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ABSTRACT 
 
 
Understanding urban dynamics and human mobility patterns not only benefits a 
wide range of real-world applications (e.g., business site selection, public transit 
planning), but also helps address many urgent issues caused by the rapid 
urbanization processes (e.g., population explosion, congestion, pollution).  In the 
past few years, given the pervasive usage of mobile devices, call detail records 
collected by mobile network operators has been widely used in urban dynamics 
and human mobility studies.  However, the derived knowledge might be strongly 
biased due to the uneven distribution of people’s phone communication activities 
in space and time. 
 
This dissertation research applies different analytical methods to better understand 
human activity and urban environment, as well as their interactions, mainly based 
on a new type of data source: actively tracked mobile phone location data.  In 
particular, this dissertation research achieves three main research objectives.  First, 
this research develops visualization and analysis approaches to uncover hidden 
urban dynamics patterns from actively tracked mobile phone location data.  
Second, this research designs quantitative methods to evaluate the 
representativeness issue of call detail record data.  Third, this research develops 
an appropriate approach to evaluate the performance of different types of tracking 
data in urban dynamics research. 
 
The major contributions of this dissertation research include: 1) uncovering the 
dynamics of stay/move activities and distance decay effects, and the changing 
human mobility patterns based on several mobility indicators derived from actively 
tracked mobile phone location data; 2) taking the first step to evaluate the 
representativeness and effectiveness of call detail record and revealing its bias in 
human mobility research; and 3) extracting and comparing urban-level population 
movement patterns derived from three different types of tracking data as well as 
their pros and cons in urban population movement analysis. 
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1.1 Research Background and Research Questions  
A city is a special form of social organization that supports various types of human 
activities.  In the 20th century, large-scale population migration to urban areas, 
known as urbanization, had consolidated cities as central places for social and 
economic activities (Jacobs 1961; Sato and Yamamoto 2005).  Human beings and 
cities maintain a reciprocal relationship.  As pointed out by Jacobs (1961, p238), 
“cities have the capability of providing something for everybody, only because, and 
only when, they are created by everybody”. 
 
People do not move randomly in a city.  Instead, human movements are largely 
determined by travel motivations (e.g., work/school, shopping, entertainment) and 
locations of urban infrastructures that can fulfill such needs.  Although modern 
cities can provide numerous means for people to travel inside its boundary, human 
mobility is still restricted by factors such as distance, accessibility, schedule of 
operation (e.g., class time, store hours), and so forth.  Hence, one has to allocate 
time for his/her activities conducted at different locations in the course of a day 
(Chapin 1974).  As a result, we can, to a certain degree, feel the rhythm of human 
movement and observe distinct spatiotemporal patterns of urban dynamics. 
 
A deep understanding of urban dynamics has a profound implication.  On one hand, 
many real-world applications, such as business site selection, public transit 
planning, etc., require new approaches (e.g., data-driven approach) as the size of 
cities becomes larger.  On the other hand, the rapid urbanization process has led 
to many urgent issues, for instance, population explosion, congestion, pollution, 
and so forth (Zheng et al. 2014).  A prerequisite to addressing these issues is to 
capture the fast changing rhythm of the city.  Conventional survey-based studies 
usually involve a very small number of participants (e.g., 1~2‰ of the population).  
Moreover, they are often associated with a high cost and limited spatiotemporal 
coverages. 
 
In the past decade, rapidly advancing location-aware technology, information and 
communication technology (ICT), and the advent of the so-called “big data era” 
have become a game changer in urban dynamics research.  A variety of new data 
sources have emerged and helped enhance our understanding of human mobility.  
They are collected in either decentralized or centralized manner.  Decentralized 
data collection can be referred to as “crowd sourcing”, or volunteered geographic 
information (VGI) contributed by “citizen sensors”, who “create, assemble, and 
disseminate geographic information voluntarily” (Goodchild 2007, p211).  Batty 
points out that such “revolution in tracking human and other motion in digital form 
enables the collection attributes at the finest of scale of urban observation” (Batty 
2010, p575).  Researchers have been using VGI, such as geo-tagged tweets and 
geo-tagged Flicker photos, to characterize individual or collective human mobility 
patterns (e.g., Preoţiuc-Pietro and Cohn 2013, Hasan et al. 2013, Azmandian et 
al. 2013).  Centralized data collection, on the other hand, is often collected by 
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government agencies or companies.  Typical examples include taxi GPS tracking 
data, public transit smartcard data, and so forth.  They are usually byproducts of 
some real-world business operations (e.g., smartcard is designed to be an 
alternative way of fare collection) and carry fewer details than traditional travel 
surveys.  Nevertheless, the large scale of digital footprints has been proved to be 
very useful in uncovering the pulse of a city (e.g., Pelletier et al. 2011, Liu et al. 
2012, Zhou et al. 2015). 
 
Mobile phone location data have also drawn extensive attention (Ratti et al. 2006, 
Candia et al. 2008).  Perhaps the most prominent feature of mobile phone location 
data is the unprecedented scale given the pervasive use of mobile devices.  Similar 
to many other datasets, the original intention of collecting mobile phone location 
data is not tracking subscribers.  Instead, they are logged by mobile network 
operators (MNOs) for billing purposes.  Every time a subscriber engages in a 
phone communication activity (e.g., making a phone call, receiving a text 
message), a call detail record (CDR) is generated to archive information such as 
phone numbers of caller/callee, duration of phone call, along with the ID of cell 
tower that handles the communication.  In recent years, the value of CDRs in 
human mobility research has been widely recognized (e.g., González et al. 2008, 
Song et al. 2010a, Song et al. 2010b).  From the individual perspective, CDRs 
indicate how each subscriber moves in space over time, whereas from the 
collective perspective, CDRs reflect how people interact with urban space at 
different time periods.  Based on this division of analysis perspective, most existing 
research falls into one of the following two categories: 
 
1) Human trajectory mining and modeling 

A large body of literature focuses on spatiotemporal characteristics of individual 
trajectories.  Each trajectory can be described by a series of mobility indicators, 
such as daily range of travel, movement radius, movement entropy, etc.  Based 
on these mobility indicators, statistical analyses can be performed to compare 
mobility patterns of people in different social groups (e.g., age, gender, see 
Kang et al. 2010, Yuan et al. 2012) or people at different locations (Becker et 
al. 2013).  Individual trajectories collected over a long term allow us to extract 
meaningful anchor points, such as home or work locations (Ahas et al. 2010, 
Calabrese et al. 2010a), and to examine people’s activity patterns around 
anchor points (Xu et al. 2015).  Besides, CDRs provide some new insights on 
the nature of human travel.  Over a long period of time, we believed that human 
movements can be explained by the random walk or the Levy flight model 
(Brockmann et al. 2006, Rhee et al. 2011).  However, CDRs prove that human 
travels actually follow reproducible patterns (González et al. 2008) and are 
highly predicable (Song et al. 2010a, Song et al. 2010b). 
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2) Urban dynamics analysis 
Instead of focusing on individual trajectories, many studies adopt a collective 
approach to uncover varying mobility patterns by location.  Frequently used 
indicators include Erlang value (i.e., the total call traffic volume in one hour), 
number of phone calls/text messages, number of active subscribers, etc.  
CDRs can be used to quantitatively measure differed levels of popularity 
(Girardin et al. 2009), or distinct patterns of mobility variation throughout 
different time periods in a day, or different days in a week (Reades et al. 2007, 
Calabrese et al. 2010b, Sagl et al. 2012, Yuan and Raubal 2012).  Moreover, 
CDRs enable us to detect urban communities with strong internal interactions 
(Gao et al. 2013). 

 
However, we should be aware of a major limitation of CDR data.  That is, the 
collection of CDR data is event-driven (Calabrese et al. 2011).  In other words, a 
subscriber’s location is recorded only when a phone communication activity 
occurs.  Hence, the recording frequency of different subscribers can vary 
significantly, depending on how actively one engages in phone communication 
activities.  Subscribers without any phone usage are literally invisible.  Without 
sufficient digital footprints from each subscriber, it is very challenging to examine 
how people stay and move at different parts of a city within a day.  As a result, the 
time span of CDRs in existing research usually covers a relatively longer time 
period (e.g., a month, six months, or even longer).  Although this workaround can 
help increase the volume of digital footprints, people who rarely use their mobile 
phone remain underrepresented. 
 
Besides CDRs, some MNOs also actively track subscribers’ locations by recording 
location of each mobile device periodically (e.g., every 30 minutes, 60 minutes, 
etc.), regardless of calling or texting activities.  Compared with CDRs, digital 
footprints of most subscribers are recorded more frequently and consistently so 
those “silent ones” can also be traced.  Furthermore, this feature allows 
researchers to investigate not only individual movements over time, but also time 
and duration people spend at each location.  The latter can be valuable in many 
real-world applications, such as emergency evacuation, targeting of advertising 
campaigns, evaluation of disease transmission, etc. 
 
Actively tracked mobile phone location data present some exciting and promising 
opportunities to not only uncover new insights of urban dynamics, but also re-
examine and validate various findings the research community has come up with 
so far.  This dissertation research is designed to answer the following three general 
research questions, each of which is further split to several specific research 
questions: 
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1) What new insights of human mobility can be gained from actively tracked 
mobile phone location data? 
Despite our enhanced understanding of human mobility over the past few 
decades, answers to many fundamental questions of human mobility are not 
yet clear.  For instance, the spatiotemporal characteristics of move activity have 
been the focus of most studies, if not all of them.  In reality, people do not keep 
moving throughout the day.  Instead, for typical employees or students, daily 
travels only include home->work (school) commute and work (school) -> home 
commute during early morning and late afternoon, plus some other trips (e.g., 
leisure activities, shopping) along the commute trips, whereas these people 
probably stay at certain places (e.g., home, office/school) during the remaining 
time periods.  What is the percentage of stay population at different times of a 
day?  What is the relationship between stay and move activities?  What are the 
daily variation patterns of stay activity and which urban locations share a similar 
pattern of stay activity?  Given the limitation of social network data, taxi tracking 
data, and even CDRs, those questions remain unanswered.  This dissertation 
research addresses them by taking advantages of massive hourly digital 
footprints that come with an actively tracked mobile phone location data.  
Besides stay activity, short-distance travel also plays a critical role in urban 
dynamics.  The distance decay effects have been studied and recognized by 
researchers from different disciplines.  However, is the frictional effect of 
distance always the same during different time periods of a day?  If not, what 
is the variation pattern of distance decay effect in a city and what implication it 
provides for human mobility? 
 

2) What is the bias of CDRs to reflect human mobility? 
In the big data era, there have been debates regarding the biases associated 
with the uneven distribution of users.  For instance, studies report that 
distribution of social media users is predominantly uneven in terms of 
geography, gender, and race/ethnicity (Mislove et al. 2011, Hecht and 
Stephens 2014).  Similarly, the representativeness of CDRs is questionable 
due to the uneven distribution of people’s phone communication activities in 
space and time.  On one hand, people are more likely to contact others at 
certain places, such as home or work location, and it is highly possible that 
those locations account for only a fraction of all visited places.  On the other 
hand, depending on how actively one engages in phone communication, the 
total number of CDRs each subscriber generates varies significantly.  Hence, 
we might have been overly optimistic about the usefulness of CDRs and the 
validness of our conclusion.  How representative are CDRs in estimating 
individual mobility characteristics, such as total travel distance, radius of 
gyration, and movement entropy?  Do CDRs tend to 
underestimate/overestimate these mobility indices?  If yes, what is the level of 
deviation?  Does such deviation vary in terms of how actively one engages in 
phone communication activities?  In other words, do CDRs offer better 



6 
  

estimation for people who make a lot of phone calls, and worse estimation 
otherwise?  In addition, what about the performance of CDRs in collective 
human mobility analysis, such as distance decay effect and urban community 
detection? 
 

3) What are the pros and cons of different tracking datasets in urban dynamics 
research? 
Today, lack of data is no longer a problem in most developed regions.  Instead, 
to answer a particular research question, we may have more than one tracking 
dataset and each of them reflects urban dynamics from a unique angle.  In 
many cases, multiple tracking datasets collected in the same study area can 
tell different stories.  As pointed out by Liu et al. (2015), such 
representativeness issue has become a top research priority in the big data era.  
It requires people to have a more thorough understanding of all available 
datasets in order to select the most appropriate one.  This dissertation research 
approaches this problem by comparing population movement patterns derived 
from three different tracking datasets.  Given tens of thousands of OD flows 
that overlap and clutter with each other, it is necessary to extract generalized 
population movement patterns.  Traditionally, this is done by simply filtering out 
minor flows (Tobler 1987), drawing OD flows with curved lines (Wheeler 2015), 
or sorting flows by volume and drawing them in ascending order (Wood et al. 
2011).  Is there an efficient way to produce flow clusters without information 
loss?  Is it possible to take into account the dynamics of OD flow in the 
clustering process?  Do the three tracking datasets in this study generate 
similar or different population movement patterns (e.g., travel distance, travel 
direction)?  If not, what are the strengths and shortcomings of each dataset and 
what are the implications to urban dynamics research? 

 

1.2 Organization of the Dissertation 
This dissertation is organized into five chapters.  Chapters 2, 3, and 4 are three 
independent and complete manuscripts.  Each of them solves one set of research 
questions discussed in Chapter 1.1: 
 
Chapter 2 focuses on dynamic stay/move activities of a large city in southern China 
in a workday based on a large actively tracked mobile phone location dataset.  An 
interactive visualization tool, named STEAM (Space-Time Environment for 
Analysis of Mobility), is developed to support analysis of massive digital footprints.  
Some important patterns revealed by STEAM, including the dynamic relationship 
of stay/move activities and the changing effect of distance decay, are then 
investigated.  An agglomerative clustering method is applied to identify various 
mobility variation patterns based on three mobility indicators (volume of stay, 
volume of incoming population, and volume of outgoing population) and group 
urban areas with similar mobility patterns.  The clustering analysis results further 
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reveal some distinct spatiotemporal patterns of urban dynamics in the selected 
city. 
 
Chapter 3 investigates the bias of CDRs using a mobile phone location dataset 
collected from over one million subscribers in Shanghai, China.  It includes CDRs 
(~27%) plus other cellphone-related logs (e.g., tower pings, cellular handovers) 
generated in a workday.  All CDRs are extracted into a separate dataset in order 
to compare human mobility patterns derived from CDRs and from the complete 
dataset.  From an individual perspective, the effectiveness of CDRs in estimating 
three frequently used mobility indicators is evaluated.  From a collective 
perspective, both datasets are used to derive distance decay effect and urban 
communities.  The major differences are explained by the habit of mobile phone 
usage in space and time.  The conclusion suggests that the event-triggered nature 
of CDRs does introduce a considerable level of bias in human mobility patterns. 
 
Chapter 4 proposes a revised hierarchical clustering algorithm based on an 
existing publication (Zhu and Guo 2014).  This revised algorithm groups OD flows 
in terms of their proximity distance and flow similarity.  Results are discussed from 
three aspects: 1) we summarize urban population movement patterns revealed by 
three tracking datasets; 2) we demonstrate how each dataset differs from others 
and reveals urban population movement patterns from its unique angle; 3) by 
combining conclusions from 1) and 2) and the characteristics of these datasets, 
we discuss their pros and cons in population movement analysis. 
 
Chapter 5 provides a summary of the major contributions of this dissertation 
research.  Possible future research directions are also outlined in this chapter. 
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Abstract 
Understanding how people move or stay at different locations in a city can serve a 
variety of purposes, such as business intelligence and urban planning.  The 
pervasive use of mobile phones in today's society generates digital footprints of 
human beings at an unprecedented scale, which allows researchers to uncover 
new insights of urban dynamics.  Most existing research examines human mobility 
using call detailed records (CDRs).  However, it remains challenging to analyze 
how people stay and move in different parts of a city within a day since the 
collection of CDR data is event-driven.  The active tracking approach, on the other 
hand, records subscribers' location periodically (e.g., every hour) regardless of 
calling or texting activities, and thus provides a more frequent and consistent 
recording of individual footprints.  In this paper, we study dynamic stay/move 
activities of a large city in southern China in a workday based on a large actively 
tracked mobile phone location dataset.  An interactive visualization tool, named 
STEAM (Space-Time Environment for Analysis of Mobility), is developed to 
support analysis of massive digital footprints.  Some important patterns revealed 
by STEAM, including the dynamic relationship of stay/move activities and the 
changing effect of distance decay, are then investigated.  We then apply an 
agglomerative clustering method to identify various mobility variation patterns 
based on three mobility indicators (volume of stay, volume of incoming population, 
and volume of outgoing population) and group urban areas with similar mobility 
patterns.  The clustering analysis results further reveal some distinct 
spatiotemporal patterns of urban dynamics in the selected city. 
 

2.1 Introduction 
A city is a special form of social organization that supports various types of human 
activities.  Its structure influences daily population movement through “a myriad of 
processes” and the representation of changes in space and time is often referred 
to as urban dynamics (Batty 2009, p51).  Urban space is not homogeneous.  The 
socioeconomic properties (accessibility, land use, population, etc.) of each urban 
location largely determine its interaction with human beings (Yuan et al. 2012a).  
Understanding how people move or stay at different parts of a city in a day can 
shed light on a variety of applications, such as selecting a business site where a 
large number of people stay in the daytime, designing new routes for public 
transportation, etc. 
 
Our understanding of urban dynamics used to be narrow due to limited data 
collection capabilities.  Traditionally, urban planners rely on travel surveys to 
understand human mobility patterns (e.g., Crane and Crepeau 1998, Schlich and 
Axhausen 2003).  However, collecting data through surveys has several 
drawbacks: 1) the number of participants in a survey is usually small (e.g., 1~2‰ 
of the population); 2) the spatiotemporal coverage of a survey is usually limited; 3) 
it is time-consuming and costly to collect and process survey data.  From the 
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1990s, GPS-based tracking has been widely used to assist or replace conventional 
travel surveys since a GPS unit can record locations more frequently and 
accurately (Doherty et al. 2001, Wolf et al. 2001, Yuan et al. 2012a).  Nevertheless, 
it is difficult to conduct extensive GPS-assisted surveys because it is costly to 
purchase a large number of GPS units.  In the past decade, rapid developments 
of information and communication technology (ICT) and location-aware technology 
offer new opportunities for urban dynamics studies.  For instance, social media 
apps allow people to post geo-tagged messages so human mobility in the physical 
space can be tracked.  Batty (2010) uses Flickr and Twitter as examples to show 
how the pulse of a city can be studied with “crowd sourcing” data (e.g., Neuhaus 
2010). 
 
