluid mobility model

is used. The shape of cell is assumed to be circular, and the rate of cell boundary

crossing is described as

where r is the radius of a cell. By scaling the cell boundary crossing rate by PLAID cell

which is the proportion factor of the perimeter of a cell that coincides with the

parameter of a location area (LA), the number of location updates per unit time is

described as

1.1.7 Gravitational Mobility Model

The gravitational mobility model conceptualizes mobile traffic as the gravity between

two objects in Physics. The amount of mobile traffic moving from one region

to another is assumed to be proportional to the population in both the region

that mobiles are moving out of, and the region that the mobiles are moving into.

The gravitational model was developed for transportation research to model human

movement behavior. Assuming that Nib is the population in region i, and K i ,j is a

"gravitational" parameter for region i and j, which has to be determined from field

data, the amount of traffic moving from region i to region j is described as

A variation of this model is used for performance analysis for PCS networks in [16].

The mobility model is used to characterize movements of mobiles on different scales:

within a metropolitan area, within a national area, and at the international level.

The performance analysis on IS-41, the current location management standard in

the United States, is carried out for San Francisco Bay area.
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1.1.8 State Space Mobility Model

In the state space mobility model introduced in [17], the handcuff probability is

determined by modeling user mobility using multi-dimensional Markov chain where

each state consists of the number of mobiles in each cell. The dwell time of a mobile

in a cell is assumed to be exponentially distributed with parameter that is dependent

on the cell. The number of states that describe system operation increases exponen-

tially as the number of cells in the network increases:

where

s is the number of states,

c is the maximum number of available channels per cell assuming Fixed Channel

Allocation (FCA) [18],

n is the number of cells in the network.

A drawback of this approach is that the number of states increases exponentially as

the number of cells in the network increases. This problem is noted as state space

explosion in [19].

In Hidden Semi-Markov mobility model [20], the state of mobile is defined in

terms of a vector, and each component of the vector represents a value from finite

attribute space S where the attribute space represents the properties of mobiles

such as location, direction, speed, etc. The "motion" of mobile is described by its

trajectory in the attribute space. The state transition of a mobile is described by

Markov chain. The aggregate behavior of mobiles is represented by a vector process
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where Nm(t) is the number of mobile users in state m at time t. The steady-state

probability distribution of the state vector is given as a product form solution.

1.1.9 Cell Residence Time Distribution

The cell residence time and the channel holding time distribution of a user is often

assumed to be exponential. The validity of the assumption is shown in [2] based

on computer simulation. In the simulation, each cell is assumed to be identical

and circular in shape, and the speed of mobile is assumed to be constant. At call

initiation, a mobile is assigned (a) a random initial position in a cell drawn from a

uniform distribution, (b) a random initial direction drawn from a uniform distribution

over (0,27r) and (c) a random time until the direction changes. The random time

between the changes in the direction has an exponential distribution assuming that

the changes occur at memoryless instants. The lack of memory in motion pattern

suggests exponential distribution of the cell residence time. The call holding time

is also assumed to be exponentially distributed. It is interesting to note that the

average rate of changes in direction should be kept in a certain range to preserve the

memoryless property. It is shown that if the rate is either too small or too large, the

channel holding time distribution deviates from the exponential distribution. In fact,

if the mobile doesn't change direction at all, the trajectory of mobile is deterministic;

therefore, the cell residence time is also deterministic. If the mobile changes direction

frequently, the movement of mobile approximates a Brownian motion process. An

analytical expression for cell residence time distribution is derived in [21] based on

a similar set of assumptions. It is shown that the cell residence time distribution

strongly resembles the exponential distribution.

Call blocking probabilities are calculated assuming the exponential channel

holding time and the exponential call holding time distribution in [22] [23] [24]. The
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sequence of cell entrance times of mobiles are modeled as a Poisson process with

rate in [25]. The number of mobiles residing in a cell is described using M/G/oo

queuing system, and the average number of mobiles per cell is calculated using Little's

theorem: Ems  ry.E{S} where S is cell residence time. Since the average number of

mobiles entering a cell per unit time is 7, the cell boundary crossing rate per mobile

is calculated as

The location area boundary crossing rate is obtained by weighting the cell boundary

crossing rate by a ratio between the perimeter of location area and the perimeter of

cell as in the fluid flow mobility model (i.e., the boundary crossing rate increases as

the perimeter of the region increases).

The biased sampling problem of hanfoff mobiles is pointed out in [26]. Since

high speed mobiles are more likely to cross cell boundaries than low speed mobiles,

the speed of handoff mobiles observed at cell boundaries is higher than the speed of an

average mobile, and the cell residence time of hanfoff mobiles is smaller than that of

an average mobile. The hanfoff blocking probability is analyzed in [27] considering

the effect of the bias on channel holding time distribution, and the accuracy of the

analysis is demonstrated through simulation.

In reality, the shape of cell is irregular, and mobile's speed, direction and time

between changes in direction are difficult to characterize. There has been attempt

to model the cell residence time distribution based on field data. A generalized

Gamma distribution is proposed to model the cell residence time in [28]. The cell

residence time is modeled using SOHYP (the sum of Hyperexponential) distribution

in [29]. The hyper-Erlang distribution, which is known for its capability of universal

approximation, is proposed to model the cell residence time in [30].
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1.2 Challenges of the Next Generation Wireless Network

In the conventional wireless networks, mobility modeling is used to characterize the

behavior of users on their physical location as well as the behavior of the criteria (e.g.,

observed power level, signal to noise ratio) that give rise to the execution of mobility

related transactions. In most cases, it is assumed that there is a one-to-one mapping

between the two, which implies that the major factor governing wireless transmission

is the physical distance between transceivers. Indeed, in the absence of information

regarding peculiarities of the propagation environment (such as multipath scattering

or the absence of line of sight signals), this is a viable assumption for purposes of

network performance modeling. The boundary of interest in mobility modeling can

be a geographic boundary (e.g., sector, cell and location area boundaries), or it can

be a threshold of a measure that displays stochastic behavior such as the received

power level where the threshold for handoffs decision is given. Therefore, boundary

crossing models are used to estimate the probability of, or the rate of, inter-sector,

inter-cell or inter-system handoffs, and location updates.

As the service demand becomes more and more data oriented along with the

advent of proximity based wireless systems, peer-to-peer communications, and ad

hoc networks, the conventional voice oriented wireless service architecture limits

the freedom that the wireless can bring in the future. Freedom of being mobile is

not simply that the wires attached to handsets are removed, but it claims for a new

dimension of wireless service in which wireless information delivery is custom-tailored

to where users are and what users are doing. In other words, the geographic relevance

of application becomes an important service quality. In the next generation wireless

networks, the concept of user location includes not only the ID of the base station

that the user is associated with, but also the geographic position and the state of

mobility, that is, whether the user is in vehicle, at work, at home, etc.
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An example of location-aware application service is a geographically targeted

multicasting service that is called geomulticasting. Due to the locality of the target

subscribers, a base station does not need to deliver multiple copies of a same message

to each user in the target area. Instead, users in the vicinity may relay or share

the message through peer-to-peer communications. One candidate for such network

architecture is Cellular Ad Hoc Augmented Network (CAHAN) [31]. CAHAN is a

hybrid network, in which ad hoc networking capability is added to mobile stations.

Typically, the range for peer-to-peer radio communications is much shorter than the

radius of a cell, and multiple ad hoc networks may exist in a single cell.

Another type of location-aware application service is geocasting in which a

user may send a message or establish communication with mobiles or fixed entity in

a target area of interest. In this application, the users don't care who they are talking

to, but they really care that they are talking to someone in the area of interest. A

gas station may want to advertise its special rate to vehicular users passing through

its local area. Since the message is targeted to vehicular users, the message should

be delivered to users who are moving at vehicular speed. A user passing through the

target area should receive the advertisement message during the stay in the target

area.

The concept of the location-aware application service is simple, and each

component technology required to realize the service is already there: the geolo-

cation techniques such as GPS [32] and Indoor Geolocation [33], and the wireless

network infrastructure. However, the challenges in the wireless networks is to

collect the geographic position and the mobility state information from mobile users

and to provide this information to application services so that the services can be

customized to users' need.
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The predictability-based mobility modeling approach and user tracking

strategies introduced in this dissertation are applicable to virtually every mobility

related transactions in wireless networks. Usefulness of the new mobility modeling

concept is demonstrated for location management, location-based service provi-

sioning, and routing in multihop cellular networks.

1.3 Dissertation Outline

Chapter 2 introduces a predictability-based mobility modeling approach. In the

predictability-based approach, the mobility is defined as the uncertainty in mobiles'

motion pattern. A high speed mobile could have small uncertainty in its motion

pattern if its trajectory is highly predictable. A slow mobile could have large uncer-

tainty in the motion pattern if its trajectory is highly erratic. It is shown that the

predictability-based mobility modeling will lower the cost of the mobility related

transactions in the wireless network by predicting the trajectories of mobiles that

are highly biased in direction.

Chapter 3 introduces a predictability-based location update scheme in which

the predictive and the non-predictive distance-based location update schemes are

dynamically selected for each mobile. A mobile with highly predictable trajectory is

assigned a predictive location update scheme, and a mobile with random trajectory

is assigned a non-predictive location update scheme. The analytical framework is

presented for optimal mobility classification.

Chapter 4 introduces a hybrid geolocation update scheme for location-based

application services (LBS) in wireless networks. The proposed geolocation update

schemes reduce the geolocation update frequency and satisfy the QoS of appli-

cation service. For case studies, Location-based Traffic Report Service (LBS-TR)

and Location-based Navigation Service (LBS-NS) are presented. In LBS-TR, mobile
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users who are about to enter heavily jammed highways are informed in a timely

manner so that the users can avoid traffic congestion. In LBS-NS, mobile users are

provided with navigation instructions that are custom-tailored to the geolocation of

the users. The granularity of navigation instruction changes as the user moves from

highway to local street and from local street into building complex.

Chapter 5 presents a mobility-based network protocol that reduces energy

consumption for multihop cellular networks. A mobile makes routing decision based

on the movement direction of its neighboring mobiles. If source mobile S has a

neighboring mobile, R, which is moving towards a cellular base station, then S

relays its packets to R so that R can deliver the packets to the base station when

the position of R is close to the base station. On its way to the base station, if R

encounters another mobile, R', which will approach the base station even "closer"

than R, R relays the packets to R'. R' will do the same when it finds a "better"

relay mobile. Under reasonable mobility assumptions, the simulation result shows

that the proposed mobility-based multihop routing consumes less than 0.044% of the

energy required by the conventional single-hop routing for upstream traffic.

