8 research outputs found

    Landing site reachability and decision making for UAS forced landings

    Get PDF
    After a huge amount of success within the military, the benefits of the use of unmanned aerial systems over manned aircraft is obvious. They are becoming cheaper and their functions advancing to such a point that there is now a large drive for their use by civilian operators. However there are a number of significant challenges that are slowing their inevitable integration into the national airspace systems of countries. A large array of emergency situations will need to be dealt with autonomously by contingency management systems to prevent potentially deadly incidences. One such emergency situation that will need autonomous intervention, is the total loss of thrust from engine failure. The complex multi faceted task of landing the stricken aircraft at a potentially unprepared site is called a forced landing. This thesis presents methods to address a number of critical parts of a forced landing system for use by an unmanned aerial system. In order for an emergency landing site to be considered, it needs to be within glide range. In order to find a landing site s reachability from the point of engine failure the aircraft s glide performance and a glide path must be known. A method by which to calculate the glide performance, both from aircraft parameters or experiments is shown. These are based on a number of steady state assumptions to make them generic and quick to compute. Despite the assumptions, these are shown to have reasonable accuracy. A minimum height loss path to the landing site is defined, which takes account of a steady uniform wind. While this path is not the path to be flown it enables a measure of how reachable a landing site is, as any extra height the aircraft has once it gets to the site makes a site more reachable. It is shown that this method is fast enough to be run online and is generic enough for use on a range of aircraft. Based on identified factors that make a landing site more suitable, a multi criteria decision making Bayesian network is developed to decide upon which site a unmanned aircraft should land in. It can handle uncertainty and non-complete information while guaranteeing a fast reasonable decision, which is critical in this time sensitive situation. A high fidelity simulation environment and flight test platform are developed in order to test the performance of the developed algorithms. The test environments developed enable rapid prototyping of algorithms not just within the scope of this thesis, but on a range of vehicle types. In simulation the minimum height loss paths show good accuracy, for two completely different types of aircraft. The decision making algorithms show that they are capable of being ran online in a flight test. They make a reasonable decision and are capable of quickly reacting to changing conditions, enabling redirection to a more suitable landing site

    Surprise: An Alternative Qualitative Uncertainty Model

    Get PDF
    This dissertation embodies a study of the concept of surprise as a base for constructing qualitative calculi for representing and reasoning about uncertain knowledge. Two functions are presented, kappa++} and z, which construct qualitative ranks for events by obtaining the order of magnitude abstraction of the degree of surprise associated with them. The functions use natural numbers to classify events based their associated surprise and aim at providing a ranking that improves those provided by existing ranking functions. This in turn enables the use of such functions in an a la carte probabilistic system where one can choose the level of detail required to represent uncertain knowledge depending on the requirements of the application. The proposed ranking functions are defined along with surprise-update models associated with them. The reasoning mechanisms associated with the functions are developed mathematically and graphically. The advantages and expected limitations of both functions are compared with respect to each other and with existing ranking functions in the context of a bioinformatics application known as \u27\u27reverse engineering of genetic regulatory networks\u27\u27 in which the relations among various genetic components are discovered through the examination of a large amount of collected data. The ranking functions are examined in this context via graphical models which are exclusively developed or this purpose and which utilize the developed functions to represent uncertain knowledge at various levels of details

    Cautious Propagation in Bayesian Networks

    No full text
    Consider the situation where some evidence e has been entered to a Bayesian network. When performing conflict analysis, sensitivity analysis, or when answering questions like "What if the finding on X had been y instead of x?", you need probabilities P (e 0 j h) where e 0 is a subset of e, and h is a configuration of a (possibly empty) set of variables. Cautious propagation is a modification of HUGIN propagation into a Shafer-Shenoy-like architecture. It is less efficient than HUGIN propagation; however, it provides easy access to P (e 0 j h) for a great deal of relevant subsets e 0 . Keywords: Bayesian networks, propagation, fast retraction, sensitivity analysis. 1 Introduction As an example for motivating the introduction of yet another propagation method, consider the junction tree in Figure 1, with evidence e = fs; t; u; v; w; x; y; zg entered as indicated. Suppose you want to perform a conflict analysis (Jensen, Chamberlain, Nordahl & Jensen 1991). Then you first calcu..
    corecore