In recent years, mobile phone location data, collected by mobile network operators 
(MNOs), has started to draw attention in the research community.  The original 
motivation of collecting and archiving mobile phone location data is for billing 
purposes (Becker et al. 2013).  Every time a subscriber engages in a phone 
communication activity (e.g., making a phone call, receiving a text message, etc.), 
a call detail record (CDR) is generated to archive information such as phone 
numbers of caller/callee, duration of phone call, along with the ID of cell tower that 
handles the communication.  Compared with data collected by surveys, GPS 
loggers, and social media apps, the scale of digital footprints collected by MNOs 
is unprecedented.  Mobile phone location data provide some new avenues to study 
human-city interactions and mechanisms that drive urban dynamics (Jiang et al. 
2013).  Ratti et al. (2006) term this new approach of studying urban dynamics as 
“mobile landscapes”, while Zheng et al. (2014) consider it as a critical component 
in the emerging realm of “urban computing”. 
 
However, we should be aware of a major limitation of CDR data.  That is, the 
collection of CDR data is event-driven (Calabrese et al. 2011).  In other words, a 
subscriber’s location is recorded only when a phone communication activity 
occurs.  Hence, the recording frequency of different subscribers can vary 
significantly, depending on how actively one engages in phone communication 
activities.  Subscribers without any phone usage are literally invisible.  Without 
sufficient digital footprints from each subscriber, it is very challenging to examine 
how people stay and move at different parts of a city within a day.  As a result, the 
time span of CDRs in existing research usually covers a relatively longer time 
period (e.g., a month, six months, or even longer).  Although this workaround can 
help increase the volume of digital footprints, people who rarely use their mobile 
phone remain underrepresented. 
 
The cost of data storage today is considerably lower than it used to be.  In the 
meantime, an increasing number of companies have realized the value of large-
scale digital footprints.  Therefore, besides CDRs, some MNOs also actively track 
subscribers’ locations by recording the location of each mobile device periodically 
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(e.g., every 30 minutes, 60 minutes, etc.), regardless of users’ calling or texting 
activities.  Compared with CDRs, the digital footprints of most subscribers are 
recorded more frequently and consistently so those “silent ones” can also be 
analyzed.  Furthermore, this feature allows researchers to investigate not only 
individual movements over time, but also time and duration people spend at each 
location.  The latter can be valuable in many real-world applications, such as 
emergency evacuation, targeting of advertising campaigns, evaluation of disease 
transmission, etc. 
 
In this study, we obtain a one-day actively tracked mobile phone location dataset 
collected in a major city in China.  It is important to point out that individual privacy 
is protected because all phone numbers are anonymized.  We aim to examine the 
changing rhythm of aggregate stay/move activities through spatiotemporal 
visualization and analysis.  For the visualization part, a new program is desired to 
visualize changing stay/move activities for the following reasons: 1) some existing 
tools handle aggregate regional flows but lack support for the time dimension, for 
instance, the FlowMap tool (Guo 2009); 2) others deal with individual trajectories 
but offer limited capabilities in aggregate human mobility (e.g., GeoTime); and 3) 
the size and distribution of stay population has been ignored in existing solutions.  
For the analysis part, previous mobile phone data research did not focus on 
varying stay/move activities due to the limitations of CDRs.  Empirical analysis of 
stay/move activities derived from actively tracked mobile phone location data can 
benefit our understanding of human interactions with the urban environment. 
 
The main contributions of this paper are as follows: 

• We develop a spatiotemporal visualization tool called STEAM (Space-Time 
Environment for Analysis of Mobility) for exploratory tracking data analysis, 
which allows users to interactively animate and query aggregated 
stay/move activities that change over time. 

• Based on large-scale digital footprints collected every hour, we provide new 
insights about 1) the dynamic relationships between stay/move activities 
and 2) the effect of distance decay and how it varies over time in a day. 

• Using an agglomerative clustering approach, we reveal different urban 
dynamics patterns uncovered from aggregate stay/move activities and 
different urban areas that share similar spatiotemporal mobility variation 
patterns. 

 
The remainder of this paper is organized as follows.  We review related research 
in Section 2.2.  Section 2.3 introduces the study area and the mobile phone 
location data used in this study.  Section 2.4 demonstrates the functions of STEAM 
and presents a video demo.  Follow-up analyses regarding stay/move dynamics 
and distance decay dynamics are included in this section.  In Section 2.5, we 
examine daily urban dynamics by analyzing three mobility indicators derived from 
massive hourly footprints.  We conclude and discuss this research in Section 2.6. 
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2.2 Related Research 
This section summarizes and discusses relevant research in the following two 
areas: 1) geovisualization of human mobility, and 2) mobile phone location data 
and urban dynamics. 

2.2.1 Geovisualization of human mobility 
Data visualization is a critical component in exploring and understanding a 
complex system.  Visualizing data properly is often a crucial step for setting up 
meaningful research hypotheses.  In the big data era, visualizing human flows and 
interactions, and other related variables is a challenging topic (Guo 2009, 
Andrienko et al. 2010).  In the past, a number of visualization tools have been 
developed to deal with migration flows.  For example, Tobler (2007) released a 
program called Flow Mapper for visualizing directions and volumes of migrations.  
Guo (2009) designed a method to partition all migration flows into regions and 
visualize regional flows.  Regional flows then can be classified into groups using 
self-organizing map (SOM).  To better handle massive movement trajectories that 
overlap and clutter in space, Andrienko and Andrienko (2010) developed an 
innovative approach to aggregate movements between small areas.  Based on a 
large migration matrix from the 2001 UK census, Rae (2009) utilized a spatial 
interaction geovisualization approach to depict geographical movements 
associated with household mobility.  Time geography (Hägerstrand 1970) also 
offers a powerful framework to visualize human mobility in 3D (i.e., 2-dimension of 
space plus the third dimension of time).  Shaw et al. (2008) visualize and analyze 
a large individual-based migration history dataset in a time-geographic extension 
developed for ArcGIS. 
 
Researchers studying urban dynamics have been making effort to design 
visualization approaches in order to better understand spatiotemporal movement 
patterns in a city.  Chen et al. (2011) took a space-time GIS approach and 
developed an Activity Pattern Analyst (APA) to visualize and uncover 
spatiotemporal patterns from an activity-diary survey dataset.  Different groups of 
individuals are then identified in terms of their mobility patterns over space and 
time.  Using phone calls and GPS recordings provided by Nokia, Slingsby et al. 
(2013) developed interactive visualization tools to characterize spatiotemporal 
activity of participants’ social networks.  The Real Time Rome project illustrated 
the pulse of Rome by visualizing Erlang data (i.e., the total call traffic volume in 
one hour) in a 3-D environment (Reades 2007).  The Obama | One People project 
visualized aggregate mobile phone call data in order to examine how people 
occupy urban space during special events, such as President Obama’s 
Inauguration Day (Vaccari et al. 2010).  The Ville Vivante project presented urban 
flows based on a large mobile phone location dataset (Schmid 2012).  A prominent 
effect of this visualization is that population flows it generates is very similar to 
natural flows, such as wind (e.g., Viégas and Wattenberg 2012) or ocean 
circulation. 
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Despite these significant contributions, a new visualization tool is desired to meet 
the following needs of this research: 1) stay and move activities are equally 
important elements to be visualized; 2) support for the time dimension so the 
changing rhythm of the city can be examined; and 3) capabilities to visualiza and 
query aggregate stay/move activities.  These requirements are our motivations to 
develop STEAM, an interactive visualization tool for exploratory analysis of 
tracking data. 

2.2.2 Mobile phone location data and urban dynamics 
The emerging field of mobile phone data analytics has received significant 
attention and its value has been widely recognized.  Existing literatures are mostly 
based on CDRs which, in general, fall into two categories in terms of the 
perspective of analysis: the individual/group perspective and the urban system 
perspective. 
 
Many studies approach urban dynamics from an individual/group perspective, 
which considers the trajectory of each subscriber as a basic unit.  Using 
conventional statistical methods, the large volume of individual trajectories has led 
to many interesting findings, such as similar/dissimilar mobility patterns among 
different population groups (e.g., age, gender, etc., Kang et al. 2010, Yuan et al. 
2012b).  It also provides opportunities to explore basic rules that govern urban 
dynamics, such as activity space (Yuan et al. 2012b, Kang 2012a), distance decay 
effect (Kang et al. 2012a, Kang et al. 2013, Gao et al. 2013a), predictability of 
human mobility patterns (González et al. 2008, Song et al. 2010a), scaling 
properties of human mobility (Song et al. 2010b), etc.  Although to what extent 
human mobility can be predicted remains controversial, we are capable of 
identifying the frequently visited locations (e.g., home, work) for the majority of 
users with a high level of confidence (Calabrese et al. 2010a, Berlingerio et al. 
2013, Xu et al. 2015).  On the application side, knowledge we gain about individual 
travel routines can be applied to detect abnormal mobility patterns and massive 
social events (Traag et al. 2011, Ferrari, et al. 2014). 
 
Instead of taking an individual/group perspective, some researchers pay more 
attention on the urban system and examine the varying intensity of human activity 
across urban space.  With this approach, a study area is usually divided into 
subregions, such as grid cells, or Voronoi polygons.  Physical movements or virtual 
communications in each subregion can be aggregated to derive indicators of 
interests, such as frequency of phone calls (Yuan and Raubal 2012), Erlang values 
(Reades et al. 2009, Gao et al. 2013b), and number of active subscribers (Kang et 
al. 2012b).  Some studies went further to probe the correlation between human 
mobility and socioeconomic environment, such as land use types (Calabrese et al. 
2010b, Pei et al. 2014) or social events (Calabrese et al. 2010a). 
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These studies have deepened our understanding of human mobility and urban 
dynamics based on a data-driven approach.  However, most findings are within 
the scope of people’s communication activities.  Some fundamental aspects, such 
as how people stay, come to, and leave each urban location over time has not 
been carefully examined.  In this research, we adopt a new approach and derive 
several mobility indicators from actively tracked mobile phone location data, which 
measure the changing urban dynamics at different urban locations.  These 
valuable indicators form the basis of our empirical analysis. 
 

2.3 Dataset 
The mobile phone location data used in this study is obtained through a joint 
research collaboration.  This section introduces the study area and the dataset. 

2.3.1 Study area 
Our study area is Shenzhen, a large city in southern China.  Shenzhen has a 
permanent resident population of more than 10 million by the end of 2012 (see 
Gazette of the People’s Government of Shenzhen Municipality 2012).  In addition 
to permanent residents, Shenzhen has a large population of migrants, as it is one 
of the centers of manufacturing industry in China.  Shenzhen was designated as a 
Special Economic Zone (SEZ) in 1980 and its economy has been growing rapidly 
since then.  As of 2012, Shenzhen’s annual GDP ranked the 4th in China (after 
Beijing, Shanghai, and Guangzhou, see Gazette of the People’s Government of 
Shenzhen Municipality 2012).  Shenzhen consists of six administrative districts: 
Luohu, Futian, Nanshan, Baoan, Longgang, and Yantian (Figure 2.1).  Luohu is 
connected with Hong Kong and it is the financial center of Shenzhen.  Futian is at 
the center of the Shenzhen Special Economic Zone.  It is also considered as the 
business center of Shenzhen.  Nanshan is a district designated for higher 
education and advanced technology.  Baoan occupies a large area in western 
Shenzhen.  It is an ideal region for many manufacturing industries.  The largest 
factory of Foxconn, manufacturer of Apple’s iPhone, is located in this district.  
Longgang is the largest district in Shenzhen.  It is also a preferred region for 
manufacturing industries and it meanwhile is the base for export and logistics 
industry.  On the east side of the Shenzhen Special Economic Zone is Yantian, 
where a major port of Shenzhen and many costal resorts are located. 
 
As a young and emerging major city in China, the government of Shenzhen 
collects and utilizes various types of tracking data for urban planning, including taxi 
tracking data, smartcard data, and so forth.  Some interesting aspects of Shenzhen 
urban dynamics have been reported in the literature.  For instance, Liu et al. (2009) 
analyzed a smartcard dataset and indicated the dominant role of certain subway 
stations of Shenzhen in terms of passenger volumes.  Zhu and Guo (2014) 
developed a hierarchical clustering algorithm to analyze taxi flows and suggested 
distinct urban dynamics patterns in the morning and evening hours, respectively. 
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Figure 2.1 The city of Shenzhen and its six administrative districts. 
 

2.3.2 Dataset 
This actively tracked mobile phone location dataset contains locational information 
of over 16 million anonymized phone numbers between 23:00 of a Thursday and 
22:00 of a Friday in 2012.  Different from CDRs, location of most subscribers in 
this dataset is recorded every 60 minutes or so, as the latitude and longitude of a 
nearby cell tower, regardless of their calling or texting activities.  From those 
latitudes and longitudes, we extracted 5,952 cell towers in Shenzhen and assigned 
each of them a unique ID. 
 
To study Shenzhen’s urban dynamics on this particular workday, we grouped 
digital footprints into 23 one-hour time periods.  For each one-hour time period, we 
aggregated subscribers and derived two aspects of urban dynamics: stay activity 
and move activity.  Specifically, we compute the size of stay population at each 
cell tower, and the size of bi-directional flows between each pair of cell towers. 
 
Although this dataset provides hourly digital footprints from millions of subscribers, 
some data uncertainty issues should be noted.  In general, uncertainties are often 
caused by the following two factors: 
 

1) Distribution of cell towers:  The spatial granularity of this mobile phone 
location dataset is at the cell tower level.  Therefore, very short local trips 
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are not captured in the dataset.  In addition, the density of cell towers varies 
across the city.  Such short movements are less likely to be “sensed” in 
regions where cell towers are sparsely distributed. 

 
2) Sampling rate:  The one-hour sampling interval of this dataset implies that 

round trips with a very short time duration are not captured.  As a result, a 
subscriber who leaves the service area of a cell tower and returns to the 
same service area within a one-hour time window is treated as stay during 
that hour. 

 
We should keep these data uncertainty issues in mind as they cannot be 
eliminated due to the characteristics of this dataset.  At the urban scale, we believe 
such uncertainties have a limited impact on the aggregate urban dynamics 
patterns. 
 

2.4 Examine urban dynamics with STEAM 
To support this empirical study, we developed STEAM to visualize aggregate 
stay/move activities based on tens of millions of digital footprints.  STEAM was 
developed with Processing, an open source programming language based on Java 
and an integrated development environment (IDE) for art and visual design (Reas 
and Fry 2010).  In addition to the basic graphic functions, Processing is well known 
for its powerful support for animation and user interaction.  We also used a third-
party library, MapThing, to embed geovisualization in Processing (Reades 2013).  
The main functions of STEAM are summarized as follows: 
 

• STEAM represents population movement by drawing moving points 
between origins and destinations (Figure 2.2).  The number of moving 
points between an OD pair is directly proportional to the size of population 
moving between two locations.  Users can specify the number of people 
each moving point represents. 

• STEAM represents population stay by drawing fixed points (Figure 2.2).  
The size of each fixed point is directly proportional to the magnitude of 
population staying at a particular location.  Users can specify the number of 
people each point size represents. 

• With stay/move activities for multiple time periods, users can move forward 
and backward along the time dimension. 

• STEAM supports interactive queries.  By hovering mouse cursor over a cell 
tower and pressing selected keys, STEAM shows the sizes of staying, 
incoming, and outgoing population at the selected cell tower.  It also draws 
lines to indicate the origins of incoming population and the destinations of 
outgoing population (Figure 2.2). 
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Figure 2.2 A snapshot of STEAM visualization.  It illustrates urban dynamics of 
Nanshan and Futian districts in Shenzhen between 7:00 and 8:00 AM.  Each red 
point represents one hundred persons.  Blue points represent cell towers.  The 
larger the blue point, the more people are staying at its location.  In this example, 
we select a particular cell tower near a subway station and press the “I” key.  The 
purple lines indicate where people come from at the selected cell tower.  The 
thickness of each purple line is proportional to the size of incoming population. 
 

2.4.1 Stay/move dynamics 
STEAM reveals distinct mobility patterns throughout the day based on the varying 
number of moving points (i.e., move) and the varying size of fixed points (i.e., stay).  
This actively tracked mobile phone location data can help quantify this changing 
relationship between stay and move activities.  We calculated the total population 
who stayed at the same cell tower, and those moved from one cell tower to another 
(regardless of distance), for each of the one-hour time intervals (Figure 2.3).  In 
general, we notice that stay population is always more than move population 
throughout the study day.  It highlights the importance of stay activity in an urban 
area, which often does not receive sufficient attention in urban dynamics studies. 
 
Starting from 1:00 AM, the proportion of move population is less than 15% since 
most people stay at home during this time period.  This number drops continuously 
when people return home gradually.  The mobility level is elevated significantly 
from 6:00 AM.  A considerable amount of people commute to work during the 
morning rush hour (7:00 – 8:00) as we find that over 46% population travel to the 
service area of a different cell tower.  The proportion of stay population is relatively 
consistent from 8:00 to 17:00, ranging from 57.21% to 63.89%.  It indicates a 
typical 8:00 to 17:00 workday schedule.  The small growth of move population 
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Figure 2.3 The stay/move dynamics in Shenzhen. 
 
 (42.79%) at 11:00 AM – 12:00 Noon suggests a mild urban mobility increase 
around noon and it echoes what we observe in STEAM.  Unlike many other 
countries, a two-hour lunch break is a common practice in China.  We believe the 
observed mobility increase at noon is the result of people going out for lunch or 
returning home during the lunch break.  The proportion of move population 
increases and reaches the daily maximum (48.11%) during 17:00 –  18:00.  The 
mobility level then declines steadily. 

2.4.2 Distance decay dynamics 
Despite an increased volume of long-distance travels during rush hours, STEAM 
discloses the dominant role that short-range flows play in Shenzhen’s urban 
dynamics.  It reveals a strong distance decay effect.  Previous research based on 
CDRs has suggested various effects of distance decay in urban areas.  For 
instance, González et al. (2008) and Gao et al. (2013a) report distance decay 
parameters of 1.75 and 1.60, respectively.  As opposed to CDRs, the actively 
tracked mobile phone location data allows us to examine the varying distance 
decay effect throughout the day based on massive digital footprints collected from 
all subscribers, even if they do not engage in any phone communication activities. 
 
We aggregated all trips that occurred during each hour and represented trip 
distances by a power law distribution as follows: 
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𝑃(𝑑) ∝ 𝑑* 
 
where 𝛽 is the distance decay parameter.  A small value of 𝛽 indicates a relatively 
weak influence of distance, while a large value of 𝛽 implies that distance is a strong 
deterrent to spatial interaction. 
 
Figure 2.4 shows the cumulative distribution function (CDF) of trips captured during 
two selected time periods (3:00 – 4:00 and 15:00 – 16:00) when 𝛽 has the smallest 
value and the largest value.  Both curved lines indicate that most trips are short: 
around 87% trips at 15:00 – 16:00 are shorter than 5 km and this percentage is 
even higher (> 95%) for trips during 3:00 – 4:00.  The CDF value grows more 
quickly at 3:00 – 4:00 as distance increases, and the fitted power law has a larger 
value of 𝛽 (2.369).  This indicates that the friction of distance has a stronger effect 
for people traveling at 3:00 – 4:00.  On the contrary, during 15:00 and 16:00, a 
higher percentage of people travels over a longer distance and it leads to a smaller 
value of 𝛽, which is very close to 1.75, as reported by González et al. (2008). 
 