The conclusion of the dissertation is given in Chapter 6.



CHAPTER 2

PREDICTABILITY-BASED MOBILITY MODELING

2.1 Predictability as a Measure of Mobility

User mobility is one of the most salient characteristic in wireless mobile networks.

Mobility causes complexities in the network operations and system architecture.

Mobility modeling has played an important role in examining various issues in

network operations. In the literature, the average speed of mobile is often referred

to as the level of mobility, such as "high" or "low" mobility. This chapter introduces

a new mobility modeling concept that defines mobility as the uncertainty of mobile's

trajectory. The mobility of a high speed mobile is not necessarily high if the

trajectory of the mobile can be predicted accurately. A mobile on a highly directed

path such a vehicle on a highway usually travels long distance before changing its

speed and direction. The network can predict the trajectory of the mobile using

its speed and direction [34]. Unless the mobile changes the speed or the direction,

the mobile does not need to be inform the network about the mobile's location or

mobility state to receive and/or customize application services.

Trajectory prediction is useful for many issues in mobility management in

wireless networks. In ad hoc networks, each mobile station functions as a router, and

the network topology is heavily dependent on the location of each mobile. With a cost

effective geolocation information dissemination scheme, each mobile can determine

multihop routes to other mobiles in a fully distributed manner. In the mobility-based

location information dissemination scheme [35], each mobile disseminates messages

containing its current location information at a rate that is optimized according to

the speed of each mobile, i.e., the rate of location update is small when the speed of

the mobile is low, and the rate becomes large when the speed becomes high. With the

15
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trajectory prediction, a high speed mobile does not necessarily update its location

frequently as long as the mobile maintains its speed and direction.

In the location management for cellular networks, each mobile can register

its location and velocity (i.e., speed and direction) during the location registration

process [36]. Since the network can predict the location of a mobile based on the

speed and direction information, the mobile may register its location again when the

distance between the current location and the predicted location exceeds a prede-

termined threshold.

A predictive QoS provisioning for wireless cellular network is proposed in [37].

The network predicts the direction of each mobile as well as the time of arrival and

departure at those cells that the mobile is likely to visit in the future. The network

reserves radio channels in those cells just for the duration between the predicted

arrival time and departure time. Therefore, a single radio channel can be reserved

for a number of different mobiles as long as the mobiles are not scheduled to be at

the same cell at the same time.

Despite the complexity in trajectory prediction, the resource allocation based

on per user mobility becomes more attractive as the wireless evolution continues.

Since the future wireless network is expected to provide more wide-band services

to a greater number of mobile users, the radio communication range will become

smaller and smaller for the efficient reuse of the limited bandwidth spectrum. Since

the number of radio connections that each base station can provide to mobile users

will be small, the coarse granularity of radio resource becomes difficult to manage

without considering individual user mobility. It is obvious that if the motion pattern

of a mobile is highly predictable, then the resource allocation based on the trajectory

prediction will lower the handcuff dropping probabilities.
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The trajectory prediction will lower the network operation cost if the motion

pattern of mobiles is highly predictable. If the motion pattern becomes erratic, then

one can no longer expect to benefit from the trajectory prediction. For the following

analysis, the Brownian motion mobility model is used to determine the feasibility of

the trajectory prediction.

2.2 Brownian Motion Model

Brownian motion process is a continuous time, continuous space, Markov process.

The Brownian motion process models individual user mobility. The Brownian motion

model is superior to other mobility models in the following sense:

• Continuous State Space - The movement is not restricted to Cartesian axes

as opposed to the symmetric random walk model [381[39], the discrete-time

Brownian motion model 71[811 and Markov chain models [401.

• Drift Movement - The direction of mobile's movement on a highly directed

path can be described as continuous-time Markov process.

2.2.1 Brownian Motion without Drift

Brownian motion without drift is a zero mean diffusion process {X (t); t > 0} that

has following properties [411:

(a) Every increment X(t + s) — X(s) has normal distribution with mean zero and

variance et where a is constant independent of time t.

(b) For every pair of disjoint time intervals (t1it2), (t3it4), where t 1 > t2 > t3 > t4 ,

the increment X(t4 ) — X(t3 ) and X(t2 ) — X(t1 ) are independent random

variables with distribution given in (a), and similarly for n disjoint time

intervals where n is an arbitrary positive integer.
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(c) X(t) is continuous at t=0 where X(0) = 0.

2.2.2 Modified Brownian Motion with Drift

be a Brownian motion without drift. Brownian motion with drift

is a stochastic process having the distribution of

where /4 is a constant called the drift velocity. Brownian motion with drift is a

stochastic process {X (t); t > 0} with the following properties [411:

(a) Every increment X(t + s) — X (s) has normal distribution with mean Milt and

variance al t where p and a are constants independent of time t.

(a) For every pair of disjoint time intervals

are independent random

variables with distribution given in (a), and similarly for n disjoint time

intervals where n is an arbitrary positive integer.

(a) X(t) is continuous at t=0 where X(0) = 0.

The Brownian motion process is denoted as BCa, a) where Ca is the drift velocity and

a2 is the variance parameter. The Brownian motion do not have drift when Ft = 0.

2.3 Feasibility Region of the Trajectory Prediction

In this section, the feasibility of the trajectory prediction is investigated. Comparing

the performance of a predictive and a non-predictive user tracking strategy, the

feasibility region of the trajectory prediction is determined. Two user tracking

strategies are (a) Non-Predictive Distance-based Geolocation Update Scheme and

(b) Predictive Distance-based Geolocation Update Scheme. Under the assumption
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that one cannot have perfect knowledge on the statistics of users motion pattern, that

is, the trajectory prediction is based on users speed and direction where the speed

and direction have to be measured in reality, the predictive scheme does not always

perform better than the non-predictive scheme in terms of the average number of

geolocation updates per unit time. Under certain mobility assumptions, the non-

predictive scheme performs better. These two schemes are analyzed, and an optimal

way to choose appropriate scheme for each mobile is proposed.

2.3.1 Non-Predictive Distance-based Geolocation Update Scheme

When mobiles are highly biased in direction, the future geolocation of the mobiles

can be predicted using their speed and direction. In fact, if a mobile does not change

its speed and direction, then the mobile does not need to update its geolocation.

The network can predict the geolocation of the mobile using the speed and direction

information. On the other hand, if the mobile changes its speed and/or direction

frequently, then the location prediction based on the short term history of mobile's

movement may not work well in terms of the prediction accuracy. If the mobile

reports its speed and direction to the network whenever there is a change in its

speed or direction, the network may be able to predict the geolocation of the mobile

accurately; however, this requires frequent speed or direction updates from the

mobile. Therefore, in the non-predictive distance-based geolocation update scheme

(NDB), mobiles report their geolocation (i.e., position coordinates) 1 to the network

when the distance between the current position and the last reported position

becomes a predetermined threshold r as in Figure 2.1. The distance threshold r can

be considered as the maximum position error (i.e., the maximum difference between

the mobiles actual position and the position which is known to the network).

11t is assumed that the position coordinates are available using GPS [32] or other
geolocation techniques [42].
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Figure 2.1 Non-predictive distance-based geolocation update scheme.

Let M denote the time between geolocation updates of a mobile, and assume

that the movement of the mobile is described by two-dimensional Brownian motion

Bait, a) . The initial position of the mobile is (0,0) at time t = 0, and the mobiles

geolocation is assumed to be updated at time t = 0. Since the mobile will update

its geolocation again when the distance between its position and the initial position

becomes r, the time between geolocation update is equal to the dwell time of the

mobile in the circular region of radius r centered at the initial position. The dwell

time of the mobile is referred to as "hitting time" [43] of the Brownian motion.

The Laplace-Gegenbauer transform of the hitting time distribution in n-dimensional

Brownian motion is derived in [441. In the derivation, the author assumes that the

variance parameter of the Brownian motion is unity (i.e., a2 =1). By removing this

assumption, the two-dimensional version of the Laplace-Stieltjes transform of the

hitting time distribution can be derived 2 as
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Figure 2.2 Predictive distance-based geolocation update scheme.

• M is the hitting time of Brownian motion B(p, a) with circular boundary of

radius r.

• r is the maximum position error.

• In is modified Bessel function of the first kind and order E.

Using the moment theorem, the average time between geolocation update becomes

Defining the geolocation update frequency as the inverse of the average time between

two consecutive geolocation updates, the geolocation update frequency of the non-

predictive scheme (NDB) becomes
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2.3.2 Predictive Distance-based Geolocation Update Scheme

Mobile with highly predictable trajectory may report its mobility status (i.e.,

position, speed and direction) at the time of geolocation update. The network will

predict the future position of the mobile using this information. Since the position

prediction is solely based on the last reported position coordinates and velocity, the

mobile is aware of its predicted position at all times. The mobile may update its

geolocation when the distance to the predicted position becomes a predetermined

threshold r as in Figure 2.2. The distance threshold r is the maximum difference

between the mobiles current position and the position which is known to the network

(i.e., the predicted position).

Consider a mobile with two-dimensional Brownian motion pattern

Assume that the mobile is located at position (0,0) at time t = 0, and that the

mobile reported its position coordinates and velocity

assumed to determine its velocity by monitoring its displacement during the last T

units of time before the geolocation update. By letting

motion process without drift, B(0, a) , the position of the mobile can be expressed as

a stochastic process as in (2.1):

Since the predicted position of the mobile is

the relative motion of the mobile with respect to the predicted position becomes

which is another Brownian motion process having drift velocity p — Von and variance

parameter a 2 . Since the mobile updates its geolocation when the distance to its
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predicted position becomes r, the time between geolocation update is equal to the

hitting time of Brownian motion B(p — von, a) with a circular boundary of radius r.

The author refers to II — V0 as velocity jitter at time t = 0 and denotes the velocity

jitter as

Since the displacement of the mobile during the velocity monitoring interval, which

has a Gaussian distribution with mean pH and variance

has Gaussian distribution with mean 0 and variance o-2T. Therefore,

the velocity jitter v has Gaussian distribution with mean 0 and variance 0-2 /T, and

the amplitude of the velocity jitter, 1 /1 1

where

• r is the maximum position error,

• a2 is the variance parameter of the Brownian motion,

• T is the velocity monitoring interval,

• In, is modified Bessel function of the first kind and order E.



Figure 2.3 Geolocation update frequency.

2.3.3 Dynamic Mobility Classification: An Optimal Way to Minimize
Geolocation Update Frequency

In the previous subsections, two geolocation update schemes are introduced and

analyzed. The predictive distance-based geolocation update scheme is prescribed

for mobiles with predictable trajectory, and the non-predictive distance-based geolo-

cation update scheme is prescribed for mobiles with random trajectory. However,

how can one decide whether a mobile's trajectory is predictable or unpredictable?

