197,938 research outputs found

    Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy

    Get PDF
    Human umbilical cord Wharton's jelly stem cells (HWJSCs) are gaining attention as a possible clinical source of mesenchymal stem cells for cell therapy and tissue engineering due to their high accessibility, expansion potential, and plasticity. We employed a combination of highly sensitive techniques to determine the average cell viability levels and proliferation capabilities of 10 consecutive cell passages of cultured HWJSCs and then used RNA microarrays to identify genes associated with changes in cell viability levels. We found an initial decrease in cell viability from the first to the third cell passage followed by an increase until the sixth passage and a final decrease from the sixth to tenth cell passages. The highest cell viability levels corresponded to the fifth and sixth passages. The intracellular ionic contents of potassium, sodium, and chlorine suggest that the lower cell viability levels at passages 2, 3, and 8-10 may be associated with apoptotic cell death. In fact, gene expression analysis revealed that the average cell viability was significantly associated with genes with a function in apoptotic cell death, especially pro-apoptotic FASTKD2, BNIP3L genes and anti-apoptotic TNFAIP8 and BCL2L2 genes. This correlation with both pro-apoptotic and anti-apoptotic genes suggests that there may be a complex live-death equilibrium in cultured HWJSCs kept in culture for multiple cell passages. In this study, the highest cell viability levels corresponded to the fifth and sixth HWJSC passages, suggesting that these passages should be preferentially employed in cell therapy or tissue engineering protocols using this cell type

    Is Cell Viability Always Directly Related to Corrosion Resistance of Stainless Steels?

    Get PDF
    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn–Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn–Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals

    The Efficacy of Commercial Tooth Storage Media for Maintaining the Viability of Human Periodontal Ligament Fibroblasts

    Get PDF
    Aim To evaluate Save‐A‐Tooth (SAT), EMT Toothsaver (EMT) and Hank\u27s Balanced Salt Solution (HBSS) for their influence on the viability and proliferative capacity of human periodontal ligament fibroblasts (HPDLFs). Methodology Primary HPDLFs were seeded into 96‐well cell culture plates and exposed to SAT, EMT, HBSS and water (negative control) for 0.5, 1, 3, 6, 12 and 24 h at room temperature (22 °C). After each exposure time, cell viability was measured through quantifying adenosine triphosphate (ATP) using a luminescent dye. The proliferative capacity was also quantified using the PrestoBlue assay after 12 or 24 h storage in each medium. The data were analysed statistically by two‐way anova and post hoc Least Significant Difference (LSD) test (P \u3c 0.05). The morphology of the cells after 12 h storage was also investigated through live/dead viability/cytotoxicity kit together with fluorescence microscopy. Results There was no significant difference in cell viability amongst HBSS, SAT and EMT groups up to 6 h. SAT was effective in maintaining cell viability only up to 12 h and then became detrimental to HPDLF; after 24 h, the effectiveness of SAT in maintaining cell viability was similar to that of water (P \u3e 0.05). Amongst all the media, only EMT could maintain the proliferative capacity of HPDLFs significantly higher than the negative control, that is water (P \u3c 0.05) after 24 h storage. Conclusion EMT maintained the proliferative capacity of HPDLFs after 24 h storage

    Novel insights into pancreatic ÎČ-cell glucolipotoxicity from real-time functional analysis of mitochondrial energy metabolism in INS-1E insulinoma cells.

    Get PDF
    Work in our lab is supported by the Medical Research Council [New Investigator Research Grant G1100165 to CA] and Plymouth University [PhD studentship to JB] The final version of record is available at http://www.biochemj.org/bj/456/bj4560417.htmHigh circulating glucose and non-esterified (free) fatty acid levels can cause pancreatic ÎČ-cell failure. The molecular mechanisms of this ÎČ-cell glucolipotoxicity are yet to be established conclusively. In the present paper we report on the involvement of mitochondrial dysfunction in fatty-acid-induced ÎČ-cell failure. We have used state-of-the-art extracellular flux technology to functionally probe mitochondrial energy metabolism in intact INS-1E insulinoma cells in real-time. We show that 24-h palmitate exposure at high glucose attenuates the glucose-sensitivity of mitochondrial respiration and lowers coupling efficiency of glucose-stimulated oxidative phosphorylation. These mitochondrial defects coincide with an increased level of ROS (reactive oxygen species), impaired GSIS (glucose-stimulated insulin secretion) and decreased cell viability. Palmitate lowers absolute glucose-stimulated respiration coupled to ATP synthesis, but does not affect mitochondrial proton leak. Palmitate is not toxic when administered at low glucose unless fatty acid ÎČ-oxidation is inhibited. Palmitoleate, on the other hand, does not affect mitochondrial respiration, ROS levels, GSIS or cell viability. Although palmitoleate protects against the palmitate-induced ROS increase and cell viability loss, it does not protect against respiratory and insulin secretory defects. We conclude that mitochondrial dysfunction contributes to fatty-acid-induced GSIS impairment, and that glucolipotoxic cell viability and GSIS phenotypes are mechanistically distinct

    Characterization and Biocompatibility Study of Nematic and Cholesteryl Liquid Crystals.