The plot of varying distance decay parameter values (Figure 2.5) indicates that the 
distance decay effect is relatively weak in the daytime.  We notice that the decay 
parameter rises at noon.  This finding, again, matches what we uncover in STEAM 
and the finding in Section 2.4.1, which indicates that more moving points emerge 
at noon but most of them are between neighboring towers.  It is also interesting to 
see that the minimum 𝛽 occurs for trips at 15:00 – 16:00, instead of typical rush 
hours when the demand for longer distance travel is supposed to be higher.  This 
could be due to traffic congestion during rush 
hours that restricts the distance people can travel within an hour.  Finally, we find 
that the value of 𝛽 on average is much smaller than those reported by CDR-based 
studies, especially during 23 PM and 5 AM.  It serves as an indication that short-
range movements are underrepresented in CDR data.  As a result, CDR data may 
underestimate the urban distance decay effect and derive misleading urban 
mobility patterns. 
 

2.5 Uncover urban dynamics using mobility time series 
In Section 2.4, we explored some interesting aspects human mobility pattern at the 
urban scale.  As indicated by STEAM, actively tracked mobile phone location data 
allow us to examine varying mobility patterns in different areas of the city at a much 
finer spatiotemporal granularity.  This section presents urban dynamics patterns 
identified from analysis of mobility time series data. 
 

2.5.1 Method 
We selected two cell towers from a residential area and the CBD area, 
respectively, and computed three mobility time series: stay population, incoming 
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Figure 2.4 The cumulative distribution function (CDF) of trips captured during two 
selected time periods.  To better illustrate short trips, this figure excludes trips 
greater than 50 km. 
 

 
Figure 2.5 Temporal variation of the distance decay parameter values (β). 
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population, and outgoing population.  In order to study the variation pattern of 
mobility, we normalized the time series data so each of them has a mean of zero 
and a standard deviation of one (Lin et al. 2003).  The plot of these mobility time 
series suggests distinct mobility variation patterns of two typical types of urban 
location (Figure 2.6): 
 

1) The level of stay population at the selected tower in the residential area is 
high at midnight and starts to drop during 6:00 – 7:00.  It stays at a low level 
until 17:00 – 18:00 when people start to return home.  On the contrary, the 
stay population at the selected CBD area shows the opposite variation 
pattern, which has a high level during the work hours and the number of 
people staying in this region declines from 16:00 – 17:00. 

2) The size of incoming population at the selected tower in the CBD area 
peaks during 8:00 –  9:00.  After that, fewer and fewer people come to this 
area (except a mild increase around noon).  The cell tower in the residential 
area has three spikes of population gains at 11:00 – 12:00, 17:00 – 18:00, 
and 21:00 – 22:00, which correspond to returning population during the 
noon break, returning population after work, and returning population after 
night activities, respectively. 

3) The level of outgoing population at the selected tower in the CBD area 
reveals a typical workday pattern.  It shows limited growth at noon and 
peaks during the evening rush hour when most people get off work.  Two 
major spikes of the same indicator happen in the selected residential area 
during two time periods when many people leave for work in the morning 
and after the noon break, respectively. 

 
The mobility time series analysis discussed above is used to uncover aggregate 
urban dynamics patterns for the entire city of Shenzhen.  We first subdivided 
Shenzhen into a grid of 2,193 cells (1 km × 1 km each) to overcome the uneven 
spatial distribution of cell towers.  The 5,952 cell towers, as well as the hourly 
stay/incoming/outgoing population at each tower, were then assigned to 
corresponding grid cells.  Three normalized mobility time series (i.e., 
stay/incoming/outgoing population) were derived for each cell.  To identify different 
variation patterns of urban dynamics and examine which cells share a similar daily 
mobility variation pattern, we applied an agglomerative clustering approach that 
has been frequently used to classify time series data (Liao 2005, Tan et al. 2005). 

2.5.2 Results 
This section presents the clustering results of three different mobility time series.  
We chose six as the number of clusters after many trial runs.  When the number 
of clusters is smaller than six, it is insufficient to distinguish all major urban 
dynamics patterns.  When the number of clusters is larger than six, we begin to 
have clusters that are too similar to each other. 
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Figure 2.6 Mobility time series (stay population, incoming population, and outgoing 
population) of two selected cell towers. 
 
 
2.5.2.1 Stay population 
Understanding the stay population distribution in different time periods of a day 
has a profound meaning in the real world.  For instance, it can benefit the local 
government in emergency evacuation planning.  On the business side, restaurants 
and other services may be interested in areas with a large stay population during 
the daytime to attract customers. 
 
The six clusters derived from the agglomerative clustering method suggest the 
following urban dynamics patterns of stay population (Figure 2.7).  The stay 
population variation of both Cluster #5 and #6 reveals a typical pattern of night-
stay locations.  The level of stay population starts to drop from 5:00 – 6:00 and 
then declines dramatically during the morning rush hours until 7:00 – 8:00.  Starting 
from 18:00 – 19:00, stay population of these two clusters increases at a nearly 
constant rate, indicating that people return home steadily.  A major difference 
between these two clusters is that, throughout the daytime, stay population of 
Cluster #5 stays low while there are two small growth periods for Cluster #6.  By 
overlaying the cluster map on the aerial photo in Google Earth, we find that high- 
density residential buildings are more dominant in cells in Cluster #5 than those in 
Cluster #6.  In other words, grid cells in Cluster #6 tend to covers other types of 
facilities where people stay during work hours, such as shopping malls, office 
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Figure 2.7 Normalized average stay population of the six clusters. 
 
buildings, or factory buildings.  Figure 2.8 shows that these night-stay locations are 
widely scattered in the city.  Grid cells in Cluster #5 are more concentrated in the 
south of the city, where residential areas with tall buildings are more densely 
distributed. 
 
Clusters #1 and #2 can both be regarded as day-stay locations since their level of 
stay population is high only during work hours (Figure 2.7).  However, Cluster #1 
differs from Cluster #2 in that its stay population drops significantly during the noon 
break.  On the contrary, only a slight drop of stay population is found in Cluster #2 
cells.  It implies two main types of activities at noon: staying at the work place, and 
traveling to another location (probably going for lunch or returning home).  The 
cluster map (Figure 2.8) indicates that the former are more common among people 
working in the southern part of Shenzhen, where high-tech and other tertiary 
industries are concentrated, such as universities and office buildings for banks, 
finance services and IT sectors. 
 
Clusters #3 and #4, which scatter around the city without an evident agglomeration 
(Figure 2.8), present another stay population variation pattern (Figure 2.7).  The 
level of stay population in these clusters is low during rush hours and a major drop 
occurs at noon.  It fits the overall variation pattern of stay population in the entire 
city of Shenzhen (Figure 2.3).  Cross-comparison with aerial photos offers two 
possible explanations.  First, very mixed land use patterns (e.g., residential area 
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Figure 2.8 Spatial distribution of the six clusters based on stay population.  Blank 
cells do not cover any cell towers and most of these cells are located in areas with 
very limited human activities (e.g., mountains, forests). 
 
and work area) are found in grid cells of these two clusters.  As a result, the level 
of stay population is low during the rush hours when the majority of people are 
travelling.  Second, some grid cells in these two clusters cover the least populated 
areas, such as farmlands.  Our speculation is that the variation of stay population 
in these regions is largely influenced by people who live and work there. 
 
2.5.2.2 Incoming population 
The size of incoming population during each hour indicates the speed of population 
gain and it thus reflects the changing attraction of a region.  An enhanced 
understanding about how fast each urban location gains population throughout a 
day can assist urban planning such as optimizing bus/subway schedules. 
 
Among the six clusters, Clusters #1 and #6 share a similar incoming population 
variation pattern (Figure 2.9).  Apparently the three spikes of incoming population 
can be considered as the main characteristic of these two clusters, although 
locations in Cluster #1 have a greater population gain during the morning rush 
hour.  Most grid cells of these two clusters are distributed in the northern part of 
the city, where is a popular region for manufacturing industries (see Figure 2.10 
for factory locations in Shenzhen).  The reasons of this three-spike pattern are two-
fold.  First, spatial adjacency of factory buildings and residential buildings is very 
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Figure 2.9 Normalized average incoming population of the six clusters. 
 

 
Figure 2.10 Spatial distribution of the six clusters based on incoming population. 
 



29 
 

common in this area.  The three-spike pattern can be explained by a large number 
of people in northern Shenzhen commuting to nearby workplaces in the morning 
and returning home (possibly dormitories provided by factory) at noon break and 
in the evening.  Second, we speculate that, since many manufacturing factories in 
China often operate beyond normal work hours and many factories have three 
shifts in a day, workers may commute to the factories in the evening to work on a 
night shift.  This may also contribute to the elevated level of incoming population 
in the evening. 
 
Clusters #4 and #5 also gain population at noon and during the rush hours, while 
the major increase of both clusters occurs during the evening rush hour (Figure 
2.9).  Most grid cells of these two clusters (especially Cluster #5) overlap with areas 
of high-density residential buildings, which attract a large population after work 
hours. 
 
The agglomerative clustering results also indicate the distinct variation pattern of 
incoming population in the more economically developed regions of Shenzhen.  
The business-oriented areas in Futian and west Luohu are largely covered by the 
grid cells of Cluster #3 (Figure 2.10).  The level of incoming population of this 
cluster is high, but stays quite consistently, during the daytime (Figure 2.9).  This 
consistency implies that no significant increase of movement to these regions.  It 
is likely that a large fraction of people working in this region do not make long-
distance trips (> 2 km) at noon, which further confirms our findings in Section 
2.5.2.1 that the level of stay population of Cluster #2 only drops slightly at noon.  
On the other hand, Cluster #2 shows some limited variation of incoming population 
after the noon break (Figure 2.9).  Grid cells of Cluster #2 cover the central area 
of Nanshan, where Shenzhen University and other high-tech campuses are 
located, along with many tourist resorts (e.g., mountains, beaches) in the eastern 
part of Shenzhen. 
 
2.5.2.3 Outgoing population 
Different from incoming population, outgoing population in each hour measures 
the speed of population loss.  This mobility indicator can also be useful for many 
real-world scenarios.  For instance, taxi companies may benefit by dispatching 
drivers to areas with a substantial outgoing population. 
 
Compared with the previous two indicators, the six clusters based on this mobility 
time series (Figure 2.11) present a stronger effect of spatial agglomeration: grid 
cells of the same or similar clusters are more likely to be adjacent (Figure 2.12).  
For instance, Cluster #2 covers the three more developed districts in the south.  
The major increase of outgoing population in these areas is probably due to people 
who get off work in the evening (Figure 2.11).  In addition, the level of outgoing 
population of Cluster #2 has a very limited growth at noon, which is another proof 
that long distance travel during the noon break is not a common practice for people 
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Figure 2.11 Normalized average outgoing population of six clusters. 
 

 
Figure 2.12 Spatial distribution of six clusters based on outgoing population. 
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working in this region. 
 
Despite some slight differences, Clusters #3, #4, and #5 all share a three-spike 
pattern of outgoing population (Figure 2.11).  Grid cells of these three clusters are 
more spatially agglomerated in northern Shenzhen, where manufacturing factories 
are densely located (Figure 2.12).  As opposed to Cluster #2, a lot more people 
leave grid cells of Cluster #3, #4, and #5 at noon for some purpose (e.g., retuning 
home).  Such distinct noon activity patterns between the south and the north is 
noteworthy. 
 
Cluster #1 is different from others because of its low level of outgoing population 
during the morning rush hour (Figure 2.11).  A cross-comparison with aerial photo 
indicates that grid cells of this cluster barely overlap with residential areas.  On the 
contrary, most cells in Cluster #6 cover high-density residential buildings, resulting 
in a striking growth of outgoing population in the morning rush hour. 
 
Actively tracked mobile phone location data allows urban dynamics patterns to be 
examined with improved spatiotemporal granularity.  In this study, the volume of 
total phone number (16 million) is at the same scale as the entire population and 
the consistent one-hour sampling rate helps reveal aggregate stay/move activities 
throughout the day.  Taking advantages from those massive hourly footprints, the 
derived mobility time series (i.e., stay population, incoming population, and 
outgoing population) provides good estimates of the changing pulse of the city.  In 
addition, the agglomerative clustering approach is proven to be effective in 
extracting distinct mobility variation patterns from mobility time series and grouping 
areas with similar patterns.  Provided with sufficient digital footprints, this proposed 
approach can be applied to reveal useful urban dynamics patterns in other cities. 
 

2.6 Conclusions 
In recent years, CDRs have been a useful data source to study urban dynamics.  
Unlike CDRs, actively tracked mobile phone location data collected by MNOs 
provide more consistent records of stay/move activities in space and over time, 
regardless of their calling or texting activities.  We argue that cell towers work as 
sensors, which form an enormous sensor network and keep monitoring the 
changing pulse of a city around the clock.  The enhanced spatiotemporal 
granularity of actively tracked data can help us gain additional insight regarding 
the ways people interact with different urban areas. 
 
Based on the hourly digital footprints collected from over 16 million phone 
numbers, this study used an aggregate perspective to uncover hidden urban 
dynamics in Shenzhen.  A new visualization tool, STEAM, was developed to 
illustrate the pulse of the city.  By aggregating stay/incoming/outgoing population 
at each cell tower, STEAM uncovered some interesting characteristics of urban 
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dynamics in a workday in Shenzhen, such as the variation of stay/move activities 
and the dominant role of short-distance movements.  Assisted by STEAM, we 
further performed quantitative analyses to investigate the dynamic relationship of 
stay/move activities and the changing effect of distance decay.  STEAM can 
support other types of tracking data, such as GPS tracking data, public transit 
smart card data, to name a few, and it is released as an open source tool 
(https://github.com/zlzhao1104/steam). 
 
To identify the variation patterns of urban dynamics in different areas of the city in 
a workday, we divided Shenzhen into grid cells and selected three mobility 
indicators (i.e., stay population, incoming population, and outgoing population) to 
measure urban dynamics from three different aspects.  Empirical results generated 
by agglomerative clustering presented some interesting findings of Shenzhen’s 
urban dynamics, such as the distribution of day-stay locations and night-stay 
locations, different mobility patterns between the south and the north as well as 
between residential areas and CBDs.  We believe that aggregate stay/move 
mobility patterns are closely related to the urban structure, especially the setting 
of land use or industrial types in each region.  This is particularly true in Shenzhen, 
where distinct industrial distributions are present in different administrative 
districts.  Compared with the conventional data and methods, this proposed 
approach can be useful for urban planners and policy makers to understand 
varying mobility patterns at a high spatiotemporal granularity. 
 
By discussing empirical results from spatiotemporal visualization and analysis, this 
paper demonstrates the usefulness of actively tracked mobile phone location data 
in urban dynamics study.  Nonetheless, certain limitations of this study should be 
noted.  First, a detected movement from one’s trajectory does not necessarily 
represent the true origin and the true destination of a trip.  Instead, it could be an 
in-transit point during a trip.  Thus, the derived number of incoming/outgoing 
population of a location may include people passing through a location.  Second, 
the three mobility indicators are investigated independently.  A future study can 
examine the relationships among the three mobility indicators at each location.  
Third, population flows are aggregated at tower-to-tower level.  Road networks and 
travel modes are not considered in this study, which limits its usefulness of 
addressing specific transportation planning tasks. 
 
There remain some interesting and challenging topics for future research.  For 
instance, various types of tracking data have been collected in cities like Shenzhen 
(e.g., taxi tracking data, public transit smartcard data, and mobile phone tracking 
data) and they reflect different aspects of urban dynamics.  Evaluating the 
strengths and weaknesses of each type of tracking data can help urban planners 
choose the most appropriate dataset to address a specific question.  Also, it will 
be promising to develop additional indicators to summarize the characteristics of 
each subscriber (e.g., staying at one location all day, traveling a lot during the 



33 
 

daytime/midnight, etc.), or examine the relationships between mobility patterns 
and the characteristics of different urban location such as accessibility, land use, 
average annual household income, etc.  This will further improve our 
understanding of different mobility patterns and the intrinsic mechanisms that drive 
urban dynamics. 
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Abstract 
In recent years, call detail records (CDRs) have been widely studied in human 
mobility research.  Although CDRs are originally collected for billing purposes, the 
vast amount of digital footprints generated by calling and texting activities provide 
useful insights about population movement.  However, can we fully trust CDRs 
given the uneven distribution of people’s phone communication activities in space 
and time?  In this paper, we investigate this issue using a mobile phone location 
dataset collected from over one million subscribers in Shanghai, China.  It includes 
CDRs (~27%) plus other cellphone-related logs (e.g., tower pings, cellular 
handovers) generated in a workday.  We extract all CDRs in a separate dataset in 
order to compare human mobility patterns derived from CDRs and from the 
complete dataset.  From an individual perspective, the effectiveness of CDRs in 
estimating three frequently used mobility indicators is evaluated.  We find that 
CDRs tend to underestimate total travel distance and movement entropy, while 
they can provide a close estimate to radius of gyration.  In addition, we learn that 
the level of deviation is also relevant to the ratio of CDRs in one’s trajectory.  From 
a collective perspective, we compare outcomes of two datasets in distance decay 
effect analysis and urban community detection.  The major differences can be 
explained by the habit of mobile phone usage in space and time.  We believe the 
event-triggered nature of CDRs does introduce certain degree of bias in human 
mobility research and we suggest people use caution in future research. 
 

3.1 Introduction 
The advent of the so-called “big data era” offers many new opportunities to resolve 
the mystery of human mobility using various types of massive digital footprints, 
such as geo-tagged social media data (Batty 2010).  Despite those exciting 
discoveries that reveal the pulse of the city, there have been debates regarding 
the biases that come with the data.  For instance, studies report that distribution of 
social media users is predominantly uneven in terms of geography, gender, and 
race/ethnicity (Mislove et al. 2011, Hecht and Stephens 2014). 
 
Mobile phone location data, collected by mobile network operators (MNOs), also 
has been an appealing data source, given the unprecedented scale of digital 
footprints it carries.  The type of mobile phone location data used by most existing 
studies is referred to as call detail records (CDRs), which are generated upon 
phone communication activities (i.e., make/receive a phone call, send/receive a 
text message).  For billing purposes, CDRs keep track of related information (e.g., 
caller/callee, time, duration) of each event, plus the unique identifier of the nearby 
cell tower that handles the phone communication. 
 
Numerous valuable findings regarding human activity and urban environment, as 
well as their interactions, have been uncovered since CDRs became prevalent in 
the research community in recent years (e.g., González et al. 2008, Song et al. 
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2010a, Song et al. 2010b).  However, the majority of previous studies do not 
mention how representative their data (i.e., CDRs) are, as well as the applicability 
of analysis outcomes to the entire population.  Also, very few researchers study 
what CDRs cannot do (see Kang et al. 2012 for an example).  Are we overly 
optimistic about the usefulness of CDRs and the validness of our conclusions?  
Like what has been brought up, debated, and acknowledged in the social media 
community, the representativeness of CDRs needs to be carefully examined. 
 