Instead of measuring the predictability of trajectory, the predictability of a mobile's

trajectory is defined in the following mobility classification rule that minimize geolo-

cation update frequency.

Otherwise, the mobile's trajectory is unpredictable.

In Figure 2.3, the geolocation update frequencies of the predictive and the non-

predictive schemes are plotted as a function of drift velocity. The variance parameter

is assumed to be a2 = 1, and the velocity monitoring interval is T =-= 0.5. The

maximum geolocation error, which is the upper bound on the difference between
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a mobile's current geolocation and the nominal geolocation known to the network

or predicted by the network, is r = 1. The dotted curve indicates the geolocation

update frequency for the non-predictive scheme. The update frequency of the non-

predictive scheme increases as the drift velocity increases. The solid line indicates

the geolocation update frequency of the predictive scheme. The update frequency

of the predictive scheme is constant because the geolocation update frequency in

(2.12) is independent of drift velocity. With the mobility classification, a mobile may

dynamically choose appropriate geolocation update scheme as its motion pattern

mobile should choose the predictive scheme to update its geolocation.



CHAPTER 3

PREDICTABILITY-BASED LOCATION MANAGEMENT
IN CELLULAR NETWORKS

3.1 Introduction

The cellular network is the primary choice for the next generation wireless network

architecture due to the wide area coverage. One of the important issues in cellular

network is the design of user tracking strategy. Since users in a cellular network are

mobiles and they could be anywhere in the network, the network has to determine

the location of users to a minimum of cell granularity for service delivery. The

process that the network searches for mobile user is called terminal paging. Upon

a service arrival, the network broadcasts a paging message in the area where the

mobile is expected to be found. The mobile listens to the paging message and sends

a response to the network. Since the network has to determine the current location

of the mobile user within fixed time delay constraint, the paging area is usually a

cluster of neighboring cells around the last known location of the user. To prevent

the paging area from becoming indefinitely large, each mobile reports its location to

the network from time to time, and the process of reporting location is called location

update or location registration. The heart of the design is the paging/registration

optimization.

In the second and the third generation mobile cellular networks, the service area

is partitioned into a number of location areas (LAs) [46]. Each LA contains a group

of neighboring cells, and the location update is triggered when mobile moves from

one LA to another. When there is call arrival for a mobile, the network broadcasts a

paging message in all the cells in the current LA of the mobile; therefore, the network

can find the location of a mobile in a single step. The problem with LA scheme is

that LAs are not optimized on a user basis although the call arrival rate and the

26
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mobility of each individual user may be quite different. Current research efforts on

the user tracking strategy for next generation wireless network is concentrated on

user based location updating.

In the dynamic LA scheme, the size of LA for each user is dynamically

determined based on the mobility and the call arrival rate of the user. The size

of LA is chosen to minimize the paging/registration cost for each individual user

under a fluid flow mobility model in [141. In the dynamic location area assignment

algorithm [471, the overlapping region of the new and the old LA is dynamically

adjusted so that the expected dwell time of the mobile in the new LA is maximized.

In the timer-based location update scheme, mobile updates its location period-

ically. In the adaptive threshold scheme [481, the timer value is varied according

to the current signaling load on the reverse control channel. The performance of

the scheme is analyzed under one-dimensional random walk mobility assumption.

The result shows that the adaptive threshold scheme performs better than the static

timer-based scheme in which the timer value is fixed. An analytical model is used

in [491 to study optimal timer value that minimizes the paging/registration cost of

individual user. Under a Gaussian user location distribution and Poisson call arrival

assumption, it is shown that the timer-based scheme performs significantly better

than the LA-based scheme [461.

In the movement-based location update scheme, each mobile counts the number

of cell boundary crossings. The location update is triggered when the counter exceeds

a predetermined threshold. The threshold value can be selected dynamically for each

individual user based on the user's call arrival rate and movement pattern. In the

dynamic movement-based location update scheme [50], an analytical model is used

to study optimal movement threshold that minimizes the paging/registration cost
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of individual user under a general cell residence time distribution and symmetric

random walk movement assumption.

In the distance-based location update scheme, each mobile keeps track of the

distance from the location where it performed the last location update. When

this distance exceeds a threshold, a new location update is triggered. Dynamic

programming is used in [381 to determine the distance threshold that minimizes

signaling cost under one-dimensional symmetric random walk mobility model. An

iterative method in [391 to determine the distance threshold under two-dimensional

symmetric random walk mobility assumption. In the comparative study [401, the

distance-based scheme is compared with the timer-based and the movement-based

schemes under memoryless movement patterns and the movements with Markovian

memory on a ring topology. It is shown that the signaling cost of the distance-based

scheme is lower than the signaling cost of the timer-based and the movement-based

schemes.

In the predictive distance-based mobility management scheme [361, the mobile

updates its location as well as its velocity (i.e., speed and direction) during the

location update process. Since the network can predict the location of mobile using

the mobile's speed and direction, mobile updates its location when the distance

between the current location and the predicted location exceeds a predetermined

threshold. The network determines the probability distribution function of the

mobile's location using the last report on location and velocity. Upon a call arrival,

the network pages mobile at around the predicted location in the order of descending

probability.
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3.2 Mobility Model

The mobility models introduced in [381 [39] [40] [50] consider individual user mobility;

however, the movement patterns of users are assumed to be statistically symmetrical

in all possible directions of movement; therefore, users are not biased in direction.

In wireless networks, it is often assumed that the trajectory of user is random for

the convenience of analysis, but mobile users have their own reason to move from

one place to another, specially when they move with high speed. They usually take

the shortest path to their destination, and their trajectory is highly predictable. It

is obvious that the signaling cost for user tracking can be reduced by employing

some predictive mechanism for those mobiles having highly predictable trajectory as

in [361. However, is it cost effective to predict the location of mobile users if their

trajectory is highly erratic? The answer depends on how the network predicts the

location of mobiles and the level of uncertainty in mobiles' trajectory. To answer the

question, a mobility model that captures both the predictive and the non-predictive

aspects of user mobility should be used in the analysis. In this chapter, 2-D Brownian

motion with drift, B(ti, a) [431, is used to model user mobility.

3.3 Mobility Classes and Location Updating

A meandering pedestrian walking in the street does not need to update its location

as long as the mobile remains in a small local area. In the following, such mobiles are

referred as class 1 mobiles. The analytical definition of class 1 mobile will follow later

when dynamic mobility classification is introduced. A mobile on a highly directed

path such as train or vehicle on highway travels long distance without changing its

speed and direction frequently. Such mobile does not need to update its location

as long as it maintains its speed and direction, and they are referred as class 2

mobiles. The analytical definition of class 2 mobile will follow later. Assuming that
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each mobile is capable of determining its position, speed and direction, the location

update schemes for class 1 and class 2 mobiles are presented as follows.

3.3.1 Non-predictive Distance-based Location Update Scheme for Class
1 Mobiles

Consider the trajectory of a mobile in Figure 2.1. The mobile changes its speed and

direction frequently, if the mobile updates the changes in its speed and direction, the

mobile will generate a lot of update messages while it stays in the same local area. In

the non-predictive distance-based location update scheme, a class 1 mobile reports

its position when the distance between the current position and the last updated

position becomes r where r is the distance threshold that triggers position update.

The distance threshold should be optimized based on the user's call arrival pattern

and mobility.

3.3.2 Predictive Distance-based Location Update Scheme for Class 2
Mobiles

Consider the trajectory of a mobile in Figure 2.2. Assuming that the mobile updated

its mobility status (i.e., position, speed and direction) at time to , the network can

predict the position of the mobile at time t (> to ) as

where Po is the position of the mobile at time t o , and von is the velocity (i.e., speed

and direction) of the mobile at time t o . In Figure 2.2, the mobile changes its speed

and direction at p i , and the distance between the mobile's position and the predicted

position begins to diverge. Since the position prediction is based on the last mobility

status update, it is assumed that the mobile is aware of the predicted position.

The mobile updates its mobility status again when the distance between the current

position and the predicted position becomes r where r is the distance threshold that
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triggers mobility status update. The distance threshold should be optimized based

on the user's call arrival pattern and mobility.

3.3.3 Terminal Paging

When a call arrives for a class 1 mobile, the network broadcasts paging message in the

cells that overlap with any part of a circular region of radius r, which is centered at

the last reported position of the mobile. For a class 2 mobile, the network broadcasts

paging message in the cells that overlap with a circular region of radius r, which is

centered at the predicted position of the mobile. Therefore, the network can find

the target mobile in a single step. The distance threshold dictates the size of the

paging area, and it is subject to optimization with respect to the mobility and the

call arrival rate of each individual user.

3.3.4 Dynamic Mobility Classification

In the later sections, the analysis shows that the predictive distance-based location

update scheme performs better than the non-predictive distance-based location

update scheme in terms of update frequency if the trajectory of mobile is highly

predictable. If the trajectory of mobile is highly erratic, the non-predictive distance-

based location update scheme performs better than the predictive distance-based

location update scheme. Based on this result, a predictability-based adaptive

location update scheme is proposed, in which each mobile is classified to either class

1 or class 2 according to the predictability of its trajectory. Class 1 mobiles are

prescribed the non-predictive distance-based location update scheme, and class 2

mobiles are prescribed the predictive distance-based location update scheme. In

stead of measuring the predictability of mobile's trajectory explicitly, the network

operation cost (i.e., paging and location update cost) is used as a criterion for

mobility classification. A mobile is classified to class 1 if the signaling cost of the
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non-predictive distance-based location update scheme is smaller than the signaling

cost of the predictive distance-based location update scheme. Otherwise, the mobile

is classified to class 2.