    Get PDF
    noIntensive research in bio-engineering has been conducted in the search for flexible biomaterials that could support cell growth and cells attachment. Flexible synthetic materials that support cell growth without the aid of synthetic extracellular matrix proteins are still rare. Cholesteryl liquid crystal containing cholesteryl moieties may have suitable biological affinity. Human keratinocytes (HaCat) were cultured with a nematic liquid crystal and three cholesteryl liquid crystals of different formulation. Subsequently, the trypan blue dye exclusion assay was used to determine cell viability in the liquid crystals. The two classes of liquid crystal were characterized by Differential Scanning Calorimeter (DSC) and polarizing microscope (POM) to understand the nature of the interface material. The cell viability study in medium containing liquid crystals verified that liquid crystals had no effects on cell viability. However, only the surface of cholesteryl liquid crystal has shown affinity to HaCat cells. In addition, cells continued to proliferate in the presence of liquid crystals without a change of medium for eight days. No sign of exothermic and endothermic activities at 370C were observed from the DSC test results for the three samples. Biological and mechanical test result of the cholesteryl liquid crystals has shown that cholesteryl liquid crystals are non toxic and support cell attachment without extracellular matrix protein at very low elasticity

    Aerosolizable marine phycotoxins and human health effects : in vitro support for the biogenics hypothesis

    Get PDF
    Respiratory exposure to marine phycotoxins is of increasing concern. Inhalation of sea spray aerosols (SSAs), during harmful Karenia brevis and Ostreopsis ovata blooms induces respiratory distress among others. The biogenics hypothesis, however, suggests that regular airborne exposure to natural products is health promoting via a downregulation of the mechanistic target of rapamycin (mTOR) pathway. Until now, little scientific evidence supported this hypothesis. The current explorative in vitro study investigated both health-affecting and potential health-promoting mechanisms of airborne phycotoxin exposure, by analyzing cell viability effects via cytotoxicity assays and effects on the mTOR pathway via western blotting. To that end, A549 and BEAS-2B lung cells were exposed to increasing concentrations (ng·L−1 – mg·L−1) of (1) pure phycotoxins and (2) an extract of experimental aerosolized homoyessotoxin (hYTX). The lowest cell viability effect concentrations were found for the examined yessotoxins (YTXs). Contradictory to the other phycotoxins, these YTXs only induced a partial cell viability decrease at the highest test concentrations. Growth inhibition and apoptosis, both linked to mTOR pathway activity, may explain these effects, as both YTXs were shown to downregulate this pathway. This proof-of-principle study supports the biogenics hypothesis, as specific aerosolizable marine products (e.g., YTXs) can downregulate the mTOR pathway

    Modification of the zirconia ceramics by different calcium phosphate coatings:comparative study

    Full text link
    The aim of this study was to characterize different calcium phosphate coatings and evaluate in vitro cell response of these materials to ceramics implants. The physical and chemical properties of calcium phosphate coatings formed by RF-magnetron sputtering of calcium phosphate tribasic, hydroxyapatite, calcium phosphate monobasic, calcium phosphate dibasic dihydrate and calcium pyrophosphate powders were characterized. Cell adhesion and cell viability were examined on calcium phosphate coatings using mesenchymal stem cells. The results of cytotoxicity measurements of the calcium phosphate coatings revealed that only the coating obtained by RF-magnetron sputtering of the calcium phosphate dibasic dihydrate and calcium phosphate tribasic powders possessed lower cell viability than the zirconia substrate. The coating formed by sputtering of the calcium phosphate tribasic powder demonstrated more cells adhered onto its surface compared with other calcium phosphate coatings

    IGF-I influences everolimus activity in medullary thyroid carcinoma

    Get PDF
    Context: Medullary thyroid carcinoma (MTC) is a rare tumor originating from thyroid parafollicular C cells. It has been previously demonstrated that insulin-like growth factor I (IGF-I) protects MTC from the effects of antiproliferative drugs. Everolimus, an mTOR inhibitor, has shown potent antiproliferative effects in a human MTC cell line, TT, and in two human MTC primary cultures. Objective: To verify whether IGF-I may influence the effects of everolimus in a group of human MTC primary cultures. Design: We collected 18 MTCs that were dispersed in primary cultures, treated without or with 10 nM-1 mu M everolimus and/or 50 nM IGF-I. Cell viability was evaluated after 48 h, and calcitonin (CT) secretion was assessed after a 6 h incubation. IGF-I receptor downstream signaling protein expression profile was also investigated. Results: Everolimus significantly reduced cell viability in eight MTC [by similar to 20%; P < 0.01 vs. control; everolimus-responders (E-R) MTCs], while cell viability did not change in 10 MTCs [everolimus-non-responders (E-NR) MTCs]. In E-R MTCs, IGF-I blocked the antiproliferative effects of everolimus that did not affect CT secretion, but blocked the stimulatory effects of IGF-I on this parameter. IGF-I receptor downstream signaling proteins were expressed at higher levels in E-NR MTC as compared to E-R MTCs. Conclusion: IGF-I protects a subset of MTC primary cultures from the antiproliferative effects of everolimus and stimulates CT secretion by an mTOR mediated pathway that, in turn, may represent a therapeutic target in the treatment of aggressive MTCs
    • 

    corecore