As pointed out by Becker et al. (2013), CDRs are coarse in space and sparse in 
time.  In large cities, the spatial granularity at the cell tower level may not be a 
major drawback as cell towers are usually densely distributed all over the urban 
area.  What really matters is the uneven distribution of people’s phone 
communication activities in space and time.  On one hand, people are more likely 
to contact others at certain places, such as home or work location, and it is highly 
possible that those locations account for only a fraction of all visited places.  On 
the other hand, depending on how actively one engages in phone communication, 
the total number of CDRs each subscriber generates varies significantly.  The 
dataset used in this research reveals that population size drops with the increased 
intensity of phone-related activities (Figure 3.1).  Around 17% subscribers in our 
dataset have two or less CDRs in a day and over 38% subscribers generate less 
than seven CDRs.  Hence, whether mobility pattern of subscribers without heavy 
phone usage can be characterized is indeed questionable.  One may argue that 
this problem can be solved by collecting CDRs over a period of time, such as a 
week, a month, or even longer.  Although this workaround does help increase 
sample size, the uneven spatiotemporal distribution of digital footprints caused by 
people’s habit of mobile phone usage cannot be addressed.  The “quiet minority” 
who rarely make use of mobile device remain underrepresented. 
 
This research takes the first step to evaluate the representativeness of CDRs in 
human mobility characterization, using a mobile phone location dataset that 
includes both CDRs and non-CDR footprints.  The latter are generated by events 
irrelevant to phone communication, such as moving out of the service area of a 
cell tower, active pinging from cell tower, and so forth.  By isolating the CDR part 
in a separate dataset, we are able to quantitatively evaluate the effectiveness of 
CDRs in human mobility analysis, from both the individual perspective and the 
collective perspective.  The findings of this research not only facilitate a better 
understanding of CDRs as a remarkable data source, but also lead us to rethink 
of some existing findings of human mobility researchers have come up with so far. 
 
The remainder of this paper is organized as follows.  The next section discusses 
existing research related to this study.  Section 3.3 presents the study area and 
the mobile phone location data used in this research.  In Section 3.4, we adopt an 
individual perspective and evaluate the effectiveness of CDRs in estimating some 
of the most frequently used mobility indicators.  We then take a collective approach  
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Figure 3.1 Distribution of subscribers under different intensity levels of phone 
communication. 
 
in Section 3.5 and examine the performance of CDRs in distance decay effect 
analysis and urban community detection.  We conclude and discuss this research 
in Section 3.6. 
 

3.2 Relevant research 
This section discusses relevant research in the following two areas: 1) CDRs and 
human mobility; 2) CDRs and urban dynamics; and 3) uncertainty issue. 

3.2.1 CDRs and human mobility 
Thanks to CDRs, our knowledge of individual human mobility has been enriched 
considerably in recent years.  A large body of literature focuses on individual 
activity space, which is used to denote the spatial configuration for people’s daily 
activities (Golledge and Stimson 1997).  Understanding individual space has a 
profound meaning in the real world, such as accessibility to healthcare facilities 
(Sherman et al. 2005), environmental exposure (Perchoux et al. 2013), etc.  Note 
that the term activity space is related to several other concepts, for instance, 
awareness space (Brown and Moore 1970), action space (Horton and Reynold 
1971), space-time prism (Hägerstrand 1970). 
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Activity space can be characterized from individual trajectories, as each of them 
reflects a person’s movement in space over time.  A number of measures can be 
used to describe the spatiotemporal characteristics of individual trajectory, such as 
daily range of travel, movement radius, movement entropy (e.g., Yuan et al. 2012).  
Two dimensional measures, such as standard deviational ellipse (SDE), can be 
used to describe the range and direction of one’s activity space (e.g., Zenk et al. 
2011).  Based on these mobility indicators, statistical analyses can be performed 
to compare activity space of people in different social groups (e.g., age, gender, 
see Kang et al. 2010, Yuan et al. 2012) or people at different locations (Becker et 
al. 2013).  In addition, individual trajectories collected over a long term allow us to 
extract meaningful anchor points of one’s activity space, such as home or work 
locations (e.g., Ahas et al. 2010, Calabrese et al. 2010a), and to examine people’s 
activity patterns around anchor points (e.g., Xu et al. 2015). 
 
Besides activity space research, CDRs have been utilized by physicists to gain 
new insights on the nature of human travel.  Over a long period of time, we believe 
that human movements are associated with a large degree of randomness and 
can thus be explained by the random walk or Lévy flight model (Brockmann et al. 
2006, Rhee et al. 2011).  However, analysis results from CDR trajectories have 
proved that human travels actually follow reproducible patterns (González et al. 
2008) and are highly predictable (Song et al. 2010a, Song et al. 2010b). 
 
Despite substantial progress discussed in this section, this study argues that the 
representativeness of individual trajectory derived from CDRs is strongly subjected 
to people’s habit of mobile phone usage in space and time.  The CDR trajectory of 
a traveling salesperson who keeps talking to customers by phone can well depict 
his/her daily travel, whereas the CDR trajectory of someone who only contacts 
parents once a week should not be used to understand his/her mobility pattern in 
space and time.  As a result, can we fully trust those mobility indicators derived 
from CDR trajectories, as well as other relevant conclusions?  It should be pointed 
out that using CDRs collected over a long period of time as a workaround cannot 
address this problem as people who rarely engage in phone communication 
remain underrepresented. 

3.2.2 CDRs and urban dynamics 
Instead of focusing on individual trajectories, many studies adopt a collective 
approach to uncover varying mobility patterns by location.  Frequently used 
indicators include Erlang value (i.e., the total call traffic volume in one hour), 
number of phone calls/text messages, number of active subscribers, etc.  For 
instance, CDRs are used to quantitatively measure different levels of popularity in 
New York City in terms of the density and distribution of aggregate phone calls 
(Girardin et al. 2009).  Distinct patterns of mobility variation throughout different 
time periods in a day, or different days in a week can also be extracted and 
compared using a variety of techniques, such as K-Means (Reades et al. 2007), 



43 
 

eigendecomposition (Calabrese et al. 2010b), dynamic time warping (Yuan and 
Raubal 2012).  In addition to mobility pattern analysis, aggregate population flows 
among cell towers serve as an indication of human interaction with urban space, 
which enable us to detect urban communities with strong internal interactions (Gao 
et al. 2013).  Moreover, some recent studies utilize the characteristics of people’s 
phone communication activities and develop innovative methodologies to address 
problems that are usually solved by other approaches.  For example, Pei et al. 
(2014) develop a new method for urban land use classification based on 
normalized hourly call volume and the total call volume. 
 
Similar to human mobility research, many CDR-based urban dynamics studies 
also make a fundamental assumption that phone communication records can 
serve as a direct indication of human activity intensity, which in fact is debatable.  
For instance, can phone calls be considered as “a proxy for presence of people” 
(Girardin et al. 2009)?  A careful evaluation of the representativeness of CDRs can 
help us answer this type of question. 

3.2.3 Uncertainty issue 
Uncertainty has been an important topic in GIScience (Goodchild and Gopal 1989, 
Zhang and Goodchild 2002).  It is associated with a series of concepts, such as 
accuracy, precision, consistency, completeness, to name a few (Veregin 1999).  
Considerable efforts have been made to visualize and analyze spatiotemporal 
uncertainties (Pang 2001, MacEachren et al. 2005, Delmelle et al. 2014).  With an 
improved understanding of uncertainties, many critical concerns have been raised 
regarding how the uncertainties could influence our knowledge (e.g., Griffith et al. 
2007, Zinszer et al. 2010, Jacquez 2012), as well as the risk in the decision making 
process (Golledge and Stimon 1997). 
 
The issue of uncertainty is mainly examined in the field of environmental modeling 
(Refsgaard et al. 2007, Ascough II et al. 2008).  Despite limited discussion in 
literature, uncertainties that come with mobile phone location data due to the 
relatively coarse spatiotemporal granularity should not be ignored.  From the 
spatial perspective, the resolution of spatial location is restricted at the cell tower 
level (Becker et al. 2013).  In urban area where cell towers are sparsely distributed, 
the distance from a cell tower to the closest one can be longer than 1 km.  From 
the temporal perspective, the location of a subscriber between two phone 
communication events is uncertain.  Provided with a two-hour interval, the potential 
area that a subscriber can travel to may cover the entire city.  With CDR data, the 
duration between phone communication activities is often longer than 2 hours, 
which leads to a large degree of uncertainty in human mobility analysis.  Note that 
the uncertainties that result from coarse spatial granularity cannot be overcome 
because of the fixed number and distribution of cell towers, whereas the temporal 
granularity of individual footprints can be improved.  Instead of enforcing 
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subscribers to make more phone calls, different collection methods, such as active 
pinging, can help reduce the uncertainties between two consecutive footprints. 
The uncertainty issue itself is not a nightmare and the more important matter is to 
understand the how uncertainties can result in imperfect knowledge and recognize 
“which cannot be known” (Couclelis 2003).  This is the fundamental objective of 
this paper. 
 

3.3 Data 
Our study area is Shanghai, one of the largest cities in China.  In this section, we 
introduce some background information of Shanghai and the mobile phone 
location dataset collected in this city. 

3.3.1 Area of study 
Shanghai has a resident population of 23.8 million as of 2012 (Shanghai Municipal 
Statistics Bureau, 2012), which makes it the largest city in China by population.  
Shanghai is one of the global financial centers and the busiest container port in the 
world (World Shipping Council, 2013).  Its annual gross domestic product (GDP) 
also ranks No.1 in China in 2012 (National Bureau of Statistics of China, 2012). 
 
Located in the central east coast of China, Shanghai has a total area of 6,340.5 
square kilometers (Shanghai Municipal Statistics Bureau, 2012).  It consists of 16 
administrative districts and the Chongming County (Figure 3.2).  Among those 
districts, eight of them on the west bank of the Huangpu River (Huangpu, Xuhui, 
Jingan, Changning, Yangpu, Hongkou, Putuo, and Zhabei), also known as Puxi, 
are referred to as the downtown area of Shanghai.  Over the past two decades, 
the economy of the Pudong District, situated on the east bank of the Huangpu 
River, has been growing rapidly, with its famous zone of Lujiazui being widely 
considered as the financial center of Shanghai. 

3.3.2 Dataset 
The mobile phone location dataset used in this study is collected by a major MNO 
in China.  It is obtained through a joint research collaboration.  It includes all 
records generated by 1,252,797 subscribers on September 3, 2012.  Different from 
those analyzed by previous studies, this dataset contains both CDRs and actively 
generated logs, differentiated by seven event codes listed in Table 3.1.  This 
particular MNO owns 33,044 cell towers all over Shanghai and the cell tower ID 
associated with each record indicates approximate location where each event 
takes place.  It should be pointed out that to protect individual privacy, we do not 
possess any personal information (e.g., age, gender, phone number) and the 
spatial granularity is restricted at cell tower level. 
 
Figure 3.3 demonstrates the total number of each event recorded during every 
hour.  Given the way events are triggered, those numbers vary differently 
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Figure 3.2 (a) Shanghai and its administrative districts.  The orange areas 
represent the “Puxi” region, the downtown area of Shanghai.  (b) Eight 
administrative districts in the “Puxi” region.  “Puxi” and the Pudong districts are 
divided by the Huangpu River. 
 
throughout the day.  In general, except PU, very few records are generated during 
midnight.  The city “wakes up” at 6:00 – 7:00, indicated by significantly elevated 
numbers of generated records.  Again, PU is an exception because of the growth 
of RU and CH triggered by enhanced human mobility.  As a result, the number of 
active pinging from tower, recorded as PU, declines accordingly.  The peaks of RU 
at 8:00 – 9:00 and 17:00 – 18:00 correspond to the morning and evening rush hour, 
respectively.  Similar to RU, the numbers of IN and OT events start to increase 
from 6:00 – 7:00.  ON and OF events together account for a very small portion of 
the data as turning mobile phone on and off repeatedly is not a common practice. 

3.3.3 Data processing 
The various types of events recorded in this dataset offer a valuable opportunity of 
understand the bias of CDRs in human mobility analysis.  For the purposes of 
direct comparison, we extract all CDRs (i.e., IN and OT events) from every 
subscriber and store them in a separate dataset.  Therefore, each subscriber has 
two groups of data: CDRs and the entire set of records.  In the remainder of this 
paper, we call these two datasets as the CDR group and the complete group, 
respectively. 
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Table 3.1 Summary of event codes. 
Code Event Description Avg. Record 

No. Per 
Subscriber 

RU Regular 
update 

Regular update triggered by moving 
from the service area of a cell tower 
to that of another tower. 

12.51 

PU Periodic 
update 

Periodic update triggered by tower 
pinging if subscriber has been 
“silent” (no other events in this table 
are detected) for a certain time 
period.  However, the specific 
criteria (e.g., duration of silence) for 
triggering a periodic update is not 
clear.  Moreover, mobile phones 
which are turned off or disconnected 
from the cellular network cannot 
receive tower pining. 

4.88 

OT Phone 
communication 

(outbound) 

Subscriber makes a phone call or 
sends a text message. 

4.45 

ON Power on Mobile phone is turned on and 
connected to cellular network.  

0.62 

OF Power off Mobile phone is turned off and 
disconnected from cellular network. 

0.39 

IN Phone 
communication 

(inbound) 

Subscriber receives a phone call or 
a text message. 

14.67 

CH Cellular 
handover 

Transfer of an ongoing phone call 
from one cell tower to another 
caused by movement. 

5.45 
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Figure 3.3 Temporal variation of the total number of each event. 
 

 
Figure 3.4 Temporal variation of the total number of records in the CDR group and 
the complete group. 
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Figure 3.5 Distribution of subscribers under different ratio of CDRs. 
 
As a subset of the data, the temporal variation of the total number of records in the 
CDR group mirrors that in the complete group (Figure 3.4), although the former 
does not reveal a striking upsurge during 17:00 – 18:00.  For each subscriber, the 
CDR ratio (i.e., number of CDRs / number of total record) has a mean of 43.09% 
and a median of 41.18%.  However, depending on how actively one engages in 
phone communication activities, this number varies significantly (Figure 3.5). 
 

3.4 Individual human mobility 
This section focuses on evaluating the representativeness of CDRs in individual 
daily mobility pattern analysis.  We aim to answer the following question: compared 
with the complete set of footprints, how well do CDR footprints characterize one’s 
daily mobility pattern?  We focus on three basic properties of human mobility: 
distance, range, and heterogeneity.  Hence, the following three frequently used 
mobility indicators are evaluated quantitatively: 1) total travel distance; 2) radius of 
gyration; and 3) movement entropy.  In the evaluation process, the complete group 
is regarded as the control group and mobility indicators derived from the complete 
group are considered to be more accurate.  To better address our research 
question, two additional data processing steps are performed. 
 
First, we need be certain that records in the complete group can characterize one’s 
daily mobility pattern to a good extent.  If all footprints generated by a subscriber 
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in a day cannot provide sufficient temporal coverage (e.g., people who keep their 
mobile phone turned off most of the time), this subscriber’s daily mobility pattern 
would remain a mystery so the complete set of footprints cannot be used as a 
benchmark to evaluate the representativeness of his/her CDR footprints.  To 
reduce the level of uncertainty, we divide the day into four six-hour periods (0:00 
– 6:00, 6:00 – 12:00, 12:00 – 18:00, and 18:00 – 24:00) and only those subscribers 
with at least one footprint in each six-hour period are eligible for the proposed 
evaluation.  After this step, a total of 686,642 subscribers are selected. 
 
Second, as discussed in Section 3.3.3, the range of CDR ratio varies significantly 
among subscribers and the CDR ratio could be a critical factor in the evaluation 
process.  If one’s footprints are mostly generated by phone communication 
activities, mobility indicators derived from the CDR group and the complete group 
should be very close.  On the contrary, for people who travel a lot but rarely contact 
others, his/her CDRs are likely to yield very biased mobility indicators.  In order to 
understand how the CDR ratio influences the estimation of mobility indicators, we 
further break down those 686,642 subscribers into four classes by CDR ratio 
(Table 3.2). 
 
Table 3.2 Summary of four subscriber classes divided by CDR ratio. 

Class CDR Ratio Number of Subscribers 
A 75% – 100% 60,519 
B 50% – 75% 173,940 
C 25% – 50% 251,187 
D 0% – 25% 200,996 

 

3.4.1 Total travel distance 
Total travel distance is the aggregated length of one’s daily movement and it is a 
basic measure of individual mobility.  It is calculated as the sum of Euclidian 
distance between each pair of consecutive footprints.  For each subscriber, we 
compute two values of total travel distance, 𝐷./0 and 𝐷.1234565, based on the CDR 
group and the complete group.  Results from all subscribers are plotted on a two-
dimensional space (Figure 3.6).  The horizontal axis and the vertical axis represent 
the complete group and the CDR group, respectively.  In this figure, the horizontal 
axis is binned with a bandwidth of 0.1 km.  Subscribers are aggregated in terms of 
1) class assignment on the basis of CDR ratio (Table 3.2), and 2) which 0.1-km 
bin 𝐷.1234565 falls in.  Then, for aggregated subscribers in each bin, the average 
value of 𝐷./0 is computed and plotted.  This diagram allows us to examine the 
representativeness of CDRs by visual inspection: if CDRs are representative, 
points on Figure 3.6 should be close to the diagonal.  On the contrary, a large 
deviation from the diagonal leads to the conclusion that CDRs tend to  
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Figure 3.6 Total travel distance (complete group) vs. average total travel distance 
(CDR group). 
 
underestimate total travel distance.  For this mobility indicator, overestimation is 
not possible given that 𝐷./0 cannot be greater than 𝐷.1234565. 
 
Several interesting findings regarding the effectiveness of CDRs in estimating total 
travel distance are revealed in Figure 3.6.  First, all four classes suggest that 𝐷./0 
and 𝐷.1234565  have very high positive correlation.  This is confirmed by both 
Pearson correlation coefficient and Spearman correlation coefficient (Table 3.3).  
Second, CDR ratio does matter.  As the CDR ratio declines (Class A -> Class D), 
points in Figure 3.6 deviates more from the diagonal.  To quantify the level of 
underestimation, we fit points in each subscriber class with a linear regression 
model: y = α + βx, using 𝐷.1234565 as the independent variable x and 𝐷./0 as the 
dependent variable y .  The regression coefficient β  indicates the relationship 
between 𝐷./0   and 𝐷.1234565 , while 1 − β  can be interpreted as the level of 
underestimation, which implies how well CDRs can estimate one’s total travel 
distance.  It is evident that CDRs tend to significantly underestimates total travel 
distance even for subscribers in Class A, whose CDRs account for at least 75% of 
all footprints (Table 3.4).  On average, 𝐷./0  of a Class A subscriber is 34.3%  
shorter than his/her 𝐷.1234565.  This regression coefficient turns out to be smaller 
in Class B and Class C, which indicates that CDRs become more and more biased  
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Table 3.3 Correlation between total travel distance (complete group) and average 
total travel distance (CDR group). 