Since mobility classification requires computation of the signaling cost for the

predictive and the non-predictive location update schemes, each mobile needs to

determine its own mobility parameters. If the user mobility is stationary (i.e.,

statistical properties of movement pattern doesn't change in time), each mobile

can estimate its mobility parameters accurately by monitoring its own movement

over a period of time. However, in reality the user mobility is not stationary, and

the very idea behind the mobility classification is to exploit the non-stationarity

of the user mobility. For example, when a mobile user is doing random walk in

a department store, the mobile should choose the non-predictive distance-based

location update scheme. If the user decides to take a taxi and starts moving on

the highway, the mobile should detect the changes in the motion pattern and choose

the predictive distance-based location update scheme. Therefore, the mobile should

be able to detect the changes in mobility fast enough to take advantage of mobility

classification. If the mobile doesn't detect the changes and uses the non-predictive

scheme while the user is on the highway or the predictive scheme while the user is

doing random walk, then the performance of the signaling cost for location tracking

will be large. Therefore, the duration of movement history, on which the mobility

parameters are measured, should be short enough to detect the changes in movement

pattern rather quickly. On the other hand, mobile needs to determine the signaling

cost to choose appropriate location update scheme, and the calculation of signaling

cost requires estimations on the mobility parameters. Therefore, the duration of

movement history, in which the mobility parameters are measured, should be long

enough to result accurate mobility parameter estimation.
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From a practical stand point, the mobility classification may not require such

complex computation or mobility modeling. For example, if a mobile is moving with

speed 60 MPH or more, one may know almost for sure that the mobile is on a highly

directed path. The mobile may choose the predictive distance-based location update

scheme. On the other hand, a slow mobile may choose the non-predictive distance-

based location update scheme regardless of the "predictability" of its trajectory since

the performance difference between the predictive and the non-predictive scheme is

small when the speed of mobile is low.

Other than the complexity related to mobility classification, the non-predictive

distance-based location update scheme for class 1 mobile is essentially same as the

conventional distance-based location update scheme [381 [3911401, and the predictive

distance-based location update scheme for class 2 mobile is similar to the predictive

distance-based mobility management scheme [361. The only difference is that in

[361 the network determines the probability distribution function (PDF) of mobile's

location using the last report on location and velocity (i.e., speed and direction), and

pages the mobile around the predicted location in the order of descending probability.

In our scheme, the network pages mobile around the predicted location in a single

step, and there is no need to calculate location PDFs.

3.4 Performance Analysis

In the following performance analysis, call arrivals are assumed to be independent

of user movement. The call arrival process is assumed to be Poisson, and the call

inter-arrival time is exponentially distributed as

where A is the average call arrival rate.



3.4.1 Update Frequency of Non-Predictive Distance-based Location
Update Scheme

There are three types of location update events, namely, update upon call arrival,

update caused by mobile that initiates call and update triggered by distance measure.

For simplicity, the location updates caused by initiating calls are ignored. In the non-

predictive distance-based location update scheme (NDB), mobile updates its location

either when there is call arrival or when the distance between the current position and

the last updated position becomes a predetermined threshold. Using the memoryless

property of the Poisson call arrival process, the time between location updates is

expressed as T„, = miE(M, Tcaii ) where T„// is a random variable representing

call inter-arrival time, and M is the dwell time of the mobile in the circular region

of radius r centered at the initial position. Assume that the initial position of the

mobile is (0, 0) at time t = 0. An indicator function is defined as follows.
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is the cumulative probability distribution of hitting time M,

is the probability that call inter-arrival time is greater than t.

By recognizing the second term in (3.6) as Laplace transform of the cumulative

distribution and using the following definition of Laplace transform,

Defining the inverse of the average time between location updates as location

update frequency, the location update frequency of the non-predictive distance-

based location update scheme becomes



36

The asymptotic behavior of the update frequency is determined as follows. If

the call arrival rate A approaches infinity, O m (A) approaches zero; therefore,

When the call arrival rate is large, the location update is mostly triggered by call

arrivals, and the update frequency will be close to call arrival rate. If the call arrival

rate A approaches zero, then Om (A) approaches one, and both the denominator and

the numerator in (3.9) approaches zero. Using L'Hopital's rule,

From the moment theorem, the denominator in (3.11) is the first moment of the

hitting time distribution. (3.11) can be expressed as

In other words, when the call arrival rate is zero, the location update is triggered

by distance measure only, that is, the update frequency is the inverse of the average

hitting time in (3.13). If the distance threshold r approaches infinity, 5M(A)

approaches zero, and

that is, the location update is triggered mostly by the call arrivals, and the update

frequency is equal to call arrival rate A. If the distance threshold r approaches zero,

then Om (A) approaches one, and
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Since mobile updates its location whenever the distance measure exceeds the

distance threshold, the update frequency becomes infinity as the distance threshold

approaches zero.
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(i.e., mobility status update) in the predictive distance-based location update scheme

(PDB) becomes a function of velocity jitter J.

Taking the average of (3.16), the average time between location

updates in the predictive distance-based location update scheme becomes

where

• r (km): distance threshold,

• 0.2 ,, mMc 2/hour): variance parameter of the Brownian motion,

• T (hours): duration of velocity monitoring interval.

By defining the inverse of the average time between location updates as location

update frequency, the location update frequency of the predictive distance-based

location update scheme becomes

Notice that the location update frequency above is independent of drift velocity.
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Except for A = 0, the update frequency of the predictive distance-based location

update scheme has similar asymptotic behavior as the non-predictive distance-based

location update scheme. For A = 0, applying L'Hopital's rule to (3.19) results

.11.

When the call arrival rate is zero, the location update is triggered by distance measure

only.

3.4.3 Signaling Cost

The size of paging area is subject to optimization due to the trade off between the

signaling cost of terminal paging and the signaling cost of location update. The

size of paging area also affects the utilization of other resources such as signaling

and switching in the wired backbone; however, in the following analysis the radio

bandwidth is considered as a primary resource and regarded as a cost. Signaling cost

(bits/user/hour) is formulated as follows.

where

• E is the number of cells in paging area,

• A (calls/user/hour) is the average call arrival rate,

• wpm (bits/call/cell) is the radio bandwidth needed for terminal paging,

• Du (bits/update) is the radio bandwidth needed for location update,
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where b (km 2 ) is the size of cell. For simplicity, the signaling cost is normalized by

Dub. The normalized signaling cost becomes

c=0.1, the normalized signaling cost versus distance threshold is plotted in Figure

3.2. Figure 3.2 shows the trade off between the cost of terminal paging and the cost

of location update. When r is increased, the cost of terminal paging increases while

the cost of location update decreases. On the other hand, if r is decreased, the cost

of the location update increases while the cost of terminal paging decreases.

Since the paging cost is increasing function of r and the location update cost

is decreasing function of r, there exists finite r that minimizes the overall signaling



cost. One can numerically evaluate the optimal distance threshold for each scheme,

namely r,*„„ for the non-predictive scheme and rp*,, B, for the predictive scheme. The

optimal signaling cost for each scheme becomes

the optimal signaling cost versus drift velocity

is plotted in Figure 3.3. The solid curve indicates the signaling cost of the non-

predictive scheme, and the dotted line indicates the signaling cost of the predictive

scheme. The signaling cost of the non-predictive scheme increases as the drift velocity

increases. The signaling cost of the predictive scheme is constant regardless of the

drift velocity. When Iii <4.62, the signaling cost of the non-predictive scheme

is smaller than the signaling cost of the predictive scheme. When lid >4.62, the

predictive scheme is more cost efficient than the non-predictive scheme.
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3.4.4 Performance of Dynamic Mobility Classification

In the previous subsection, it is shown that the non-predictive distance-based location

update scheme is more cost efficient than the predictive distance-based location

update scheme when the trajectory of mobile is highly random

he predictive distance-based

location update scheme results lower signaling cost. Therefore, the combination

of the predictive and the non-predictive schemes can reduce the overall signaling

cost by choosing an appropriate update scheme dynamically. In the dynamic classify-

otherwise, the

mobile is classified to class 2. The performance of the hybrid location update scheme

that uses the dynamic mobility classification is compared with the performance of

the predictive and the non-predictive distance-based location update schemes. The

service area of the cellular network is assumed to be two dimensional and infinite in

size. Two types of users are considered, namely, pedestrian users and vehicular users.

The movements of pedestrian and vehicular users are modeled by Brownian motion

respectively. It is assumed that the velocity monitoring

interval is r=0.1 (i.e., 6 minutes), and the ratio between wplb and Dub is E=0.1 as

before.

In Figure 3.4, the signaling cost versus call arrival rate is plotted for ii/p1=0,

It is assumed that each type of user contributes 50%

of the total user population in the network. Figure 3.4 shows that the signaling cost

of the proposed scheme is smaller than the signaling cost of the predictive and the

non-predictive distance-based location update schemes for call arrival rate between

0.1 and 1 (calls/hour/user). The difference in signaling cost increases as the average

call arrival rate increases. When the drift velocity of vehicular users is increased,

the signaling cost of the non-predictive scheme increases while the signaling costs of



Figure 3.4 Signaling cost vs. call arrival rate.

the proposed scheme and the predictive scheme remain constant. It is because the

location update frequency of class 2 mobile (i.e., vehicular user) is independent of

drift velocity in both the proposed scheme and the predictive scheme. When the

variance parameter of pedestrian users is decreased, the signaling cost for all three

schemes decreases; however, the difference between the signaling cost of the proposed

scheme and the signaling cost of the predictive scheme increases. In other words,

the signaling cost of the proposed scheme decreases more rapidly than the signaling

cost of the predictive scheme. For A=0.6, the signaling cost versus percent of the

vehicular user population is plotted in Figure 3.5. The mobility of each user type

is same as before, and the population of the vehicular users are varied from 10% to

90%. As the population of vehicular user increases, the signaling cost of each scheme

increases. When the vehicular users are less than 25% of total user population, the

signaling cost of the non-predictive scheme is smaller than the signaling cost the

predictive scheme. When vehicular users are more than 25%, the predictive scheme

results lower signaling cost than the non-predictive scheme. In any case, the proposed

scheme outperforms the predictive and the non-predictive schemes.
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CHAPTER 4

LOCATION-BASED SERVICE (LBS) PROVISIONING FOR NEXT
GENERATION WIRELESS NETWORKS

4.1 Introduction

As the service demand in wireless networks becomes more and more data oriented,

wireless opens up a new dimension of services in which information is custom-

tailored to user's location. An example of such location-aware application service

is geographically-targeted message delivery service called geocasting. In geocasting,

a user can send a message or establish communication with other mobile users in

a given area of interest. The area of interest is referred as target area [511. To

deliver a message to the mobiles in the target area, the network needs to detect

the presence of the mobiles in the target area. If the target area coincides with

cellular layout then cellular base stations may broadcast paging messages in the

corresponding cells to determine the presence of the target mobiles. If the shape of

target area is arbitrary, the cell-base location management schemes, which is used

in conventional mobile cellular networks, cannot provide sufficient information to

determine whether a mobile is inside or outside of the target area.

Consider a target area in Figure 4.1. The target area is defined by a message

source or an application service that wants to send a message to that area. In Figure

4.1, the target area is located in the middle of three cells. The cell that has any

overlapping region with the target area is called embedding cell. Since a location

sensitive message is intended for only those mobiles inside the target area, one way

to deliver a message from the application service is to send the message itself and the

target area boundary information to all the mobiles in the embedding cells. Since it

is assumed that mobiles are equipped with self-geolocation capability, a mobile that

receives the target area boundary information can determine its current geolocation.

