3,660 research outputs found

    Mobile networks and internet of things infrastructures to characterize smart human mobility

    Get PDF
    The evolution of Mobile Networks and Internet of Things (IoT) architectures allows one to rethink the way smart cities infrastructures are designed and managed, and solve a number of problems in terms of human mobility. The territories that adopt the sensoring era can take advantage of this disruptive technology to improve the quality of mobility of their citizens and the rationalization of their resources. However, with this rapid development of smart terminals and infrastructures, as well as the proliferation of diversified applications, even current networks may not be able to completely meet quickly rising human mobility demands. Thus, they are facing many challenges and to cope with these challenges, different standards and projects have been proposed so far. Accordingly, Artificial Intelligence (AI) has been utilized as a new paradigm for the design and optimization of mobile networks with a high level of intelligence. The objective of this work is to identify and discuss the challenges of mobile networks, alongside IoT and AI, to characterize smart human mobility and to discuss some workable solutions to these challenges. Finally, based on this discussion, we propose paths for future smart human mobility researches.This work has been supported by FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has also been supported by national funds through FCT–Fundação para a Ciência e Tecnologia through project UIDB/04728/202

    Participatory governance in smart cities: The urbanAPI case study

    Get PDF
    Copyright © 2017 Inderscience Enterprises Ltd. This paper presents some results from an EU FP7 RTD project urbanAPI, in which three ICT applications target different aspects of participatory urban governance. The 3D Scenario Creator allows urban planners to visualise urban development proposals in three dimensions, share them with different stakeholders and obtain their feedback. The Mobility Explorer allows urban land use and transport planners to visualise and analyse population distribution and mobility patterns in the city. Finally, the Urban Development Simulator simulates socio-economic activity in response to alternative planning scenarios. These urbanAPI ICT applications are implemented in four pilot cities; Vienna (Austria), Vitoria-Gasteiz (Spain), Bologna (Italy) and Ruse (Bulgaria), and evaluated with respect to their various requirements. Results show that the applications are useful tools, enhancing spatial planning assessements, and enabling public participation, communicating proposed plans to different stakeholders and identifying key development issues which can provide crucial inputs in planning and decision making processes

    Integrating sensors data in optimization methods for sustainable urban logistic

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    (So) Big Data and the transformation of the city

    Get PDF
    The exponential increase in the availability of large-scale mobility data has fueled the vision of smart cities that will transform our lives. The truth is that we have just scratched the surface of the research challenges that should be tackled in order to make this vision a reality. Consequently, there is an increasing interest among different research communities (ranging from civil engineering to computer science) and industrial stakeholders in building knowledge discovery pipelines over such data sources. At the same time, this widespread data availability also raises privacy issues that must be considered by both industrial and academic stakeholders. In this paper, we provide a wide perspective on the role that big data have in reshaping cities. The paper covers the main aspects of urban data analytics, focusing on privacy issues, algorithms, applications and services, and georeferenced data from social media. In discussing these aspects, we leverage, as concrete examples and case studies of urban data science tools, the results obtained in the “City of Citizens” thematic area of the Horizon 2020 SoBigData initiative, which includes a virtual research environment with mobility datasets and urban analytics methods developed by several institutions around Europe. We conclude the paper outlining the main research challenges that urban data science has yet to address in order to help make the smart city vision a reality

    Cell Towers as Urban Sensors: Understanding the Strengths and Limitations of Mobile Phone Location Data

    Get PDF
    Understanding urban dynamics and human mobility patterns not only benefits a wide range of real-world applications (e.g., business site selection, public transit planning), but also helps address many urgent issues caused by the rapid urbanization processes (e.g., population explosion, congestion, pollution). In the past few years, given the pervasive usage of mobile devices, call detail records collected by mobile network operators has been widely used in urban dynamics and human mobility studies. However, the derived knowledge might be strongly biased due to the uneven distribution of people’s phone communication activities in space and time. This dissertation research applies different analytical methods to better understand human activity and urban environment, as well as their interactions, mainly based on a new type of data source: actively tracked mobile phone location data. In particular, this dissertation research achieves three main research objectives. First, this research develops visualization and analysis approaches to uncover hidden urban dynamics patterns from actively tracked mobile phone location data. Second, this research designs quantitative methods to evaluate the representativeness issue of call detail record data. Third, this research develops an appropriate approach to evaluate the performance of different types of tracking data in urban dynamics research. The major contributions of this dissertation research include: 1) uncovering the dynamics of stay/move activities and distance decay effects, and the changing human mobility patterns based on several mobility indicators derived from actively tracked mobile phone location data; 2) taking the first step to evaluate the representativeness and effectiveness of call detail record and revealing its bias in human mobility research; and 3) extracting and comparing urban-level population movement patterns derived from three different types of tracking data as well as their pros and cons in urban population movement analysis
    corecore