Class Pearson correlation Spearman correlation 
A 0.941 0.960 
B 0.987 0.992 
C 0.989 0.994 
D 0.955 0.976 

 
Table 3.4 Linear regression results between total travel distance (complete group) 
and average total travel distance (CDR group). 

Class Regression coefficient (𝛃) Level of underestimation (𝟏 − 	𝛃)% 
A 0.657 34.3% 
B 0.556 44.4% 
C 0.443 55.7% 
D 0.174 82.6% 

 
in estimating total travel distance if CDR ratio drops.  For subscribers in Class D, 
their CDRs on average underestimate total travel distance by 82.6%.  Figure 3.6 
also suggests that the variation of average 𝐷./0 becomes larger when the value of 
𝐷.1234565  grows.  It is not difficult to make sense out of this pattern of 
heteroscedasticity under the context of human travel: if one’s daily travel distance 
is longer, the range of estimated travel distance based on his/her CDRs is 
expected to be wider.  Another possible reason is that the size of subscribers drops 
rapidly when the total travel distance increases.  It may also results in a wider 
range of average 𝐷./0. 

3.4.2 Radius of gyration 
Radius of gyration is one of the most frequently used measures of activity space.  
It is defined as the root mean squared distance between a set of visited locations 
up to time 𝑡 and the center of mass: 
 

𝑟DE(𝑡) =
F

GHI(6)
(𝑟JE − 𝑟.2E )K

GHI
LMF     (1) 

 
where 𝑟JE  represents the 𝑖 = 1,… , 𝑛.E(𝑡)  location of subscriber a and 𝑟.2E =
F

GHI(6)
𝑟J.

GHI
LMF  defines the center of mass (González et al. 2008).  Radius of gyration 

reflects the range of activity space, typically around the center of home and work 
locations for commuters. 
 
Similar to Section 3.4.1, we compute two values of radius of gyration for each 
subscriber based on the CDR group and the complete group, denoted as 𝑅./0 and 
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𝑅.1234565.  Figure 3.7 uses the horizontal axis to represent the complete group with 
a 0.1-km bandwidth and the vertical axis to represent the average 𝑅./0  of 
subscribers in the same 0.1-km bin.  Again, the consistency between two groups 
can be inferred by the closeness of data points to the diagonal.  Note that unlike 
total travel distance, 𝑅./0  might be larger than 𝑅.1234565 , if CDR footprints are 
spread more widely than non-CDR ones. 
 

 
Figure 3.7 Radius of gyration (complete group) vs. average radius of gyration 
(CDR group). 
 
The effectiveness of CDRs in estimating radius of gyration is noteworthy.  First, 
For Class A, B, and C, 𝑅./0  are strongly correlated with 𝑅.1234565  (Table 3.5).  
However, both Pearson correlation coefficient and Spearman correlation 
coefficient show a significant drop of correlation in Class D, although they still 
suggest a positive correlation.  In addition, for Class D subscribers whose 𝑅.1234565 
is larger than 25 km, their average values of 𝑅./0 are often zero, or very close to 
zero.  Therefore, CDRs might significantly underestimate the radius of gyration of 
people who commute over long distance and rarely use mobile phone.  Second, 
Figure 3.7 reveals a pattern of heteroscedasticity: the range of estimated radius of 
gyration based on CDRs is supposed to be wider if one’s radius of gyration derived 
from the complete group grows.  From Class A to Class D, such pattern of  
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Table 3.5 Correlation between radius of gyration (complete group) and average 
radius of gyration (CDR group). 

Class Pearson correlation Spearman correlation 
A 0.980 0.982 
B 0.936 0.939 
C 0.860 0.882 
D 0.532 0.521 

 
heteroscedasticity turns out to be more obvious as CDRs become a smaller part 
of one’s footprints. 
 
By fitting a linear model to each class we can quantify the effectiveness of CDRs 
for estimating this mobility indicator.  The regression coefficient is very high for 
Class A and B (> 90%, see Table 3.6).  It means that CDRs could depict the range 
of daily travel very well for subscribers whose 50% or more footprints are collected 
by phone communication events.  Taking into account other non-CDR footprints 
makes very limited difference on the derived radius of gyration.  For subscribers in 
Class C, CDRs on average underestimate their radius of gyration by 22.4%.  
Depending on specific applications, this margin of error may be acceptable.  
However, the small regression coefficient (0.423) in Class D indicates that CDRs 
fail to provide a good estimate for subscribers whose fraction of CDRs is below 
25%.  Many subscribers in this group engage none, or very few phone 
communications in a day.  Others who make good use of mobile phones also travel 
a lot and leave numerous digital footprints (RU event) in the meantime.  As a result, 
those CDRs remain insufficient for deriving daily activity space. 
 
Table 3.6 Linear regression results between radius of gyration (complete group) 
and average radius of gyration (CDR group). 

Class Regression coefficient (𝛃) Level of underestimation (𝟏 − 	𝛃)% 
A 0.979 2.1% 
B 0.915 8.5% 
C 0.776 22.4% 
D 0.423 57.7% 

 

3.4.3 Movement entropy 
Movement entropy measures the heterogeneity of visitation patterns (Song et al. 
2010, Yuan et al. 2012).  It can be calculated using the following equation: 
 

𝐸 = − 𝑝L𝑙𝑜𝑔K𝑝LG
LMF     (2) 

 
where n is the number of distinct locations (i.e., cell towers) visited by subscriber 
and 𝑝L  is the probability that location 𝑖  is visited.  Mathematically, the value of 
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movement entropy grows with a more heterogeneous visitation pattern.  Consider 
the following examples: 
 

1) If a subscriber stays at a single location, 𝐸 = −(1.0×𝑙𝑜𝑔K1.0) = 0; 
2) If a subscriber visits Location A one times and Location B four times, 𝐸 =

−(0.2×𝑙𝑜𝑔K0.2	 + 	0.8×𝑙𝑜𝑔K0.8) ≈ 0.72; 
3) If a subscriber visits Location A five times and Location B five times, 𝐸 =

−(0.5×𝑙𝑜𝑔K0.5	 + 	0.5×𝑙𝑜𝑔K0.5) = 1; 
4) If a subscriber visits Location A, B, C, and D, two times each, 𝐸 =

−(0.25×𝑙𝑜𝑔K0.25	 + 	0.25×𝑙𝑜𝑔K0.25 + 0.25×𝑙𝑜𝑔K0.25 + 0.25×𝑙𝑜𝑔K0.25) = 2 .  
 
For this mobility indicator, 𝐸./0 and 𝐸.1234565 are calculated for each subscriber.  
The correlation tests all indicate a very positive correlation between 𝐸./0  and 
𝐸.1234565 (Table 3.7).  Unlike the other two selected mobility indicators, we cannot 
identify an evident pattern of heteroscedasticity when 𝐸.1234565 < 5 (Figure 3.8).  
We find that CDRs can estimate the movement entropy very well for subscribers 
in Class A given the high regression coefficient (0.925, see Table 3.8).  This 
coefficient declines for Class B and Class C, which implies that as the CDR ratio 
decreases, it is more likely that some non-CDR footprints are collected at other 
visited locations where subscribers do not engage phone communications.  This 
might be the most reasonable explanation for the low regression coefficient (0.348) 
associated with Class D.  Apparently, CDRs underestimate the movement entropy 
by far (65.2%) for subscribers in this class.  Moreover, data points in Class D 
suggest some abnormal drop of average 𝐸./0  when 𝐸.1234565 > 6 (Figure 3.8), 
which is not the case for the other three classes.  We belive that it is also caused 
by the low likelihood of making phone communications at visited locations. 
 
Table 3.7 Correlation between movement entropy (complete group) and average 
movement entropy (CDR group). 

Class Pearson correlation Spearman correlation 
A 0.998 0.999 
B 0.996 0.999 
C 0.991 0.997 
D 0.900 0.934 

 
Table 3.8 Linear regression results between movement entropy (complete group) 
and average movement entropy (CDR group). 

Class Regression coefficient (𝛃) Level of underestimation (𝟏 − 	𝛃)% 
A 0.925 7.5% 
B 0.815 18.5% 
C 0.690 31.0% 
D 0.348 65.2% 
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Figure 3.8 Movement entropy (complete group) vs. average movement entropy 
(CDR group). 
 
In this section, we evaluate the representativeness of CDRs based on mobility 
indicators that measure activity space from three aspects: distance, range, and 
heterogeneity.  We reveal some fundamental findings by answering “whether 
CDRs can provide a good estimate of individual mobility patterns”.  We learn that 
the answer is not simply yes or no.  Perhaps the question should instead be framed 
as, “how good are CDRs in providing a good estimate of individual mobility 
patterns”.  According to our analysis, the effectiveness of CDRs in individual 
mobility study depends on the research question and the mobility measure 
selected to address that question.  To estimate radius of gyration, CDRs in most 
cases are probably good enough for subscribers who 1) make at least some phone 
communications throughout the day, and 2) travel within normal daily activity range 
(e.g., less than 25 km in Shenzhen).  On the contrary, one needs to be cautious 
when using CDRs to study some problems, such as travel distance, or 
heterogeneity of human mobility.  To a large extent, the validness of analysis result 
is subject to how actively subscribers engage in phone communications.  
Therefore, in many cases we might bear the risk of underestimating mobility 
indicators of interest. 
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3.5 Collective human mobility 
Many researchers approach human mobility study from a collective perspective 
and pay more attention to data aggregated from individual level.  In this section, 
we evaluate the representativeness of CDRs from this perspective.  The analyses 
of distance decay effect urban community are selected for the evaluation process 
because they are examined by several CDR-based human mobility studies (e.g., 
González et al. 2008, Walsh and Pozdnoukhov 2011, Gao et al. 2013). 

3.5.1 Distance decay effect 
Existing studies reveal that human motion can be modeled by a Lévy flight 
(Brockmann et al. 2006), while the power law distribution of step lengths is an 
indication of distance decay effect (Liu et al. 2012, Gao et al. 2013).  The notion of 
distance decay has a close relationship with The First Law of Geography: 
“everything is related to everything else, but near things are more related than 
distant things” (Tobler 1970).  Nowadays, although in many regions, highly 
developed urban infrastructure can offer various means of transportation, human 
activity remains to be restricted by a number of factors, such as distance and 
accessibility.  Many researchers argue that the “death of distance” hypothesis is 
premature (Wang et al. 2003; Rietveld and Vickerman 2004). 
 
The massive collection of CDRs offers some new insights to validate and/or 
calibrate our understanding of the friction effect of distance.  For instance, 
González et al. (2008) and Gao et al. (2013) report distance decay parameters of 
1.75 and 1.60, respectively.  However, as discussed earlier, CDRs are generated 
only upon phone communication activities and most people do not use their mobile 
phone at all places they visit.  Therefore, displacements between CDR footprints 
can only represent movements between phone communications.  Taking 
advantages from the various event types recorded in this dataset, we are able to 
compare the distance decay effect observed from people’s phone communication 
activities with that derived from the complete set of footprints. 
 
We capture 4,992,719 displacements from the CDR group and 27,686,129 
displacements from the complete group.  Figure 3.9 shows the cumulative 
distribution function (CDF) plot of two data groups.  Both curved lines indicate that 
most displacements are short: around 90% displacements in the CDR group are 
below 5 km and roughly 90% of displacements in the complete group are under 
2.5 km.  Those displacements can be approximated by a power law distribution in 
the following form: 
 

𝑃(𝑑) ∝ 𝑑*    (3) 
 
where 𝛽 is the distance decay parameter (Gao et al. 2013).  A large value of 𝛽 
indicates that distance is a strong deterrent to interaction, whereas a small value 
of 𝛽 implies a relatively weak influence of distance. 



57 
 

 
Figure 3.9 Cumulative distribution function (CDF) of displacements. 
 
Figure 3.10 shows the probability density function (PDF) in log-log scale and the 
fitted power law distribution.  The fitted decay parameters are 𝛽F = 1.79 for the 
CDR group and 𝛽K = 1.98 for the complete group.  Note that 𝛽F is very close to 
1.75, reported by González et al. (2008), which indicates that a similar mechanism 
that drives the friction effect of distance is captured.  As what we would expect 
based on the CDF plot (Figure 3.9), 𝛽K is larger than 𝛽F given that the complete 
group captures more short-distance displacement.  For this reason, we believe that 
CDRs slightly underestimate the distance decay effect in the city.  A possible 
explanation is still relevant to the habit of mobile phone usage: most people do not 
contact others by phone or text at every visited location.  On average, 
displacements between phone calls (or text messages) are longer than those 
between consecutive locations people visit.  Although it is true that numerous long-
distance trips may be missing in the CDRs database as well, the amount of short- 
distance trips CDRs cannot “sense” could be substantially larger, which results in 
a less steep curve on the CDF plot for x < 20 km and a smaller value of decay 
parameter. 

3.5.2 Community detection 
Cell towers operated by MNOs can be considered as nodes in a huge cellular 
network.  This network is capable of measuring human interaction with space.  Like 
other types of network (e.g., social network), the network of a city often establishes 
a structure of communities, which are more tightly connected internally and 



58 
 

 
Figure 3.10 Probability density function (PDF) and the fitted power law distribution.  
The green line and red line represent the probability distribution of the 
displacements derived from the CDR group and the complete group, respectively.  
The dashed green line and the dashed red line are the fitted power law distributions 
for the CDR group and the complete group, with a decay parameter of 1.79 and 
1.98, respectively. 
 
structurally distinct from others (Girvan and Newman 2002).  Identifying 
communities can help understand the internal structure of a city, shaped by human 
interaction with environment and urban infrastructure (e.g., land use, 
transportation), as opposed to pre-defined administrative boundaries.  In recent 
years, some existing urban dynamics research detects urban communities using 
a vast amount of CDRs (e.g., Walsh and Pozdnoukhov 2011, Gao et al. 2013).  
Again, whether digital footprints that come with phone communications logs are 
biased for community detection needs to be examined due to the event-triggered 
nature of CDRs. 
 
Community detection aims to partition a network into communities that consist of 
densely connected nodes.  The quality of partition is often evaluated by modularity.  
In a weighted network, it is defined as: 
 

𝑄 = F
K2

[𝐴Le −
fgfh
K2L,e ]𝛿(𝑐L, 𝑐e)    (3) 

 
where 𝐴Le  denotes the weight of edge between two nodes 𝑖  and 𝑗 . 𝑘L = 𝐴Lee  
denotes the sum of weight of all edges towards node 𝑖.  𝑐L denotes the community 
node 𝑖 is assigned to.  𝛿(𝑐L, 𝑐e) has a value of 1 if node 𝑖 and node 𝑗 belong to the 
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same community and a value of 0 if otherwise.  𝑚 is half of the total edge weight 
in the entire network and 𝑚 = F

K
𝐴LeL,e  (Blondel et al. 2008).  Numerous algorithms 

have been proposed to improve partition quality by maximizing modularity (e.g., 
Newman 2004, Clauset et al.). 
 
Edges of a cellular network are usually weighted by the intensity of human 
interaction (i.e., volume of population flow).  Given to the size of our network 
(33,044 cell towers), we adopt the Louvain method (Blondel et al. 2008), which 
takes a heuristic approach to optimize modularity of a large network efficiently.  
Using population movement volumes among cell towers in the entire day, the 
Louvain method is applied to detect urban communities using the CDR group and 
the complete group, respectively.  As a result, we obtain optimistic community 
detection results given the high modularity scores (Table 3.9).  For visualization 
purpose, we create a Voronoi diagram based on cell tower locations and assign a 
unique color to Voronoi cells in the same community. 
 
Table 3.9 Summary of community detection results. 

Group No. of 
subscribers 

Edges No. of 
detected 

communities 

Modularity 

CDR 811,330 1,724,465 19 0.754 
Complete 1,185,383 2,707,959 21 0.809 

 
Figure 3.11 shows the 20 detected communities using data from the CDRs group.  
At the urban scale, the following findings are noteworthy: 
 

1) Natural barriers play an important role in community separation.  Two 
examples in Shanghai include the Yangtze River and the Huangpu River.  
The former separates the three islands of the Chongming County from other 
areas of Shanghai, while the latter divide Pudong and Puxi.  As suggested 
by CDRs, although bridges and ferries provide means to transport people 
from one side to another, naturally separated regions remain sparsely 
connected in terms of the intensity of human interaction. 

2) In many regions, administrative boundaries possess a similar power of 
separation as natural barriers do as the border of identified communities 
line up incredibly well with administrative boundaries.  It implies that human 
movements within administrative districts are much more intense than 
cross-boundary movements.  In other words, CDRs reveal that human 
interaction in Shanghai is largely affected by political boundaries. 

3) Communities detected in Lujiazui area and Puxi, situated at the east bank 
and west bank of the Huangpu River, cover much smaller areas than others 
communities do.  Compared with suburban districts (e.g., Jinshan, 
Songjiang, etc.), land use pattern in Lujiazui and Puxi, the most developed 
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Figure 3.11 Detected communities based on the CDR group. 
 

and most populated region in Shanghai, is highly mixed.  Therefore, typical 
activities in this region do not require long-distance travel, resulting in 
smaller activity space on a workday. 

 
By feeding data from the complete group, two more communities are identified.  
While the overall detection result well resembles the one from the CDR group in 
terms of the number of total communities and their boundaries, here we highlight 
and discuss some major differences: 
 

1) In fact, natural barriers are not a decisive factor in community separation.  
For instance, Figure 3.12 shows that Region A, on the west bank of the 
Yangtze River, is closely connected to the three islands of the Chongming 
County (Chongming, Changxing, Hengsha, see Figure 3.12).  Apparently, 
human interaction recorded in the complete group better capture population 
movement between Region A and the Changxing Island through ferries and 
a major arterial called the Changjiang Tunnel.  Serving as critical parts of 
the Shanghai Port as a whole, industries related to port businesses (e.g., 
container ports, shipyards, shipping companies) are agglomerated in 
Region A and the Changxing Island.  Region B, which covers both side of 
the Huangpu River in the south of the downtown area, presents another 
example in this case.  These two regions are connected by the Nanpu 
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Figure 3.12 Detected communities based on the complete group. 
 

Bridge, one of the main bridges over the Huangpu River.  As a result, we 
learn that regions of a city might overcome natural barrier and become 
tightly connected communities.  Unfortunately, we are not be able to 
uncover such relationship with CDRs because a large portion of people who 
travel between two naturally separated regions might not necessarily use 
their mobile devices in both regions. 