45
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If the mobile is inside of the target area, the mobile terminal may present the message

from the application service to the user.

In a slightly different application which the application service wants to send

a message to all the mobiles that ever visit the target area, the wireless network has

to constantly monitor the embedding cells to detect the presence of new mobiles.

Whenever the wireless network detects a new mobile in an embedding cell, the

network may send the message from the application service and the target area infor-

mation to the mobile. If the message source is sending a real-time stream data traffic

to the target area, sending the stream traffic and the target area boundary infor-

mation to all the mobiles in the embedding cells will consume significant amount of

radio resource and battery power since the messages delivered to the mobiles outside

the target area will be discarded. An alternative way to deliver a geolocation sensitive

real-time message to a target area is to determine the geolocation of mobiles in the

embedding cells before the network transmits the data traffic to mobile terminals.



Each mobile in the embedding cells may report its geolocation to the network, and

the network may inform the application service about the mobiles inside of the target

area. If each mobile reports its geolocation frequently, then the network may detect

all the mobiles that ever enter the target area. However, frequent geolocation update

will consume significant amount of radio resource and battery power. Consider the

two mobile users in Figure 4.1. Mobile 1 is not moving while mobile 2 is running

toward the target area. If the both mobiles update their geolocation frequently, the

network may be able to detect mobile 2 when it enters the target area. However,

mobile 1 will waste its battery and radio resource. If they update their geolocation

infrequently, then the wireless network may not detect mobile 2 while it pass through

the target area.

Therefore, the geolocation update scheme of each individual mobile should

be optimized based on its mobility and the QoS of the application service. In the

following, a location-based traffic report service (LBS-TR) is presented as a case

study. A geolocation update scheme is proposed for LBS-TR. In LBS-TR, the



wireless network searches for mobile users who may find the traffic report message

useful.

In other type of location-based services (LBS), the application service concerns

about what is happening around a mobile user. The granularity of geolocation

information of the mobile should be fine enough to differentiate the geographic

relevance of the application service for the mobile but coarse enough not to cause

too much signaling overhead in the network. For example, a navigation service for

high speed mobile on the highway may require low resolution location tracking than

a navigation service for mobiles wondering in a mall looking for a store. The wireless

network may assume that the required resolution of the geolocation information is

specified by the application service as a QoS requirement. The required resolution

may change dynamically during a service. A location-based navigation service (LBS-

NS) is presented as a case study. A hybrid geolocation update scheme is proposed

for LBS-NS.
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4.2 Case Study 1: Location-based Traffic Report Service (LBS-TR)

In the location-based traffic report service (LBS-TR), the service provider informs

mobile users who are about to enter heavily jammed highway so that the users

can avoid traffic congestion. LBS-TR service architecture is shown in Figure 4.2.

The service provider monitors traffic conditions on all the major highways, and it

maintains a data base for the potential target areas to which traffic report should be

delivered in case of traffic congestion. When highway traffic congestion is detected,

the service provider determines which target area it should send a traffic report

and requests an LBS Session from the service support layer (LBS-SL). LBS-SL

supports LBS application service by providing appropriate mobility information that

is collected from the radio access network. LBS-SL does not need to know what kind

of service is being provided by the service provider. The service provider sends the

information about the target area (e.g., digital maps of the target area) to LBS-

SL, and LBS-SL determines which radio access network is covering the target area.

LBS-SL requests appropriate radio access networks to monitor the target area.

A simple signaling flow diagram illustrating LBS-TR service is shown in Figure

4.3. When the service provider detects highway traffic congestion, it maps the point

of congestion to a set of target areas and sends a LBS Session Request message to

LBS-SL. The LBS Session Request message includes information about the target

areas. LBS-SL maps the target areas onto cellular layout and determines which access

network has the coverage over the target areas. LBS-SL sends LBS Solicit Requests to

appropriate radio access network, and the radio access network forwards the request

to appropriate base stations. When the base stations receive LBS Solicit Request,

they start broadcasting LBS Solicit message periodically. LBS Solicit message

should include a signature of the application service (i.e., LBS-TR) so that only

the subscribing mobiles can respond to the LBS Solicit message. Subscribing mobile
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that receives LBS Solicit message starts seif-geolocation and geolocation update. If

the mobile moves to a non-embedding cell that doesn't have any overlapping region

with the target area, the mobile will no longer hear the LBS Solicit message and

stop both seif-geolocation and geolocation update. The geolocation update messages

received at the base stations are forwarded to LBS-SL. LBS-SL determines whether

the mobile is inside the target area or not. If the mobile is in the target area, LBS-SL

forwards the geolocation update message to the application service. If the mobile

is not in the target area, LBS-SL discards the geolocation update message. Upon

receiving the geolocation update message, the application service sends the mobile

a Traffic Report. When the traffic congestion is over, the application service sends

LBS End Session Request to LBS-SL, and LBS-SL forwards LBS End Solicit Request

to the radio access network.

By mapping the target areas to cellular layout, the subscribing mobiles update

their geolocation only when they are inside the embedding cells. The cell based

seif-geolocation triggering significantly improves the signaling scalability of LBS-TR.
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However, the geolocation update frequency of each mobile inside the embedding cell

still needs to be optimized. To determine the optimal geolocation update frequency

of a mobile in the embedding cells, consider the target area shown in Figure 4.4.

Since mobile users who are not interested in traveling highways shouldn't be

disturbed, the target area is designated in the north bound of the local street between

the highway entrance and the local cross section. As shown in Figure 4.4, the target

area is much smaller than the size of a radio cell, and the conventional location

management schemes that keep track of mobile's location on cell level will not provide

enough resolution. Assume that the distance between the highway entrance and the

local cross section is km and that the local speed limit is 100 km/hour. A north

bound vehicular user traveling with the speed limit will pass through the target area

in 36 x seconds. Therefore, if geolocation update frequency is greater that 1/36f

(updates/second), the wireless network will detect the mobile that enters the target

area unless the mobile is speeding. Frequent geolocation update will guarantee the

QoS for LBS-TR; however, if all the mobiles in cell A and B update their geolocation

frequently, the overall signaling cost and battery consumption will be significant. If

there is residential area or office complex where thousands of users sit tight, then

most of the geolocation updates from these users are simply wasted. Therefore, the

geolocation update frequency for each individual mobile needs to be optimized based

its mobility, that is, slow mobiles may update their geolocation less frequently while

high speed mobiles update their geolocation frequently.

Assume that the mobiles in the embedding cells in Figure 4.4 are moving with

different speeds. Since the service is targeted for vehicular users traveling in the

north bound of the local street, it is fair to assume that the target area in Figure

4.4 is one dimensional where the size of the target area is km. Since the size of

the target area depends on the geography, and it doesn't usually change in time,
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(b) Timing diagram for mobile k

Figure 4.5 Timing diagram.

the information needed to calculate the optimal geolocation update frequency is the

speed of mobile. The QoS of LBS-TR is satisfied if a mobile entering the target area

updates its geolocation at least once before it moves out of the target area. If each

mobile maintains its speed constant, the optimal geolocation update frequency is

calculated by dividing the speed of mobile by the size of the one-dimensional target

area. If the speed of the mobile is v km/hour, then the optimal geolocation update

frequency for the mobile is

In other words, if the mobile updates its geolocation every £/v (hours), the mobile will

perform at least one geolocation update in the target area. If the speed of mobile

is not constant, then the geolocation update timer value should be dynamically
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adjusted as the speed of mobile changes. In the following one dimensional analysis,

it is shown that if the timer value is adjusted as the speed of mobile changes, the

distance traveled by a mobile between two consecutive geolocation update events

remains constant. In other words, the same optimality is achieved if a mobile updates

its geolocation when the distance between its current position and the last updated

position becomes I.



The result can be generalized by letting At approach zero. For a mobile which

changes its speed continuously, the distance traveled between two consecutive geolo-

cation update events is always £ if the update timer is optimally adjusted as the

speed of mobile changes.

From this simple one dimensional analysis, it is shown that the same QoS is

achieved if geolocation update is triggered by the distance measure, that is, a mobile

updates its geolocation when the distance between the mobile's current position and

the last updated position becomes £. This geolocation update strategy is known

as distance-based geolocation updating. With the distance-based updating scheme,

each mobile entering the target area updates its geolocation only once inside the

target area.
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Figure 4.6 An exemplary signaling flow diagram for LBS-NS with dynamic
resolution control.

4.3 Case Study 2: Location-based Navigation Service (LBS-NS)

Consider a location-based navigation service (LBS-NS) in which the user is given

navigation instructions that are dynamically custom-tailored to the geolocation of the

user. The resolution of navigation instructions should change as the user moves from

highway to local street and from local street to building complex. The application

service may require different granularity for the mobile's geolocation information as

the user moves.

An exemplary signaling flow diagram for LBS-NS is shown in Figure 4.6. A

mobile user may request a navigation service by sending a service request message

to LBS-NS. LBS-NS initiates an LBS session by sending LBS Session Request to

LBS Support Layer (LBS-SL). The LBS Session Request should include the QoS

requirement such as the accuracy of mobile's geolocation information. LBS-SL

requests the wireless network to keep track of the mobile's geolocation with a granu-
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larity specified by the application service. The granularity of geolocation infor-

mation is the maximum difference between the mobile's true geolocation and the

last reported geolocation. The granularity should be fine enough to differentiate the

geographic relevance of surrounding landmarks so that LBS-NS can provide appro-

priate navigation instructions. Consider a mobile user who wants to buy shoes at

a shopping mall. When the user is driving on the highway, the highway exits may

serve as landmarks in the navigation instruction. The mobile doesn't need to update

its geolocation frequently since the highway exits are usually far apart. As the user

approaches the shopping mall, the user needs more detailed navigation instruction

such as how to drive toward the mall's parking area or how to walk through the mall

to fine the shoe store. Therefore, the required granularity of mobile's geolocation

information becomes small as the mobile approaches the destination.

Even though the actual quality of navigation service also depends on the way

that LBS-NS chooses landmarks for navigation instructions, in the following the QoS

of LBS-NS is defined as the granularity of geolocation information. A hybrid

geolocation update scheme that satisfy the QoS of LBS-NS is proposed. In the hybrid

scheme, the non-predictive and the predictive distance-based geolocation update

schemes are dynamically selected based on the user's mobility pattern. For the

description of the the non-predictive and the predictive distance-based geolocation

update schemes, see Chapter 1.

4.3.1 Hybrid Distance-based Geolocation Update Scheme

Analysis in Chapter 1 shows that the update frequency of the predictive distance-

based geolocation update scheme is smaller than the update frequency of the non-

predictive distance-based geolocation update scheme when the trajectory of mobile

is highly predictable. When the trajectory of mobile is highly random, the update



Figure 4.7 A mobile changing its geolocation update scheme from the non-predictive
scheme to the predictive scheme.

frequency of the non-predictive scheme is smaller than the update frequency of

the predictive scheme. Based on this analysis, a hybrid distance-based geolocation

update scheme is proposed. In the proposed scheme, a mobile dynamically chooses

the predictive or the non-predictive scheme whichever is expected to increase the

time between two consecutive geolocation updates.

Consider the mobile in Figure 4.7. Assume that the mobile updated its

geolocation at position Po at time to using the non-predictive scheme. Also assume that

the mobile arrives at position P1 at time t i . Even though the mobile updated its

geolocation using the non-predictive scheme, the mobile can also determine its speed

and direction at the time of geolocation update; therefore, the mobile "knows" what

would've been the predicted position if the mobile had updated its geolocation using

the predictive scheme. In Figure 4.7, the predicted position of the mobile at time t 1

is P2. If the distance between P1 and P2 is less than the granularity of the geolocation

information, r, then the mobile may "realize" that the predictive scheme would've

performed better than the non-predictive scheme. The mobile changes the geolo-

cation update scheme to the predictive scheme. Consider the mobile in Figure 4.8.
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Figure 4.8 A mobile changing its geolocation update scheme from the predictive
scheme to the non-predictive scheme.

Assume that the mobile updated its geolocation at position Po at time t o using the

predictive scheme. By the time the mobile arrives at P1 , the distance between the

mobile's position and the predicted position P2 becomes r, and the mobile has to

update its geolocation. Since the distance between the mobile's position (i.e., P1 )

and the initial position (i.e., Po ) is smaller than r, the mobile may "realize" that the

non-predictive scheme would've performed better than the predictive scheme and

change the geolocation update scheme to the non-predictive scheme.



CHAPTER 5

MOBILITY-BASED ENERGY EFFICIENT MULTIHOP ROUTING
FOR MULTIHOP CELLULAR NETWORKS

5.1 Introduction

Cellular ad hoc augmented network (CAHAN) architecture, which is a mixture of

the mobile ad hoc network (MANET) and the cellular network, is proposed in [311.

Many variations of the proposed network architecture are possible depending on the

set of functionalities inherited from the fully distributed self-organizing mobile ad hoc

networks. One of the distinctive characteristics of CAHAN architecture is the peer-

to-peer communication capability, that is, mobile stations can transmit messages

to other mobile stations without the intervention of cellular base stations given

that these mobiles are in close proximity. Using the peer-to-peer communication

capability, the multihop cellular architecture can provide energy efficient multihop

routes from mobiles to base stations. A simple illustration in Figure 5.1 shows how

the energy consumption is reduced by multihop routing. In the figure, there are two

mobile stations S and R and base station D. They are located on a straight line.

From the simple radio path-loss model [521, the power of the received radio signal

that is transmitted from S to D is inversely proportional to (dS , D )a where ds,D is the

distance between S and D, and a is the path-loss exponent. If the minimum received

signal power required at each receiver for reliable reception of the transmitted data

is P, then the required transmission power for a direct radio transmission from S to

D is P . (ds,D assuming that the transmitter and the receiver antenna gains are

unity. In the multihop route that S sends packets to R, and R relays the packets to

D, the required transmission power at S is P • (ds,R , and the required transmission

power at R is P • (dR,D)a where ds,R is the distance between S and R, and dR,D

is the distance between R and D. The multihop routing reduces total transmission
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If there is more relay mobiles between S and D, the energy consumption will decrease

even further.

While the multihop routing reduces the energy consumption, the capacity of

a fixed multihop cellular network decreases as the density of mobile users increases.

The capacity of an ad hoc network is analyzed in [531. In the ad hoc network, the

throughput for each user is limited not only by the capacity of a single radio link,

but also the relay load imposed by other users. Since short range single-hop radio

transmissions do not interfere with each other given that they are sufficiently distant,

the number of possible simultaneous single-hop transmission increases linearly with

the total area of the network if the density of the network is kept constant. Therefore,

the capacity of the network, which is the total amount of data transferred per unit

time in all possible simultaneous single-hop radio transmissions increases linearly

with E where E is the number of users in the network. Assuming that the number

of hops between each source and destination increases linearly with the square root

of E, which is roughly the diameter of the network, the sum of the throughput for

'For simplicity, the power required at the receiver to process the received radio signal
is ignored.
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each communication session in the network is in the order of EkFt. Assuming that

there are E such communication sessions in the network, the throughput available

for each session is in the order of 1/fri. A dramatic improvement on the capacity

is suggested in [541 by taking advantage of user mobility in an ad hoc network. It is

shown that the average long-term throughput per each communication session can

be kept constant even when the number of users in the network increases.

In this chapter, a mobility-based energy efficient multihop routing protocol

is proposed for up-link traffic, i.e., the data traffic from mobile stations to base

stations. For down link traffic, the conventional single-hop radio transmissions is

assumed to reduce energy consumption at mobile stations. In the proposed mobility-

based multihop routing, the network takes advantage of user mobility to reduce the

energy consumption. The proposed mobility-based multihop routing is illustrated in

Figure 5.2. Assume that mobile S and R are moving along their trajectories that are

indicated as dotted lines in the figure. If mobile S can predict how close it can get to

base station D, then S may wait until it reaches the position where the distance to

the base station is minimum, that is, where the required transmission power to send

packets to the base station is minimum. In the following, this minimum distance

to the base station is referred as minimum power distance (MPD) of the mobile.

If mobile S has a neighboring mobile whose MPD is even smaller, S may relay its

packets to the neighboring mobile. To reduce the total transmission energy, S relays

packets to neighboring mobile R if

where andand 6R are MPDs of mobile S and R respectively. In (5.2), it is assumed

that the mobile stations and the base station have the same transmitter and receive

pair, and that the minimum received signal power required at the front end of a

receiver is same for both the mobile stations and the base station. In Figure



Figure 5.2 Mobility-based multihop routing.

5.2, the trajectory of each mobile station is assumed to be a straight line. If the

direction of a mobile station changes, then MPD will also change. Since a mobile

makes routing decision based on its MPD and the MPDs of neighboring mobiles,

the frequent changes in the direction will result in a ping-pong effect that a same

packet is tossed back and forth among mobile stations. Therefore, the movement of

relay mobiles should be highly biased in direction. In the mobility-based multihop

routing, a small number of highly directional relay mobiles significantly reduce the

energy consumption of all other mobiles in the network, that is, a small number of

relay mobiles collect user packets from other mobiles and deliver these packets to a

base station when they are close to the base station.

Through simulation study, the performance of the mobility-based multihop

routing, the minimum energy routing [55] and the conventional single-hop routing

is compared with each other. The simulation result shows that the proposed

mobility-based multihop routing outperforms the others under reasonable mobility

assumptions.
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5.2 Brownian Mobility Model

In the simulation study, the Brownian motion with drift (i.e., B(//, a) [43]) is used

to model individual user mobility.

If variance parameter a2 is zero, the mobile moves with constant velocity, and

there is no uncertainty about the future position of the mobile. One can predict the

position of the mobile at anytime using the current position and the drift velocity.

For those whose variance parameter is not zero, a simple trajectory estimation based

on the position information and the instantaneous velocity is assumed to determine

the minimum power distance of mobiles. Assuming that each mobile is capable of

determining its current position, mobiles can determine their instantaneous velocity

based on the recent movement history (i.e., the displacement during the last H units

of time; the velocity monitoring interval, T, is assumed to be a system parameter).

Assuming that all the mobiles in the cell know the coordinates of the base station,

each mobile estimates its MPD using its instantaneous velocity. Since the instan-

taneous velocity is recalculated every H units of time, MPD will also change every

H.

5.3 Energy Efficient Multihop Routing

In this section, three multihop routing algorithms are proposed namely, (a) Distance-

based Multihop Routing for fixed multihop cellular networks, (b) Distance-based

Multihop Routing with limited scope of search for next hop node 2 for the fixed

multihop cellular network, and (c) Mobility-based Multihop Routing which takes

advantage of user mobility to reduce energy consumption in the multihop cellular

network. The distance-based multihop routing algorithms (a) and (b) will serve as a

basic framework for the mobility-based multihop routing (c). Before presenting the

In case where all mobile stations are stationary, the term node is used instead of the
term mobile.
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Figure 5.3 Minimum energy routing.

three routing algorithms, the concept of minimum energy routing [551 is described

for performance benchmarking purposes. As the term "minimum energy" indicates,

the minimum energy routing is to route user data from a source node to a destination

node along a multihop route that consumes the least amount of energy. The main

challenge in the minimum energy routing is to find the minimum energy route among

all possible multihop routes. A distributed routing algorithm which provides the

minimum energy routes in the multihop wireless network is proposed in [551. In the

distributed routing algorithm, each node i searches for a minimum set of neighboring

nodes l't(i) that includes the first hop nodes of all the minimum energy routes from

node i to other nodes in the network. In other words, the first hop radio link on a

minimum energy route that originates from node i should be one of the radio links

between node i and neighboring nodes in 1 `t(i). To demonstrate the complexity of the

neighbor search, consider the one-dimensional multihop wireless networks in Fig 5.3.

If node i examines closer nodes first, the search sequence for node i in Network 1 is

i + 1, i + 2, i + 3, i —1. Since the neighboring nodes of i (i.e., {k : k E 1%(i)}) are node

i — 1 and node i + 1, thorough search is required to find all the neighbors of node



the search can be terminated at i + 1 since node i already find all the neighboring

nodes (the maximum number of neighbors in one-dimensional network is two). In a

slightly different search scenario, if node i examines the closest node first (the closest

node is the first neighbor to be found) and searches in the opposite direction of the

first found neighbor, then the search will terminate in two steps for both networks

in Figure 5.3. The search sequence in Network 1 will be i + 1, i — 1, and the search

sequence in Network 2 will be i-1, i+1. Constructing efficient search sequence based

on the information about already found neighbors in the two-dimensional network is

still an open problem. After each node determines its neighboring nodes, each node

constructs a link cost table for the radio links between itself and its neighboring

nodes. In the distributed minimum energy routing [551, a shortest path algorithm

is used to distribute the link cost information of the network where the network is

viewed as a sparse graph whose vertex set is L and whose edge set is

where IPA is the set of all nodes in the network, and li,k  is the directed radio commu-

nication link from node i to node k. When the nodes in the network are fixed, the

minimum energy routing is an optimal solution that minimizes energy consumption;

however, as the nodes start moving, the overhead for finding the optimal route

increases dramatically. For example, if node i changes its position, then the corre-

sponding link cost will change accordingly. The changes in the link cost will prompt

a new search of neighboring nodes for node i and the other nodes around node i.