2) Similar to natural barriers, political boundaries turn out to be less important 
in community separation.  For example, with CDRs, communities in 
southern Shanghai are divided by administrative boundaries of Qingpu, 
Songjiang, Minhang, Jinshan, and Fengxian.  With the complete group, the 
community in Minhang clearly crosses the administrative boundaries.  
Similar examples can be found in other places (e.g., the communities that 
cross Qingpu and Songjiang, Minhang and Pudong, Jiading and Baoshan, 
etc.).  This finding suggests that although human interactions with space 
are more or less influenced by distinct socioeconomic environment of 
administrative districts (e.g., main industries), such influence is exaggerated 
by CDRs.  Similar to the previous finding, we speculate the main reason to 
be the biased spatial distribution of calling/texting activities.  For a large 
portion of subscribers, their primary phone communication activities might 
be limited at certain places, probably within the same administrative district. 
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3) By conducting a close visual inspection, we notice that in most cases, 
communities have clear boundaries and they are mutually exclusive: 
Voronoi cells that belong to one community seldom appear inside the 
territory of another.  However, a number of exceptions are found at different 
locations of the city (see Figure 3.13 for an example), most of which cover 
residential area with high population density.  This may be a result of home 
– work commute: a large percentage of residents travel to work outside the 
boundary of the community where their home is located, making the 
connection between the residential area and the destination community 
closer.  On the contrary, communities detected using CDRs are more 
mutually exclusive: very few Voronoi cells are found to be inside a different 
community.  This finding further confirms that CDRs can partially reflect 
intensity of human interaction in space.  Tight connections across 
immediate neighborhood cannot be detected via phone communication logs. 

 

 
Figure 3.13 Decreased level of mutual exclusiveness in community detection using 
data from the complete group.  (a) Many Voronoi cells are located outside the 
community boundary.  (b) Taking the Voronoi cell circled in the left figure as an 
example, we notice that most Voronoi cells outside the community boundary cover 
high-density residential area. 
 
In this section, we adopt a collective approach to compare digital footprints from 
the CDR group and the complete group.  Based on aggregated spatial 
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displacements, we investigate the distance decay effect and further realize how 
the limitation of CDRs could lead to biased understanding of urban dynamics.  We 
also apply a community detection algorithm to identify the spatial structure of 
Shanghai in terms of human interaction.  Although results from two datasets do 
not differ from each other by far, some major differences regarding how urban 
areas are separated by human interactions, such as those discussed in Section 
3.5.2, cannot be ignored.  Hence, we come up with a conclusion that from the 
collective perspective, urban dynamics patterns we uncover using CDRs might 
also be biased and aggregating data from individual level does not help address 
such bias. 
 

3.6 Conclusions and Discussions 
CDRs have been considered as an attractive data source in human mobility 
research.  However, given the uneven distribution of people’s communication 
activities in space and time, should we fully trust CDRs under all circumstances?  
This study takes the first step to understand the bias of CDRs in human mobility 
research.  According to our evaluation, it is not realistic to simply answer this 
question with a yes or a no.  First, it depends on what research question we aim 
to answer and the way we address it.  For instance, CDRs tend to underestimate 
mobility indicators such as total travel distance and movement entropy.  On the 
contrary, for certain problems that involve individual activity range, CDRs may be 
able to provide a decent estimate.  Second, the effectiveness of CDRs is closely 
related to the habit of mobile phone usage.  How frequently one uses mobile device 
to contact others, when and where those communications occur, largely 
determines the representativeness of his/her CDRs to the true mobility 
characteristics.  In summary, we believe the event-triggered nature of CDRs does 
introduce certain degree of bias in human mobility research and we suggest people 
use caution in future research. 
 
It should be noted that we do not attempt to deny the usefulness of CDRs in human 
mobility research.  We may just have been excessively optimistic in the past.  At 
present, CDRs remain one of the most useful data sources given large data 
volume and low cost in data collection and storage.  Mining CDRs based on 
appropriate analysis techniques is still promising in academic research and real-
world business.  Thus, realizing potential problems of CDRs is more realistic than 
complete abandonment.  Perhaps including some discussions of possible biases 
can be the first step.  Next, it is worth thinking about possible ways to 
reduce/correct those biases if CDRs are the only available data source.  For 
instance, interpolating CDR footprints can be one direction.  It may help generate 
a more accurate estimate of certain mobility indicators, such as total travel distance.  
Applying post-hoc corrections is also a promising workaround.  In Section 3.4 of 
this paper, we use linear regression to assess how much CDRs underestimate 
certain mobility indicators.  The regression coefficient can be used to adjust 



64 
 

mobility indicator of interest.  For instance, if we already know CDRs usually 
underestimate movement entropy of people who rarely use mobile phones by 50%, 
doubling the value of movement entropy derived from CDRs probably can yield a 
more accurate estimate.  Nonetheless, our findings may be applicable in other 
cities due to different urban environment (e.g., socioeconomic status, 
transportation) and habits of mobile phone usage.  A thorough understanding of 
local mobile phone usage patterns is necessary for post-hoc correction. 
 
This paper only reveals the tip of the iceberg.  Further research can be followed 
up to evaluate other approaches/methods we usually apply to analyze CDRs, in a 
more systematic way.  A knowledge base that summarizes the effectiveness of 
CDRs under different scenarios can benefit future study.  In the meantime, perhaps 
it is a good idea to rethink of existing findings the research community has come 
up with so far. 
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Chapter 4  
 

Extract and compare generalized population movement patterns 
derived from different tracking datasets using a revised 
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Abstract 
Understanding dynamic urban population movement patterns can benefit a variety 
of applications.  In the past decade, researchers have been using tracking data 
collected by different means to better understand urban dynamics.  Nowadays, 
lack of data is no longer the case in many developed regions.  Instead, to answer 
a particular research question, we may have more than one tracking dataset and 
each of them reflects urban dynamics from a unique angle.  This represents a new 
challenge in the big data era.  In this paper, we aim to compare generalized urban 
population movement patterns of a big city in China, based on three tracking 
datasets: subway smartcard data, actively tracked mobile phone location data, and 
call detail record data.  To effectively extract generalized population movement 
patterns, we propose a revised hierarchical clustering algorithm based on an 
existing publication.  This revised algorithm groups OD flows in terms of their 
proximity distance and flow similarity.  Results are discussed from three aspects: 
1) we summarize urban population movement patterns revealed by three tracking 
datasets; 2) we demonstrate how each dataset differs from others and reveals 
urban population movement patterns from its unique perspective; 3) by combining 
conclusions from 1) and 2) and the characteristics of these datasets, we discuss 
their pros and cons in population movement analysis. 
 

4.1 Introduction 
Understanding dynamic urban population movement patterns can benefit a variety 
of applications, such as selecting locations for business and designing new routes 
for public transportation.  Traditionally, researchers rely on travel surveys to study 
urban population movement (e.g., Crane and Crepeau 1998, Schlich and 
Axhausen 2003).  In the past couple of decades, rapidly advancing information 
and communication technologies (ICT) have facilitated massive collection of digital 
footprints via various means, such as GPS-enabled devices (Zheng et al. 2008), 
social media (Batty 2010), at relatively low costs.  Mobile phone location data have 
also drawn extensive attention in recent years due to the pervasive use of mobile 
phones (Ratti et al. 2006, Candia et al. 2008).  Perhaps the most prominent feature 
of these datasets is the unprecedented scale.  It offers the research community 
new opportunities to better understand population movement in a city. 
 
Today, lack of data is no longer a problem in most developed regions.  Instead, to 
answer a particular research question, we may have more than one tracking 
dataset and each of them reflects urban dynamics from a unique angle.  In many 
cases, multiple tracking datasets collected in the same study area can tell different 
stories.  As pointed out by Liu et al. (2015), such representativeness issue has 
become a top research priority in the big data era.  It requires people to have a 
more thorough understanding of all available datasets in order to select the most 
appropriate one.  This paper aims to extract and compare generalized urban 
population movement patterns of Shenzhen, a major city in southern China, based 
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on three tracking datasets: subway smartcard data, actively tracked mobile phone 
location data (we call it active phone tracking data in the remainder of this paper), 
and call detail record (CDR) data.   
 
One fundamental challenge of visualizing and understanding movement data is 
the overlapping and cluttering issue (Andrienko and Andrienko 2010).  Figure 4.1 
shows 10% of the OD pairs derived from the active phone tracking data during 7-
8 AM of a workday in Shenzhen.  OD flows often overlap with each other to such 
an extent that one can hardly draw any meaningful conclusion.  To effectively 
extract generalized population movement patterns, we propose a revised 
hierarchical clustering algorithm based on an existing publication (Guo 2009).  This 
revised algorithm groups OD flows in terms of their proximity distance and flow 
similarity. 
 

 
Figure 4.1 10% of the OD pairs among 5,952 cell towers during 7-8 AM of a 
workday in Shenzhen, China. 
 
We then apply the proposed hierarchical clustering algorithm on each of the three 
datasets.  Results are discussed from three aspects: 1) we summarize urban 
population movement patterns in two selected time periods, revealed by all three 
tracking datasets; 2) we illustrate similar and different population movement 
patterns uncovered from these three datasets; 3) we discuss the pros and cons of 
these three datasets based on their unique characteristics for population 
movement analysis. 
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4.2 Relevant research 
This section discusses selected relevant research in the following two areas: 1) 
big tracking data and urban dynamics, and 2) flow data aggregation and clustering. 

4.2.1 Big tracking data and urban dynamics 
Rapid development of ICT has facilitated massive collection of digital footprints.  It 
provides many opportunities in urban dynamics studies in terms of validating 
existing knowledge and discovering new insights. 
 
Taxi trajectories collected by GPS have been considered as a valuable source for 
research of taxi drivers’ behaviors and taxi trip patterns such as differences of 
“mobility intelligence” between top drivers and ordinary drivers (Liu et al. 2009a), 
distribution of trip direction and trip distance (Liu et al. 2012a), etc.  Some studies 
focus on urban transportation environment reflected by taxi tracking data, such as 
distribution of pick-up and drop-off locations (Veloso et al. 2011) and “source-sink 
areas” (Liu et al. 2012b), identification of critical network locations (Fang et al. 2012, 
Zhou et al. 2015), and so forth. 
 
Passenger trips recorded by public transit smartcards, which are originally 
designed as an alternative way of fare collection, also provide useful information 
of urban population movement (Pelletier et al. 2011).  The majority of smartcard 
data research can be grouped into the following categories: 1) passenger 
behaviors such as number of transfers and trip durations (Park et al. 2008), 
variability of travel patterns (Morency et al. 2006), user group classification (Agard 
et al. 2006), and potential interactions (Sun et al. 2013); 2) current status of transit 
network (Liu et al. 2009b, Jang 2010); 3) analysis of dynamic urban system, such 
as job-housing relationships (Long and Thill 2015) and 4) future public transit 
planning (Utsunomiya et al. 2006). 
 
Social media data are playing an increasingly important role in urban dynamics 
studies.  Recorded digital footprints, such as location-based check-ins and geo-
tagged tweets or photos, can be used to characterize individual or collective 
human mobility patterns (Preoţiuc-Pietro and Cohn 2013, Hasan et al. 2013, 
Azmandian et al. 2013).  Many researchers consider users of social media as 
“sensors” in the socioeconomic environment (Goodchild 2007, Sagl et al. 2012, 
Liu et al. 2015).  Besides monitoring the pulse of the city, those sensors are 
capable of distinguishing big social events (Lee and Sumiya 2010) or disasters 
(Sakaki et al. 2010). 
 
In recent years, data collected from pervasive use of mobile devices has provided 
new insights in human mobility research (Ratti et al. 2006).  Compared with other 
types of trajectory data discussed earlier, the scale of digital footprints in mobile 
phone location data is unprecedented.  Most existing studies that analyze mobile 
phone location data are based on CDRs, which are originally used for billing 
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purposes.  The main body of literature adopts an individual-based perspective and 
analyzes individual travel behavior based on CDR data (Gonzales et al. 2008, 
Song et al. 2010, Yuan et al. 2012, Gao et al. 2013, Xu et al. 2015).  Others take 
a collective approach and focuses on aggregate mobility patterns in different urban 
areas (Girardin et al. 2009, Calabrese et al. 2011, Becker et al. 2013).  However, 
one needs to be aware that CDRs are generated upon mobile phone usage.  Each 
subscriber’s location is recorded when he/she makes/receives a phone call or 
sends/receives a text message at the (x, y) coordinates of a nearby cell tower that 
handles the communication.  In other words, a subscriber’s locations are not 
recorded when his/her phone is not in use.  Hence, depending on how actively one 
engages in phone communication activities, the number of recorded footprints of 
the same user in a day or among different users can vary drastically.  Subscribers 
without any phone usage in a day are literally invisible in CDRs during that day.  
Furthermore, CDR data often reflect where people engage in phone 
communications rather than where they carry out various activities.   
 
In the big data era, to address a specific problem, researchers and urban planners 
often face choices among multiple datasets.  Given the unique properties of each 
dataset in terms of how digital footprints are generated, selecting appropriate data 
to answer different research questions has become a new and critical challenge in 
the big data era. 

4.2.2 Flow data aggregation and clustering 
Visualizing flows derived from migration data has been a challenging topic (Tobler 
1976, Tobler 1987, Shaw et al. 2008, Guo 2009).  In urban dynamics research, it 
becomes more difficult due to the vast amount of OD pairs in the city.  Some widely 
adopted workarounds, such as filtering out minor flows (Tobler 1987), drawing OD 
flows with curved lines (Wheeler 2015), or sorting flows by volume and drawing 
them in an ascending order (Wood et al. 2011), can yield limited improvement.  
Reduction of dimension, which transforms OD flows to local in-flow/out-flow 
numbers, might be sufficient to uncover distinct mobility patterns at different urban 
locations (Guo et al. 2012).  Flowstrates (Boyandin et al. 2011) also scarifies the 
spatial layout of OD flow by placing origins and destinations on two separate maps 
side by side.  A heatmap view in the middle is used to illustrate varying flow volume 
on a particular OD pair.  To preserve spatial layout, a useful approach is flow 
aggregation (Andrienko and Andrienko 2010).  For instance, Andrienko and 
Andrienko (2011) develop a method that extracts key points from trajectories and 
groups them to a smaller set of locations using a point-based clustering algorithm.  
After that, original flows can be transformed into movements among those 
locations.  A major shortcoming of this approach is that we lose median and long 
distance flows since they are all split to shorter ones.  Inspired by graph theories, 
some researchers develop edge bundling processes, which merge nearby edges 
(flows) together (Cui et al. 2008, Holten and van Wijk 2009). 
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Different from point aggregation and edge bundling, Zhu and Guo (2014) develop 
a hierarchical clustering approach to cluster taxi flows in Shenzhen.  This approach 
merges OD flows in terms of shared origins and destinations and progressively 
reduces the number of existing flows.  It consists of the following steps: 
 

1) Find k-nearest neighbors of each origin and each destination. 
2) Identify neighboring flows {𝑞L}, for each flow 𝑝.  𝑂3, 𝐷3, 𝑂o and 𝐷o are used 

to denote the origin and the destination of 𝑝 , and the origin and the 
destination of 𝑞 .  In addition, 𝐾𝑁𝑁(𝑂3, 𝑘), 𝐾𝑁𝑁(𝐷3, 𝑘), 𝐾𝑁𝑁(𝑂o, 𝑘), and 
𝐾𝑁𝑁(𝐷o, 𝑘)  denote the k-nearest neighbors of 𝑂3 , 𝐷3 , 𝑂o , and 𝐷o , 
respectively.  For each 𝑞, to be qualified as a neighboring flow of 𝑝, the 
intersection of 𝐾𝑁𝑁(𝑂o, 𝑘)  and 𝐾𝑁𝑁(𝑂3, 𝑘) , and the intersection of 
𝐾𝑁𝑁(𝐷o, 𝑘) and 𝐾𝑁𝑁(𝐷3, 𝑘) should not be null. 

3) Calculate the proximity distance between each pair of neighboring flows 
using the following equation: 

 
𝑑𝑖𝑠𝑡3(𝑝, 𝑞) = 1– tuu(vw,f)∩tuu(vy,f)

f
× tuu(zw,f)∩tuu(zy,f)

f
 (1) 

 
where 𝐾𝑁𝑁(𝑂3, 𝑘) ∩ 𝐾𝑁𝑁(𝑂o, 𝑘)  and 𝐾𝑁𝑁(𝐷3, 𝑘) ∩ 𝐾𝑁𝑁(𝐷o, 𝑘)  denote 
the number of shared nodes between 𝐾𝑁𝑁(𝑂3, 𝑘) and 𝐾𝑁𝑁(𝑂o, 𝑘), and the 
number of shared nodes between 𝐾𝑁𝑁(𝐷3, 𝑘) and 𝐾𝑁𝑁(𝐷o, 𝑘).  If 𝑝 and 𝑞 
share exactly the same neighbors, 𝑑𝑖𝑠𝑡3(𝑝, 𝑞) = 0.  On the other hand, if no 
common neighbor is identified for either origins or destinations, 𝑑𝑖𝑠𝑡3(𝑝, 𝑞) 
= 1.  Otherwise, 𝑑𝑖𝑠𝑡3(𝑝, 𝑞) ∈ (0,1). 

4) Sort all 𝑛 pairs neighboring flows in an ascending order by their proximity 
distance.  The result of this step is an ordered list of neighboring flows. 

5) Mark each OD flow as an independent cluster.  This step creates 𝑛 initial 
clusters. 

6) Cycle through each neighboring flows, in the list generated in Step 4.  If two 
flows are already in the same cluster, move on and process the next pair of 
neighboring flows.  Otherwise, calculate the distance between the two 
clusters they belong to and merge the two clusters if their proximity distance 
is less than 1.  The proximity distance between two clusters equals the 
proximity distance of the median flow of each cluster.  If a cluster has only 
one flow, this flow is the median flow.  Otherwise, the median flow is the 
one that is closest to the geometric center of the cluster. 

 
This hierarchical clustering method is effective in revealing high-level population 
movement patterns from a vast amount of OD flows (e.g., taxi OD flows).  Each 
OD flow participates in this process so information loss is controlled.  However, it 
is not suitable for datasets used in this study.  In the next section, we present the 
reasons and a revised hierarchical clustering method. 
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4.3 Method 
Each OD flow in the taxi tracking data is unique (i.e., flow volume is 1) and both 
origin and destination are unique.  However, this is very different from OD flows in 
this study, which are among a set of fixed facilities with varying sizes of population.  
The original hierarchical clustering method does not work in this case for the 
following two reasons: 1) the location of origins and destinations determines the 
clustering results and population size is completely ignored; and 2) distance 
between any two flows is determined by the proximity distance only and the 
characteristics of OD pairs are not considered.  To address these issues, this 
paper proposes some revisions to the hierarchical clustering method such that it 
can better handle dynamic OD flows among a fixed set of facilities. 