Since each node determines the minimum energy route based on the link cost table

of other nodes in the network, the minimum energy consumption is not guaranteed

unless the link cost is updated in real time. In the simulation study, our implemen-

tation of the minimum energy routing [551 assumes that the link costs are updated in



Figure 5.4 Distance-based multihop routing.

real time without any signaling cost; therefore, the "minimum energy consumption"

is guaranteed even when nodes are moving.

5.3.1 Distance-based Multihop Routing

A simple distributed multihop routing algorithm is illustrated in Figure 5.4. When

node i has a packet to send to destination node d, node i relays its packet to node

k* if there exists node k* such that

If node i can't find node k* that satisfies (5.4) in the network, node i directly sends the

packet to destination node d. Node i tries to find a two-hop route to destination node

which consumes the least amount of energy among all possible

two hop routes. When node k* receives the packet from node i, k* will look for its

own two-hop route to the destination, which consumes the least amount of energy

among all possible two hop routes. The next relay node that receives the packet from

66
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node k* will do the same. Therefore, the total hop count from node i to node d can

be greater than two. When node i makes routing decision, node i needs to know the

cost (i.e., the power requirement) of the radio link between itself and the potential

relay nodes and the link between the potential relay nodes and the destination node.

If the distance between node i and node k is larger than the distance between node i

and the destination, then node k cannot satisfy (5.4), and it shouldn't be considered

as a relay. Therefore, only those nodes that are closer than the destination are

considered as potential relay nodes. Assuming that each node is capable of self-

geolocation and that they share the position information with other nodes in the

network to determine link cost, node i needs the position information of other nodes

that are closer than the destination node. Sharing position information with other

nodes in the network will require significant signaling overhead. In the following,

the scope of search for the next hop node is limited to increase the scalability of the

algorithm.

5.3.2 Distance-based Multihop Routing with Limited Scope of Search
for Next Hop Node

Comparing to the minimum energy routing [551 in which each node requires the

knowledge of the network topology (i.e., the sparse graph and the link cost) to

determine the minimum energy route, the distance-based multihop routing is much

more scalable since only the nodes that are closer than the destination node are

considered as potential relay nodes. Node i searches for a next hop node in a circular

area of radius d,d centered at node i where d,d  is the distance between node i and

destination node d. By reducing the size of the search area, the scalability of the

algorithm increases. The radius of the search area is referred as Power Saving Range

(PSR).
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Definition 1 The nodes that are in the power saving range of node i are neighbors

of node i, and the set of neighbors of node i is denoted as Ili).

Notice that the definition of neighbor in the minimum energy routing [551 differs

from Definition 1. When node i has a packet to send to destination node d, node i

relays the packet to node k* if there exists node k* such that

If node i cannot find neighboring node k* that satisfies (5.5), node i directly transmits

the packets to destination node d.

5.3.3 Mobility-based Multihop Routing

As mentioned earlier, relay mobiles in the mobility-based multihop routing should

be highly biased in direction to avoid the ping-pong effect. If the relay mobiles

change their movement directions frequently, the MPDs of the mobiles will also

change frequently, and the mobiles will toss a same packet back and forth wasting

transmission energy. Therefore, a relay mobile should have a large drift velocity and

a small variance parameter to have highly directional movement pattern. Following

two conditions are imposed for relay mobiles:

where

• minimum drift velocity for relay mobiles,

• K2: maximum variance parameter for relay mobiles.

The definition of a relay mobile in the mobility-based multihop routing is defined as

follows.
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Definition 2 A mobile which satisfies (5.6) is a relay mobile. Otherwise, it is a

non-relay mobile.

Both the relay and the non-relay mobiles are traffic sources that can generate data

packets destined to base stations. If K 1 is large and K2 is small, then only the

mobiles that are highly biased in the direction are allowed to become relay mobiles.

The minimum power distance to base station (MPD) of a non-relay mobile is assumed

to be infinite. By setting the MPDs of the non-relay mobiles to be infinite, mobiles

will not choose a non-relay mobiles as their next hop. By avoiding packet relay

to a mobile that changes direction frequently, the ping-pong effect can be reduced

significantly.

The MPD of a relay mobile which is moving away from its current base station

is also considered to be infinite. In the mobility-based multihop routing, a mobile

does not directly transmit data packets to a base station if the distance between the

mobile and the base station is greater than PSR. This is an artificially imposed radio

communication range. The idea is to avoid long range direct radio transmission from

mobiles to base stations. By artificially limiting the radio communication range, the

power consumption will be reduced.

It is assumed that two neighboring mobiles share their position information

and their MPDs, and each mobile knows the position of its current base station. If

mobile i has a packet destined for a base station, mobile i searches for a next hop

mobile among its neighbors using one of the following routing rules depending on its

current position.

5.3.3.1 Routing Rule 1. When the distance from mobile i to its base station

is greater than PSR, mobile i relay its packet to mobile k* if there exists mobile k*



where d2,k is the distance between mobile i and mobile k, and 62 and 6k are the

MPDs of mobile i and k respectively. If mobile i doesn't have any neighboring

mobile satisfying (5.7), the mobile waits until it encounters a mobile that satisfies

(5.7).

5.3.3.2 Routing Rule 2. When the distance between mobile i and the base

station is less than or equal to PSR, mobile i relay its packet to mobile k* if there

exists mobile k* such that

where dk ,d is the distance between mobile k and the base station. If mobile i doesn't

have any neighboring mobile satisfying (5.8), then mobile i makes routing decision

based on its MPD. If the MPD of mobile i is finite, mobile i waits until it encounters

a mobile that satisfies (5.8). If the MPD is infinite, then mobile i directly transmits

its packet to the base station.

5.4 Simulation Model

In the simulation study, the energy consumption of the distance-based multihop

routing, the mobility-based multihop routing, the minimum energy routing [55], and

the conventional single-hop routing is compared. A simple path-loss propagation

model [521 is used to determine the power consumption. The energy spent at a

receiver for signal processing as well as the effect of interference due to the multiple



Figure 5.5 Random direction mobility model.

access are not considered, that is, it is assumed that radio transmissions of different

mobiles do not occur at the same time, and these radio transmissions do not collide.

It is assumed that the minimum received signal power, P, required at the front

end of a receiver for reliable packet reception is same for all mobile stations and

base stations regardless of the routing protocol employed. The required transmission

power at a transmitter to reach a receiver which is d km apart is Pda/GtGr where

At  and Gr  are the transmitter and the receiver antenna gains [521. The path loss

exponent, a, is assumed to be 4. The same transmitter and receiver pair is assumed

for mobile stations and base stations. The energy required to deliver a packet from

a mobile to a base station is the sum of the required transmission power on each

radio link along the route to the base station multiplied by the packet transmission

delay T. The packet transmission delay is assumed to be same for all packets. For

simplicity, the energy consumption is normalized by PTIAtGr .

While the movement of an individual mobile is modeled using the Brownian

motion, two cell-level mobility models, namely, random direction mobility model

and grid mobility model (see Figure 5.5 and 5.6 respectively) is used to simulate



Figure 5.6 Grid mobility model.

a single cell. The shape of the cell is square, and the area of the cell is 1km x

1km. In the random direction model, the initial position of a mobile is uniformly

distributed over the cell. For each mobile, the angle of drift velocity (i.e., Bp) is

uniformly distributed between 0 and 27r. The same amplitude of drift velocity (i.e.,

11) and the same variance parameter are assumed for all mobiles in the cell. The

drift velocity and the variance parameter remain constant during the simulation.

The grid mobility model in Figure 5.6 consists of a number of one-way streets

and square shaped building blocks. The position of the base station is assumed to

be the origin in the Cartesian coordinate system. The initial positions of mobiles are

drawn from uniform distribution; however, each mobile is relocated to a nearest

street, and the mobiles are only allowed to move along the streets. After the

relocation, the mobiles are no longer uniformly distributed over the cell. For example,

if the initial position drawn from uniform distribution is (0.04 km, 0.03 km), the

closest street from the mobile is S16. The coordinate of street S16 is x = 0.05 km.

The mobile is relocated to a closest location on S16, which is (0.05 km, 0.03 km). The
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movement of each mobile is one-dimensional Brownian motion, and mobiles are not

allowed to change streets at the intersections. The same amplitude of drift velocity

(i.e., Ittl) and the same variance parameter are assumed for all mobiles in the cell.

For both the random direction model and the grid model, the mobiles that

reach the cell boundary reenter the cell from the opposite side of the boundary;

therefore, the number of mobiles in the cell remains constant during the simulation.

Each mobile generates packets destined to the base station according to a Poisson

arrival process with rate A packets/min. Each mobile has a FIFO queue with infinite

buffer space. A point-to-point radio link is modeled as a bit pipe where there is no

interference from other radio links. The radio propagation delay is assumed zero.

There is no restriction on the number of hops that a packet can travel before it

reaches the base station.

For the mobility-based multihop routing, the radio communication range is

artificially limited to PSR. It is assumed that each mobile is aware of the position

coordinates of the base station and the position coordinates and MPDs of neighboring

mobiles within the PSR.

For the minimum energy routing [551, it is assumed that each mobile is aware

of the position coordinates of the base station and the other mobiles in the cell

without any additional cost. Using the position coordinates of mobiles, each mobile

determines the minimum energy multihop route from itself to the base station. The

base station can be considered as a fixed node that is the destination of all the

mobiles in the cell. Among all possible multihop routes, a mobile chooses a route that

minimizes the sum of the transmission energy required on each point-to-point radio

link along the route. There is no restrictions on the communication range as opposed

to the mobility-based multihop routing. In fact, limiting the communication range

in the minimum energy routing will increase the power consumption. If a mobile



cannot choose a route that minimizes the energy consumption due to the limited

communication range, the mobile will choose an alternate route that consumes more

energy than the minimum energy route.