4.3.1 A revised hierarchical clustering algorithm 
Figure 4.2 shows an example of six OD flows.  It is evident that Flow 1 and Flow 2 
are mainly movements during the morning rush hours, while Flow 3 and Flow 4 
reflect movements mostly during the evening rush hours.  On the contrary, 
population movements of Flow 5 and Flow 6 do not vary much in the day.  These 
six OD flows suggest that varying population size throughout a day represents an 
important property of OD flows since it is closely related to aggregate 
spatiotemporal patterns of human dynamics. 
 

 
Figure 4.2 An example of six OD flows of population movements.  Flow 1 and Flow 
2 both peak during the morning rush hours, while Flow 3 and Flow 4 have their 
peaks during the afternoon rush hours.  Flow 5 and Flow 6, on the other hand, 
remain relatively consistent throughout the day. 
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We take the varying population size into account and propose two major revisions 
to overcome the limitations of the original hierarchical clustering algorithm. 
 

1) Distance measure: 
With the revised clustering algorithm, proximity distance is calibrated by flow 
similarity, which represents how similar the population size of two OD flows 
varies over time.  The calibrated distance between Flow 𝑝 and Flow 𝑞 is 
given by the following equation: 

 

𝑑𝑖𝑠𝑡(𝑝, 𝑞) =
1

𝑑𝑖𝑠𝑡3(𝑝, 𝑞)×𝑑𝑖𝑠𝑡|(𝑝, 𝑞)				
𝑖𝑓	𝑑𝑖𝑠𝑡3(𝑝, 𝑞) = 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 
where 𝑑𝑖𝑠𝑡3(𝑝, 𝑞) is the proximity between 𝑝 and 𝑞 (see Equation 1) and 
𝑑𝑖𝑠𝑡|(𝑝, 𝑞) is their flow similarity.  The implication of Equation 2 is twofold:  

 
a. The proximity distance is still one of the deciding factors.  If two OD flows 

are not close to each other (i.e., they do not share k-nearest origins and 
k-nearest destinations), 𝑑𝑖𝑠𝑡(𝑝, 𝑞) = 1.  In other words, we do not adjust 
the distance between two OD flows if they are not geographically 
proximate. 

 
b. If two OD flows are geographically proximate (𝑑𝑖𝑠𝑡3(𝑝, 𝑞) < 1), their 

distance is then adjusted by flow similarity, measured by their daily 
variations of population size.  As discussed earlier, daily variation of 
population size reflects the dynamics of human mobility.  OD flows with 
similar temporal population size variation patterns should receive a 
higher priority to be merged in the clustering process. 

 
Flow similarity is calculated by the following equation: 

 
𝑑𝑖𝑠𝑡|(𝑝, 𝑞) =

�wy×(�F)��
��F

 (3) 
 

where 𝜌3o is the Pearson correlation coefficient that ranges from -1 to 1 (i.e., 
from perfect negative correlation to perfect positive correlation).  Since we 
aim to reduce the distance between flows with similar population size 
variation pattern, 𝜌3o  is multiplied by -1 in Equation 3.  𝑥 is a factor that 
controls the influence that flow similarity has on the adjusted distance and 
𝑥 ∈ (1,∞) .  To make 𝑑𝑖𝑠𝑡(𝑝, 𝑞)  positive and meaningful, 𝑥  needs to be 
greater than 1.  Therefore, even if 𝜌3o = 1, 𝑑𝑖𝑠𝑡|(𝑝, 𝑞) is still larger than 0.  
In general, a smaller 𝑥 shortens the adjusted distance more significantly, 
whereas a larger 𝑥 has a more limited influence.  For example, if 𝑥 = 3.0, 
𝑑𝑖𝑠𝑡|(𝑝, 𝑞) ∈ [0.5, 1], which indicates that the distance between neighboring 
flows 𝑝  and 𝑞  can be shortened by 50% if their flow volume variation 
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patterns match perfectly (i.e., 𝜌3o	= 1).  Hence, the distance between 𝑝 and 
𝑞 is reduced by half so they can get merged at an earlier stage.  In other 
words, they are less likely to be assigned to different clusters.  If 𝑥 = 9.0, 
𝑑𝑖𝑠𝑡|(𝑝, 𝑞) ranges from 0.8 to 1.0, implying a less impact of flow similarity 
on adjusted distance.  Theoretically, the value of 𝑥 can be positive infinity.  
However, when x keeps increasing, 𝑑𝑖𝑠𝑡|(𝑝, 𝑞)  approximates 1 and 
becomes less and less powerful in adjusting the proximity distance between 
𝑝 and 𝑞.  Note that Equation 2 is the same as Equation 1 in the extreme 
case (i.e., 𝑥 → ∞). 

 
2) Cluster merging criteria 

After all neighboring flows are identified and the distances between them 
are calculated, individual flow clusters can be merged progressively to 
produce generalized flows.  The original clustering algorithm looks for the 
median flow – the geometric center of the cluster – and uses this median 
flow to compute the distance between two clusters.  Nevertheless, this 
approach does not take the population size into account.  In reality, OD 
flows with higher population size (e.g., major arterials) play a more 
important role in a cluster than those with less population.  In this study, 
instead of identifying the geometric center, the revised algorithm looks for 
the OD flow that is closest to the population-weighted center, and considers 
it as the center of the cluster. 

4.3.2 Sensitivity analysis of k 
Apparently, k is the most critical component in this hierarchical clustering algorithm.  
With a larger value of k, each OD flow is more likely to have more neighboring 
flows.  This further implies a more thorough cluster merging process and thus a 
smaller number of final clusters. 
 
In this section, we examine the influence of k by comparing the clustering 
outcomes under different settings of k, using 8,224 subway OD flows among 118 
stations during 6-7 PM as an example.  We run the revised hierarchical clustering 
by setting the k at 6, 8, and 10, respectively, and then examine the influence of k 
on the number of neighboring flows, neighbor search runtime, cluster merge 
runtime, and final number of clusters (Table 4.1).  It indicates that when k is set to 
a larger value, the number of neighboring flows that can be identified increases 
considerably.  As a result, the runtime for searching and merging neighboring flows 
becomes much more demanding.  For instance, when k is set at 10, the neighbor 
search runtime and the cluster merge runtime grow to 86.65 seconds and 507.59 
seconds.  Compared with the runtime when k=6 (i.e., 31.40 seconds and 85.23 
seconds), the computational intensity is escalated significantly.  It is evident that 
the relationship between k and total runtime is not linear.  Also, the final number of 
clusters decreases accordingly with a larger k. 
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Table 4.1 Influence of k on the number of neighboring flows, the neighbor search 
runtime, the cluster merge runtime, and the number of clusters. 

k Number of 
neighboring 

flows 

Runtime: 
neighbor 
search 

(seconds) 

Runtime: 
cluster merge 

(seconds) 

Number of 
clusters 

6 213,642 31.40 85.23 126 
8 379,066 55.56 217.49 58 

10 592,297 86.65 507.59 41 
 
Figure 4.3 demonstrates the clustering results (k is set at 6, 8, and 10, respectively).  
In general, the revealed patterns are similar as indicated by major directions of 
population movements (see red circles).  The main difference is the level of 
generalization.  With k=6, although the population flow pattern revealed by 126 
clusters (see Figure 4.3a) is already a high-level generalization of the original 
8,224 OD flows, it is still somewhat challenging to differentiate smaller clusters due 
to slight overlapping issue.  Setting k at 8 overcomes this problem since numerous 
smaller clusters are merged (Figure 4.3b).  Figure 4.3c indicates that even more 
clusters are merged when k is set at 10.  The population movement patterns 
become further generalized. 
 
This section examines the influence of k in the revised hierarchical clustering 
algorithm.  We learn that the setting of k has a large impact on computational 
intensity.  From the perspective of derived population movement patterns, k 
controls the level of generalization effectively.  It is worth noting that, although a 
large k leads to more generalized and understandable population movement 
patterns, we may risk missing local details as subtle clusters are merged to larger 
ones.  It is wise to adjust k with different values in order to find the optimal balance 
between the level of generalization and the level of details. 

4.3.3 Two-step hierarchical clustering 
In the previous section we learn that hierarchical clustering is computationally 
intensive especially with an increasing k value.  Computational intensity becomes 
a critical challenge when dealing with a network with thousands of nodes.  For 
example, the active phone tracking data used in this study consist of 5,055,870 
individuals moving among 726,119 OD pairs during 6-7 PM.  When k is set at 10, 
the number of neighboring flows is 15,097,223 and the final number of clusters 
(81,641) remains very large.  It takes almost one day to process this volume of OD 
flows with k=10, yet the level of generalization is still far from satisfactory.  Although 
setting k at a larger value (e.g., 100) can help generate a more generalized and 
understandable result, it cannot be completed within a reasonable amount of time. 
 
To overcome this computational issue (i.e., non-linear relationship between k and 
total runtime), we introduce a two-step clustering approach as a workaround.  The 



79 
 

 
Figure 4.3 Subway flow clusters using different values of k.  a) k=6 (126 clusters); 
b) k=8 (58 clusters); and c) k=10 (41 clusters). 
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concept of this approach is straightforward: we first use a small value of k to cluster 
the original OD flows with an acceptable computation time, and then apply a large 
value of k to produce a more generalized population movement pattern.  The first 
step reduces the number of OD flows considerably and makes the second step – 
a more thorough clustering with a large k – feasible.  Figure 4.4 displays the two-
step clustering outcome for the subway OD flows during 6-7 PM.  In this example, 
we use k=3 and k=8 respectively for the first step and the second step.  The result 
indicates that, except for some slight differences, the population flow pattern 
revealed using the two-step clustering approach is very similar to that from the 
one-step clustering with k=10 (see Figure 4.3c).  Major population clusters that 
emanate from the south to the north, and those move across the lower three 
districts are evident.  In terms of efficiency, the total runtime reduces from 594.24 
seconds to 24.09 seconds. 
 

 
Figure 4.4 Subway flow clusters during 6-7 PM using the two-step hierarchical 
clustering (step 1: k=3; step 2: k=8; total number of clusters: 54). 
 
The one-step hierarchical clustering approach is always preferred unless it 
becomes too computational expensive.  In this case, the two-step flow clustering 
approach can help overcome the computational intensity issue.  This approach is 
proved to be an effective workaround to group OD flows in a large network.  In this 
study, we use this method to handle the active phone tracking data. 
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4.4 Compare generalized urban population movement patterns in 
Shenzhen 
In this section, we apply the revised hierarchical clustering algorithm to extract and 
compare urban population movement patterns derived from the three different 
tracking datasets. 

4.4.1 Study area and the datasets 
The study area is Shenzhen, a major city in southern China located across the 
border from Hong Kong.  After being designated as the first Special Economic 
Zone (SEZ) of China in 1980, its economy has been growing rapidly.  Shenzhen 
is well known as a city of immigrants as it is the base of many manufacturing 
industries.  Its population includes over 10 million permanent residents (see 
Gazette of the People’s Government of Shenzhen Municipality 2012), most of who 
moved to Shenzhen during the last few decades, plus a substantial size of 
immigrants. 
 
Shenzhen consists of six administrative districts (Figure 4.5).  Longgang and 
Baoan, located in northern Shenzhen, are mainly for manufacturing industries.  In 
the southeastern region of Shenzhen is Yantian, where a major port and many 
coastal resorts are located.  The other three districts in southern Shenzhen 
(Nanshan, Futian, and Luohu) are known as the most economically developed 
parts of the city.  Nanshan is a district designated to education and advanced 
technologies, while Futian and Luohu focus more on financial and other tertiary 
industries. 
 
The subway smartcard data, the active phone tracking data, and the CDRs data 
are collected in October 2011, March 2012, and June 2011, respectively.  All of 
them are generated on Friday.  Although they are not the same Friday, we consider 
the overall urban dynamics do not change too much given the short interval. 
 
As discussed in Section 4.2, the number of records associated with each 
subscriber varies significantly in a CDR dataset, depending on how actively a 
person engages in phone communications.  To derive hourly population OD flows, 
we need to have a certain level of confidence that each trip occurs within a 
particular one-hour time window.  For this reason, we process population OD flows 
using the following standard: assume a person leaves a footprint at cell tower 𝑐F 
at time 𝑡F and the next footprint is collected at cell tower 𝑐K at time 𝑡K.  If 𝑐F and 𝑐K 
are different and 𝑡K is within one hour from 𝑡F, we consider this person moves from 
𝑐F to 𝑐K during the one-hour time period.  We exclude the trips of longer than one 
hour and focus on hourly population OD flows only in this study. 
 
The active phone tracking dataset is similar to the CDR dataset in the sense that 
a subscriber’s locations are recorded at the (x, y) coordinates of a nearby cell tower.  
However, individual footprints in the active phone tracking dataset are collected 
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Figure 4.5 a) Shenzhen and its six administrative districts; b) Locations of all 
subway stations; c) Locations of all cell towers in the active phone tracking data; 
d) Locations of all cell towers in the CDR data. 
 
every hour unless the mobile phone is powered off.  This feature allows us to derive 
large-scale, hourly population OD flows in Shenzhen. 
 
The smartcard dataset includes all subway trips made on a Friday among 118 
subway stations.  Each record contains a card ID, a timestamp, a ticket machine 
ID, and a transaction code, which indicates if a person enters or leaves a station.  
Aggregated one-hour population OD flows are computed using the same 
procedures we process the CDR data: a trip between station 𝑠F and 𝑠K is counted 
if the trip duration (𝑡K − 𝑡F) is less than one hour and this trip is considered to occur 
in the one-hour time period that starts at 𝑡F. 

4.4.2 Results 
Due to the space limit, we cannot present and discuss clustering results for each 
one-hour time period.  Therefore, we select two representative ones: 1) 7–8 AM, 
a morning rush hour; and 2) 6–7 PM, an evening rush hour. 
 
Table 4.2 lists some basic OD flow information regarding the total flow volume (i.e., 
population size) and the number of OD pairs.  It is worth noting that the number of 
facilities (i.e., cell towers or subway stations) ranges from 118 to 5,952.  This 
results in very large differences in the number of OD pairs.  To produce flow 
clusters in a comparable degree of generalization, different values of k are 
necessary.  We set k at 10 and 50 for the subway smartcard data and the CDR  
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Table 4.2 Summary of population OD flows of the three tracking datasets. 
 Subway smartcard CDRs Active phone tracking 

No. of Facility 118 3,015 5,952 
Time Period Volume OD Pairs Volume OD Pairs Volume OD Pairs 

7–8 AM 76,775 7,196 8,508 5,379 5,075,696 750,408 
6–7 PM 141,502 8,224 80,810 13,363 5,055,870 726,119 

 
data, respectively.  Given the large number of OD pairs derived from the active 
phone tracking data, we apply the two-step flow clustering method by setting k at 
10 in the first step and 50 in the second step in order to overcome the 
computational intensity issue. 
 
We apply the revised hierarchical clustering algorithm for the two selected time 
periods of each dataset.  The 𝑥 parameter, which controls the influence that flow 
similarity has when adjusting their proximity distance (see Equation 3), is set as 
3.0.  We present and discuss clustering results in Sections 4.4.2.1 and 4.4.2.2. 
 
4.4.2.1 Morning rush hour (7–8 AM) 
Figure 4.6a demonstrates the subway flow clusters.  During the time period of 7-8 
AM, it is evident that most major flow clusters move towards the lower three 
districts in southern Shenzhen, including the base of many high-tech companies 
and research institutes in Nanshan and two major CBDs in Futian and in western 
Luohu.  This illustrates the importance of these locations in attracting people from 
other regions and forming the distinct urban dynamics during the morning rush 
hour.  In addition, there are some small clusters going from the south to the north, 
where many factories are located. 
 
Based on the clustering results of the active phone tracking data, we can also 
observe evident flow clusters moving to Nanshan, Futian, and western Luohu.  
Nevertheless, the overall pattern is somewhat different from the subway flow 
clusters due to the characteristics of recorded movements in these datasets.  
Figure 4.6b indicates that all dominant flow clusters represent short-range 
movements, most of which are less than 2 km.  These short-distance movements 
exist in a variety of urban areas, which suggests short-range home-to-work 
commutes do not concentrate in particular regions.  Compared with results in 
Figure 4.6b, clusters derived from longer trips (≥ 5𝑘𝑚) in the active phone tracking 
data illustrate the urban-scale population movement patterns more clearly since 
OD flows that are shorter than 5 km are removed (Figure 4.6c).  Many large flow 
clusters move towards the lower three districts in the morning rush hour from 
different directions.  In addition, it also suggests massive population movements 
in areas where existing subway services do not cover, such as a major expressway 
in western Shenzhen. 
 
For the CDR data, the result indicates that all of them are very short local clusters 
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Figure 4.6 Hierarchical clustering results of the morning rush hour (7–8 AM) based 
on: a) subway smartcard data; b) active phone tracking data; c) active phone 
tracking data (trip distance ≥ 5𝑘𝑚); and d) CDR data.  Note that 1) darker color 
represents a larger volume, and 2) to improve readability, very small OD flows 
which are not merged to main clusters are not displayed. 
 
 (Figure 4.6d).  This makes sense because not too many people contact others 
during the morning rush hour (see Table 4.2).  It is also interesting to observe that 
most people who use their mobile phones do not make long travels between phone 
communication activities. 
 
In addition to visual inspection, we quantitatively evaluate movement directions of 
flow clusters in each administrative district.  We define movement intensity of a 
direction as the product of the number of people (cluster size) heading that 
direction and their trip distance (length of cluster).  The results are represented on 
a polar plot and directions are aggregated every 45 degrees (i.e., north, northeast, 
east, southeast, south, southwest, west, and northwest, see Figure 4.7).  In 
general, for the subway smartcard data, prevailing movement directions in each 
district conform to the layout of tracks in that district.  For instance, the majority of 
subway passengers in Longgang move towards the southwest direction to the 
lower three districts during 7–8 AM, while most Luohu passengers take westbound  
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Figure 4.7 Flow direction distribution by administrative districts (7–8 AM). 
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trains to Futian and Nanshan.  In the lower three districts where subway access is 
widely available, general movement directions suggested by the active phone 
tracking data do not deviate much from those derived from the subway smartcard 
data, whereas in Baoan and Longgang, clusters derived from these two datasets 
do not indicate similar trends of movement.  Given the limited coverage of subway 
service, the subway smartcard data may underrepresent population movements in 
these two districts.  The direction distribution of the CDR clusters appears to be 
more sporadic.  Compared with the other two datasets, it does not reveal similar 
movement trend except the eastbound and westbound patterns in Futian. 
 
4.2.2.2 The evening rush hour (6–7 PM) 
Table 4.2 indicates that the subway system transports twice as many passengers 
during the evening rush hour of 6-7 PM than it does during the morning rush hour 
of 7-8 AM.  The flow clustering results (Figure 4.8a) suggest that major flow 
clusters move in reversed directions (i.e., from the south to the north).  This is a 
sign of work-to-home commutes.  On the other hand, significant population 
movements across the lower three districts are also obvious.  Our speculation is 
that a lot of people stay in this region after work for other activities, such as dinner 
and entertainment, due to the attractions in this region. 
 