5.5 Simulation Results

5.5.1 Random Direction Mobility Model

First, the energy consumption of the fixed wireless network is simulated using the

random direction mobility model where the drift velocity and the variance parameter

are zeroes for all mobiles. The positions of mobiles are uniformly distributed. Figure

5.7 shows the energy consumption of the three routing algorithms: the distance-based

multihop routing without limited scope of search for next hop node, the minimum

energy routing, and the conventional single-hop routing. As the number of mobiles

in the cell, N, increases, the energy consumption of the distance-based multihop

routing and the minimum energy routing decreases rapidly. For N = 1, there is no
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difference in the performance of the three routing algorithms. The mobile transmits

packets directly to the base station. For N > 25, the energy consumption of the

minimum energy routing and the distance-based routing saturates. At N = 25,

the minimum energy routing consumes only 10.9% of the energy required by the

conventional single-hop routing while the distance-based routing consumes 17.9%

of the energy required by the single-hop routing. The minimum network density

needed for meaningful energy saving (i.e., more than 80% of reduction in the energy

consumption) is about 25 mobiles/km assuming that the path loss exponent is

a = 4. Figure 5.8 shows the average number of hops that a packet travels

until it arrives at the base station. For the single-hop routing, the hop count is

always 1. As N increases, the average hop count for the minimum energy routing

increases much faster than the average hop count for the distance-based routing. For

N = 75, the hop count for the minimum energy routing doubles the hop count for

the distance-based routing. The ratio between the hop counts for the two multihop

routing algorithms keeps increasing as N increases. Figure 5.9 shows the energy



consumption of the distance-based multihop routing with limited scope of search.

The x-axis is the power saving range (PSR) that is the radius of the search area.

Except for N = 1, there exists local minimum for each curve. In the distance-based

multihop routing, mobiles search for a next hop mobile that satisfies (5.5). If PSR is

too small, most of the mobiles won't be able to find a next hop mobile, and they will

transmit packets directly to the base station. For N = 200 and PSR=0.02 km, the

energy consumption of the distance-based multihop routing is 0.0384 while the energy

consumption of the conventional single-hop routing is 0.0388. As PSR increases, the

energy consumption of the distance-based multihop routing decreases rapidly. As

PSR increases, mobiles have better chance to find a next hop mobile that satisfies

(5.5); therefore, the long range direct radio transmission to the base station is likely

avoided. On the other hand, the average per-hop distance increases as PSR increases.

This is why the energy consumption increases after the local minimum. For N = 200,

the energy consumption at PSR=0.16 km is 2.4% of the energy that is required by

the single-hop routing. The minimum energy routing consumes 0.5% of the energy



required by the single-hop routing (see Figure 5.7). The larger the number of mobiles

in the cell, the higher the probability that a mobile will find an energy efficient next

hop mobile with given PSR. That is why the energy consumption decreases more

rapidly when N is large. In Figure 5.10, the optimal PSR value that minimizes

the energy consumption is plotted. As the number of mobiles increases, the optimal

size of the area in which each mobile searches for an energy efficient next hop mobile

decreases. Since each mobile does not need to be concerned about other mobiles that

are outside of its search area, the proposed multihop routing algorithm is scalable.

For N = 25, the optimal PSR value is 0.38 km, and the average number of mobiles

in the optimal search area is 27 • (PRS) 2 • N=3.6 mobiles. For N = 200, the optimal

PSR value is 0.16 km, and the average number of mobiles in the optimal search area

is 27 • (PRS) 2 • N=5.1 mobiles. While the number of mobiles in the cell increases

from N=25 to N=200, the signaling overhead per mobile increases only 40% (i.e., 3.6

mobiles/search area to 5.1 mobiles/search area). While the minimum energy routing



[551 provides an optimal multihop route that minimizes the energy consumption in

the fixed wireless network, the proposed distance-based multihop routing provides a

scalable suboptimal solution.

In the following, the performance of the mobility-based multihop routing

algorithm is analyzed. Figure 5.11 shows the energy consumption and the packet

delay for the random direction mobility model with drift velocity Ittl = 0.5 km and

variance parameter a2 = 0.01 km 2 /min. It is assumed that there are 200 mobiles

in the cell where each mobile generates data packets with rate A = 10 packets/min.

All mobiles are assumed to be relay mobiles as defined in Definition 2. The mobiles

route their packets based on the routing rules (5.7) and (5.8) to take advantage of

the user mobility to reduce energy consumption. The energy consumption increases

rapidly until PSR=0.3 km. For PSR > 0.3, the energy consumption saturates to

4.47 x 10 -4 . The reason for the saturation is that mobiles choose relay mobiles

that are close to themselves. A relay mobile that is far away from the transmitting

mobile is likely disqualified as a next hop relay mobile since it takes long range



radio transmission to reach the relay mobile. The simulation shows that the

energy consumption decreases as PSR decreases. The trade-off for having small

energy consumption is packet delay. In Figure 5.11, the packet delay decreases

rapidly as PSR increases until PSR=O.1. For PSR>0.1, the packet delay saturates

to 46.2 seconds. PSR should be small to reduce the energy consumption, and at

the same time the PSR should be large enough to avoid excessive packet delay.

Figure 5.12 shows the energy consumption for different number of mobiles in the

cell. The drift velocity, the variance parameter and the packet rate for each mobile

are Itil = 0.5 km/min, 0 -2 = 0.01 km/min and A = 10 packets/mm respectively.

For the mobility-based multihop routing, two curves are shown in the figure, that

is, one for PSR=oc and the other for PSR=0.051 km. Based on the previous

simulation result, it is expected that the energy consumption will be small if PSR

is small. The energy consumption for the conventional single-hop routing remains

constant as the number of mobiles increases from N=1 to N=200. Since mobiles

directly transmit their packets to the base station, the energy consumption of a



mobile station is independent of the number of mobiles in the cell. Because mobiles

are moving, and their distance to the base station keeps changing, the long term

average power consumption per mobile will be same for all mobiles in the cell. For

N = 1, the single-hop routing and the minimum energy routing consumes the same

amount of energy since the mobile directly transmits packets to the base station.

In the mobility-based multihop routing, the mobile does not transmit packets to

the base station if the distance to the base station is greater than PSR. For N=200

and PSR=0.051, the energy required to deliver a packet to the base station in the

mobility-based multihop routing is 1.7 x 10 -5 which is 0.044% of the energy required

by the conventional single-hop routing, and the packet delay is slightly greater than

1 minute (see Fig 5.11). The packet delay will decrease if the drift velocity increases.

For PSR=0.051, Figure 5.12 doesn't clearly show how the energy consumption

of the mobility-based multihop routing changes as N increases. In Table 5.1, the

simulation result is tabulated for clarity. The energy consumption increases as the

number of mobiles increases from N=1 to N=25. When there is only one mobile

in the cell, there is no multihop relay. The mobile directly transmits its packets to

the base station if MPD is smaller than PSR, and the distance to the base station

becomes MPD. Figure 5.13 shows why the energy consumption increases as the

number of mobiles increases from N=1 to N=25. Assume that the distance between

mobile i and j is very small such that (d 2 ,i )a ',:-/, 0. Also assume that mobile i and j



Figure 5.13 Two-hop relay that consumes more energy than one-hop relay.

mobile i will relay its packet to mobile j, and the energy required to deliver the packet

. If mobile i didn't relay its packet and crossed

the cell boundary, mobile i would deliver the packets to the base station in the next

cell. The energy required to deliver the packet to the neighboring base station is

that is the energy required to deliver

the packet to the current base station using multihop relay. Therefore, the energy

consumption would be smaller if mobiles do not relay packets. For N > 25, the

energy consumption decreases as N increases. It is because each mobile gets better

chance to find a "good" relay mobile in its neighborhood as the number of mobiles

in the cell increases.

For PSR=oc, the energy consumption of the mobility-based multihop routing

is close to that of the minimum energy routing except for N = 1. For N = 200, the

minimum energy routing consumes 0.5% of the energy required by the conventional

single-hop routing while the mobility-based multihop routing consumes 1.2% of the

energy required by the single-hop routing.

81



5.5.2 Grid Mobility Model

For 1/11 = 0.5 km and a 2 = 0.01 km 2 /min, the average energy consumption for

the grid mobility model is plotted in Figure 5.14. As in the random direction

model, the energy consumption of the minimum energy routing is same as the energy

consumption of the single-hop routing for N = 1. In our simulation for N = 1, the

mobile happens to land on street S18 (see Figure 5.6). The minimum distance to the

base station for a mobile on Street S18 is relatively smaller comparing to mobiles on

the other streets; therefore, the energy consumption for N =1 is smaller than the

average energy consumption for large N.

and PSR=0.051 km, the energy consumption of the mobility-based

multihop routing is 0.038% (c.f., 0.044% for random direction mobility model) of the

energy required by the conventional single-hop routing while the energy consumption

of the minimum energy routing is 0.63% (c.f., 0.5% for random direction mobility

model) of the energy required by the single-hop routing.
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As N increases, the energy consumption of the single-hop routing stabilizes to

3.93 x 10-2 for the grid mobility model while the energy consumption of the single-

hop routing stabilizes to 3.86 x 10 -2 for the random direction mobility model (see

Figure 5.12).

The performance of the minimum energy routing and the mobility-based

multihop routing becomes close to that of the random direction mobility model as

the number of mobile increases.



CHAPTER 6

CONCLUSION

This dissertation presents an predictability-based approach to mobility modeling

and management in wireless networks. As opposed to the conventional mobility

modeling approach that considers the speed of mobile as the level of mobility such as

"high" or "low" mobility, the predictability-based approach defines mobility as the

uncertainty in mobile's motion pattern. A high speed mobile may have low mobility

if the uncertainty in its motion pattern is small, and the network can predict the

trajectory of the mobile accurately. On the other hand, a slow mobile could have

high mobility if its trajectory is highly erratic, that is, the uncertainty in its motion

pattern high.

Based on this new mobility modeling concept, trajectory prediction is proposed

to reduce the cost of mobility related transactions in wireless networks. In the

location management, a mobile on a highly directed path such as highway or railroad

does not need to update its location frequently even if the mobile is moving with high

speed since the network can predict the location of the mobile when a call or service

arrives. In the location-based services, the trajectory prediction reduces the cost

of geolocation updates for those mobiles that are highly biased in direction. In the

multihop cellular network, mobiles that do not change their direction frequently may

serve as relays and deliver data traffic from other mobiles to cellular base stations in

an energy efficient manner.

Analysis based on a Brownian motion model shows that the trajectory

prediction is not always feasible. For those mobiles whose trajectory is erratic,

the trajectory prediction actually increases the cost of the mobility related trans-

actions. The feasibility region of the trajectory prediction is determined through

analysis, and there exists an optimal mobility classification rule that classifies
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mobility patterns into predictable and non-predictable mobility classes. As far as

the network operation cost is concerned, the network should not employ trajectory

prediction if a mobile belongs to non-predictable mobility class, and the network

should employ trajectory prediction if a mobile belongs to predictable mobility class.

The predictability-based mobility modeling approach and the dynamic mobility

classification technique can be beneficial to virtually every other mobility management

issues that are not treated in this dissertation.
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