For the active phone tracking data, the population movement patterns in areas with 
subway service match well with the subway flow patterns, as suggested by the 
large number of south-to-north clusters and those across the southern region 
(Figure 4.8b).  Clusters derived from longer trips (≥ 5𝑘𝑚) in the active phone 
tracking dataset implies a more intense northward pattern, as we can see from the 
number of large flow clusters emanated from the lower three districts (Figure 4.8c).  
The result also indicates that many people use a major expressway in west 
Shenzhen. 
 
For the CDR data, we do see more flow clusters in southwestern Shenzhen, which 
indicate people who use mobile phones and travel are mostly located in the more 
economically developed regions (Figure 4.8d).  Again, this may be a sign of people 
staying in this region after work for other activities.  However, it is difficult to 
uncover much useful information regarding urban-scale population movements 
due to the limitation of CDRs. 
 
Distribution of movement direction further suggests some similarities and 
differences of three datasets (Figure 4.9).  We notice that in many districts, the 
intensity values of the CDR clusters during 6–7 PM far exceed those in the morning 
rush hour, which comes from the fact that much more people engage in phone 
communication at 6–7 PM (except Yantian).  Prevailing directions of CDR trips can 
be observed in Futian, Luohu, and Yantian, while this is not the case in other 
districts.  According to subway flow clusters, certain direction(s) of movements are 
dominant in most districts.  Major movement towards those directions are mostly  
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Figure 4.8 Hierarchical clustering results for the evening rush hour (6–7 PM) based 
on: a) subway smartcard data, b) active phone tracking data, c) active phone 
tracking data (trip distance ≥ 5𝑘𝑚), and d) CDR data. 
 
supported by clusters derived from the active phone tracking data, while the latter 
also reveals other directions of movement that cannot be captured by the 
smartcard data. 

4.4.3 Discussions 
We believe that the clustering results are closely related to the characteristics of 
each dataset.  The subway smartcard dataset records the origin and destination 
of each trip.  Flow clusters based on this dataset clearly depict the distinct pulse of 
the Shenzhen subway system during the morning and the evening rush hours.  In 
general, the active phone tracking dataset largely agrees with the subway 
smartcard dataset in terms of population movement patterns in areas with subway 
service.  In addition, we find that longer movements are not evident since local 
clusters dominate urban dynamics in Shenzhen.  For this reason, we also perform 
clustering analysis for trips longer than 5 km in order to better illustrate workday 
commute patterns.  We learn that the results match subway flow patterns quite 
well and they improve our awareness of longer trips that occur outside of the 
subway system, such as massive population movements along major 
expressways. 
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Figure 4.9 Flow direction distribution by administrative districts (6–7 PM). 
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The CDR dataset, on the other hand, is less useful in analyzing urban population 
movement patterns.  Due to its event-triggered nature, it is only helpful in 
demonstrating the movement patterns of people when they use their mobile phone.  
During the morning rush hour of 7-8 AM, only 8,508 persons use their cell phone 
at two different locations (see Table 4.2).  During the evening rush hour of 6-7 PM 
this number grows to 80,810.  Such a big difference could be a reflection of mobile 
phone use pattern that a small number of people use their mobile phone during 
the morning rush hour, while far more people use their mobile phone (e.g., 
organizing evening activities, chatting with friends or families) during the evening 
rush hour. 
 

4.5 Conclusions and future work 
Understanding dynamic urban population movement patterns has a profound 
implication for researchers, urban planners, and policy makers.   Pervasive use of 
mobile phones, new payment methods (e.g., smartcard), and emerging wearable 
devices provide various means of tracking people’s location continuously at a 
relatively low cost.  However, given the size of those datasets, extracting 
generalized population flows from millions of OD pairs remains a challenge. 
 
In this study, we aim to extract and compare generalized population flows from 
three tracking datasets: 1) smartcard data, 2) active phone tracking data, and 3) 
CDR data.  Inspired from an existing hierarchical clustering approach, we propose 
a revised algorithm to extract generalized flow clusters among a set of fixed urban 
facilities (e.g., subway stations, cell towers).  This algorithm takes into account 
characteristics of each OD pair in terms of the varying size of population.  As a 
result, when spatially proximate, similar OD flows (e.g., home-to-work commute 
trips) are more likely to be merged into the same cluster than dissimilar ones.  Also, 
when merging clusters, the revised algorithm considers the population-weighted 
center of each cluster as the center of the cluster, instead of geometric center.  
Therefore, OD pairs with large population size have a greater influence on the 
distance between two clusters. 
 
We apply the proposed hierarchical clustering algorithm to extract generalized 
population flows during two selected one-hour time periods for each of the three 
tracking datasets.  The generalized population flows derived from the smartcard 
dataset reveal how people travel using Shenzhen subway system during the 
morning rush hour of 7-8 AM and the evening rush hour of 6-7 PM in a workday.  
We find that in the area where subway service is accessible, the overall pattern of 
generalized flows derived from the active phone tracking data largely agrees with 
the pattern derived from the smartcard data.  The active phone tracking dataset 
offers benefits of identifying how people move in areas without subway access.  
The results can help urban transportation planners design new public transit 
services and optimize existing services.  On the other hand, this study indicates 
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that CDR data are less capable of providing comprehensive urban population 
movement patterns due to its even-triggered nature.  For example, uneven 
temporal mobile phone usage patterns could lead to a bias of digital footprints in 
CDR data.  Therefore, we need to use caution when analyzing population 
movement patterns based on CDR data in urban dynamics research. 
 
This paper serves as a starting point of urban dynamics studies using various types 
of tracking data.  Continuous efforts can be made towards different future 
directions.  On the algorithm part, several aspects of the proposed hierarchical 
clustering algorithm can be improved.  For instance, currently we determine key 
parameters based on numerous experiments and our understanding of the data.  
To benefit the research community, a method that helps select key parameters 
(e.g., 𝑘  and 𝑥 ) in terms of input tracking data is desirable.  Also, the current 
implementation of the clustering algorithm is computationally intensive and it does 
not scale well.  Its performance becomes a major limitation when the number of 
OD pairs exceeds certain level.  A more efficient implementation that is capable of 
handling big OD flows will be very useful.  For scientific research, it will be valuable 
to analyze population movement patterns based on multiple lengths of time 
window and examine how modifiable temporal unit problem (MTUP) affects our 
understanding of human mobility. 
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5.1 Summary 
Understanding human mobility is essential for a diverse areas of real-world 
applications.  The so-called “data-intensive paradigm” (Hey et al. 2009) and data-
driven methodologies have dramatically enriched our knowledge of human activity 
and urban environment, as well as their interactions.  Mobile phone location data, 
in particular, have helped reveal many novel aspects of human mobility, given the 
pervasive usage of mobile devices today.  This dissertation research addresses 
three sets of questions proposed in Chapter 1 in three independent yet connected 
chapters. 
 
Chapter 2 aims to uncover useful insights of urban dynamics based on a new data 
source: actively tracked mobile phone location data.  By developing an innovative 
interaction visualization tool, some interesting patterns of urban dynamics in 
Shenzhen are disclosed, such as the dominant roles of stay activity and short-
distance trip in human mobility.  Inspired by these observations, the relationship 
between stay and move activities and the dynamics of the distance decay effect 
are then analyzed.  The importance of stay activity is highlighted by calculating the 
ratio of stay population during each one-hour time period.  Besides, this study 
takes the first step to evaluate the changing distance decay parameters in a day.  
In general, the frictional effect of distance varies significantly throughout the day 
and it is much weaker in the daytime due to the need for longer-distance travel.  In 
addition, this chapter considers cell towers as sensors and proposes an approach 
to investigate the variation pattern of human mobility at different urban locations, 
measured by several mobility indicators derived from massive hourly digital 
footprints.  Distinct spatiotemporal characteristics of human mobility across the city 
are revealed in terms of the changing volumes of stay, incoming, and outgoing 
population.  To analyze different mobility patterns of the city, urban locations with 
similar mobility variation patterns are grouped together.  Significant regional 
patterns, especially the major difference between the southern and northern parts 
of Shenzhen, are discovered.  This chapter demonstrates the usefulness of 
actively tracked mobile phone location data in urban dynamics research. 
 
Besides valuable insights that can be uncovered from the tremendous volume of 
digital footprint, the more consistent sampling rate of actively tracked mobile phone 
location data leads us to a more unbiased understanding of human activity.  This 
remarkable feature also offers the possibility to validate our existing knowledge 
and re-think about previous CDR-based research.  Based on a mobile phone 
location dataset that includes both CDRs and non-CDR footprints, Chapter 3 
designs an innovative approach to assess the representativeness of CDRs.  The 
entire dataset is separated into two groups: a CDR group and a complete group.  
From an individual perspective, selected mobility indicators that are frequently 
used in existing literatures are derived for each group.  Disparities of mobility 
indicators between two groups are then evaluated and compared.  From a 
collective perspective, this chapter analyzes the distance decay effect and detects 
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urban communities using digital footprints in each group.  The results indicate that 
for individual mobility, CDRs are very likely to underestimate certain indicators 
significantly, whereas they might provide decent estimate for others.  On the other 
hand, CDRs tend to provide biased understanding of collective human mobility as 
well.  Another important conclusion is that the effectiveness of CDRs is closely 
related to the habit of mobile phone usage: how actively one uses mobile device 
to contact others, when and where those communications occur, largely determine 
the representativeness of his/her CDRs.  This chapter takes the first step to 
carefully examine the bias of CDRs – the data source that has been widely used 
for years without ever being questioned. 
 
Chapter 4 raises a new issue that researchers, urban planners, and decision 
makers have to consider: we now may possess more than one big tracking dataset 
to answer particular research questions, from urban planning to disease 
transmission.  As a matter of fact, each type of data reflects urban dynamics from 
a unique angle.  Thus, selecting the most appropriate dataset becomes so critical 
that it might affect the decision making process.  Chapter 4 investigates this 
problem by extracting and comparing generalized population movement patterns 
derived from three datasets: subway smartcard data, actively tracked mobile 
phone location data, and CDR data.  In order to effectively extract generalized 
movement patterns, this chapter develops a revised hierarchical clustering 
algorithm based on an existing publication (Zhu and Guo 2014).  Compared with 
the original version, this revised algorithm takes into account the changing volume 
of moving population on each OD pair throughout the day and it groups OD flows 
based on two factors: proximity distance and flow similarity.  The performance of 
the revised clustering algorithm is benchmarked using OD flow data at different 
scales.  This algorithm is then applied to extract generalized population movement 
pattern from three different tracking datasets.  Results indicate that in general, in 
areas where subway service is accessible, the overall pattern of generalized flows 
derived from the active phone tracking data largely agrees with the pattern derived 
from the smartcard data.  On the other hand, CDR data are found to be less 
capable of providing valuable urban population movement patterns due to its 
event-triggered nature, which agrees with conclusions in the previous chapter.  
This chapter suggests researchers to use caution when analyzing population 
movement patterns based on CDRs. 
 

5.2 Potential Applications 
Although each chapter in this dissertation uses a particular dataset(s) collected in 
a particular area, some approaches can be applied under different contexts. 

5.2.1 STEAM and geovisualization 
In the big data era, geovisualization has become indispensable in urban dynamics 
research.  It plays an important role in exploring data and setting up appropriate 
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research questions. Chapter 2 presents a program called STEAM, which is 
developed to visualize stay/move activities derived from actively tracked mobile 
phone location.  To achieve a broader impact, STEAM has been released as an 
open source visualization package with a friendly graphical user interface (GUI) 
and a detailed user guide at GitHub: https://github.com/zlzhao1104/steam.  In 
addition to the visualization capability demonstrated in Chapter 2, the GUI allows 
users to set a number of parameters, such as visualization speed, flow symbol, 
flow classification scheme, and so forth (Figure 5.1).  Hence, urban planners and 
researchers from a variety of fields are able to use animation-based visualization 
to explore different types of flow data (e.g., human/animal migration, vehicle 
trajectories).  It is also worth mentioning that STEAM is cross-platform so it can 
run on any major platforms with Java Runtime. 

5.2.2 Variation pattern of urban dynamics 
Chapter 2 of this dissertation develops an approach to classify urban locations in 
terms of the variation pattern of aggregate human mobility (i.e., stay population, 
incoming population, and outgoing population).  It is proved to be very effective in 
mobility change detection. 
 
This method has the potential to be used in the real world, especially in facility 
location selection scenarios.  It has great advantages over survey-based approach 
since the scale and spatiotemporal granularity that come with actively tracked 
mobile phone location data can provide a more precise and timely estimate of how 
fast each location is gaining or losing population.  For instance, public transit 
planners can design new bus/subway route in areas with large incoming/outgoing 
population but very limited public transit service.  Using the same information, 
public transportation operators can match service schedules to in-flow/out-flow 
dynamics so as to improve efficiency.  On the business side, real estate developers 
can choose to build office buildings at locations with large stay population during 
daytime, whereas taxi companies may boost income by dispatching drivers to 
areas with a substantial growth of outgoing population. 

5.2.3 Hierarchical flow clustering 
A city is a highly dynamic system, which consist of various types of moving 
elements (Guo 2009), such as flows of people, flows of vehicle, flows of goods, 
even flows of information.  OD flows are now recorded with an increasingly finer 
granularity.  For example, in the urban area, the density of cell towers has been 
growing every year.  Hence, an effective flow clustering algorithm becomes critical 
to understand the dynamic human-city interaction.  Despite the focus of Chapter 5 
being comparing population movement patterns derived from different tracking 
datasets, the revised hierarchical flow clustering method developed in this chapter 
can be used in many scenarios.  For instance, during an urban disease outbreak, 
it is vital to find out areas that require immediate medical actions.  After feeding 
population movement matrix derived from mobile phone location data, the  
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Figure 5.1 The graphic user interface (GUI) of STEAM.  Users are able to set 
visualization window size and data directories in the “Basic” tab (the upper figure) 
and visualization-related parameters in the “Visualization” tab (the lower figure). 
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proposed flow clustering method can help identify major flow clusters emanated 
from the location of confirmed cases during the time period of initial outbreak.  As 
a result, limited emergency response personnel and resources can be dispatched 
to those areas.  Furthermore, after obtaining a good understanding of urban 
population movement patterns, the proposed flow clustering algorithm can be used 
to detect abnormal population movements caused by a wide range of events (e.g., 
political protest, natural disaster, social activity).  Actions can be taken immediately 
to deal with the situation. 
 

5.3 Future work 
This dissertation research serves as a starting point of many potential directions 
of future work.  Some of them are discussed in this section. 

5.3.1 Validation of “patterns” 
Many valuable findings of human mobility pattern derived from mobile phone 
location data are uncovered and elaborated in Chapters 3, 4, and 5.  Nevertheless, 
those patterns are not validated because it is difficult to obtain relevant datasets.  
Unlike many western countries, many data sources (e.g., census data) are either 
unavailable or tightly controlled in China. 
 
Further studies will be much more convincing if appropriate validation approaches 
can be developed.  For instance, the distribution of home/work locations can be 
validated by population distribution data, while the generalized population 
movement patterns can be validated by some sort of travel survey.  Alexander et 
al. (2015) provide a good example of validating conclusions inferred from mobile 
phone location data using census data and household travel survey. 

5.3.2 The gap between “patterns” and “processes” 
Like many other empirical studies, a major limitation of Chapter 2 is that the reason 
why a particular mobility pattern exists is discussed mainly based on speculations.  
Google Earth is the primary tool for determining major land use/building type 
covered by each cluster.  For instance, high density residential areas are 
recognized in terms of the appearance of buildings in aerial photos.  However, 
misjudgment can occur in this process.  Consider this “residential building” 
example: in the real world, it is not uncommon that certain tall residential buildings 
are associated with extremely low occupancy rate.  This is highly possible in China, 
where a considerable fraction of commercial housing is purchased for investment 
purpose.  Although this chapter attempts to offer reasonable explanations for 
derived patterns based on a decent understanding of the study area, the reasons 
why a particular pattern is formed are still not certain.  In other words, the 
underlying processes that drive human activities over space and time remain 
unclear. 
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The next step to continue Chapter 2 will be to bridge the gap between “patterns” 
and “processes”.  A prerequisite to make this happen is to obtain a number of 
supporting datasets so as to enrich actively tracked mobile phone location data, 
which is essentially massive OD flows at different time periods of a day.  Land use 
data, population distribution data (e.g., census), POI data, will be very helpful not 
only because they can be used to explain particular patterns.  More importantly, 
these datasets can be used to enrich digital footprints that mobile phone location 
data carry and make it more meaningful, such as “around 80% of trips between 
Location A and B during 7 AM and 8 AM are home->work commute trips”, or “most 
people come to Location C for shopping”.  Jiang et al. (2013) discuss some initial 
efforts in enriching mobile phone location data, including activity/travel inference 
and matching digital footprints to road networks. 

5.3.3 Data fusion and urban dynamics research 
The so-called “big data era” is featured with three “V”s: volume, velocity, and 
variety (Laney 2001).  Every day, an enormous volume of human-related data is 
generated from a variety of domains (e.g., social media, health care, transportation) 
with different representations, distributions, scales, and densities (Zheng 2015). 
 
At present, the urban research community has not fully utilized the power of big 
data.  Most existing studies of urban dynamics solely rely on data from one domain.  
Moving one step forward, Chapter 4 extracts and compares population movement 
patterns from three types of datasets and points out some pros and cons of each.  
Although this chapter highlights the necessity of selecting the most appropriate 
data for urban dynamics research, the promising opportunity lies in the integration 
of human-related data from multiple domains, which is also termed “data fusion”.  
The benefits of data fusion ranges from improving data authenticity/availability, 
reducing data ambiguity, to enhancing data reliability, and so forth (Khaleghi et al. 
2013).  In urban dynamics research, since independent yet interconnected 
datasets collected in the same city reflect spatiotemporal characteristics of the 
urban system from different angles, an integrated approach of data analysis might 
yield a less biased and more accurate understanding of human activity.  For 
example, smartcard records and taxi GPS traces can demonstrate “urban flows” 
with a fine spatiotemporal granularity.  CDRs and check-in data from social media, 
on the contrary, are less capable of deriving the magnitudes and directions of 
human movement, whereas they can provide a good estimation of people’s 
whereabouts. 
 
Utilizing heterogeneous multi-source digital footprint is still rare in the urban 
research community.  However, more and more researchers have realized the 
importance of this direction and started to develop methodologies which, according 
to Zheng (2015), can be classified into three categories: stage-based, feature 
level-based, and semantic meaning-based.  With no doubt, data fusion will become 
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more prevalent and help uncover more practical insights for urban planners and 
stakeholders in the future. 
 
This section discusses several potential research directions.  The dissertation 
demonstrates the strengths of mobile phone location data in the new era of urban 
research.  Meanwhile, this dissertation points out that it is equally important to 
study the limitations of mobile phone location data to ensure our enhanced 
understanding of human mobility and urban dynamics is correct, precise, and 
reliable. 
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