
Open Research Online
The Open University’s repository of research publications
and other research outputs

The use of Bayesian networks to determine software
inspection process efficiency
Thesis

How to cite:

Cockram, Trevor John (2002). The use of Bayesian networks to determine software inspection process efficiency. PhD
thesis The Open University.

For guidance on citations see FAQs.

c© 2002 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

The use of Bayesian Networks to determine
software inspection process efficiency

Trevor John Cockram BSc C Eng MIEE MSaRS
Personal Identifier M7167322

Thesis for a degree of Doctor of Philosophy in Computing

Submitted 29th June 2001
Viva Voce 15th November 2001

Corrected and agreed 3rd February 2002

ft-unto ~ NO ('v\ -, l l--Z 'l ':l-"2-

b Pr'T£ of 'S~,,",\\~<;,~t-..) 30 -:s-~t-J'::' !la" l

It)~~ o~ AW~ ~ R:::&<vAe'"1 :l.OO~

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ
www.bl.uk

. THIS THESIS CONTAINS A

CD WHICH WE ARE NOT

PERMITTED TO COpy

PLEASE CONTACT THE

UNIVERSITY IF YOU WISH

TO SEE THIS MATERIAL

I

1" \) o~ laD?)" GO '- L oul
~ ~ v...-C.{.aJ.e--"\ \...'\) f":J

ACKNO\VLEDGEMENTS

I acknowledge with thanks the following people who have helped me to produce this
thesis:

My joint supervisors Professor Darrel Ince and Professor Pat Hall who have provided a
friendly stream of constructive criticism throughout the long haul of a part-time research
degree.

My friend Amanda Bell who has encouraged and patiently put up with me over the many
years of effort and corrected my English and Audrey Palmer who helped with the proof
reading.

The support of Rolls-Royce Research and Technology department especially Dr Eddie
William, Mr John Borradiale and Dr Andrew Swann, staff at Praxis Critical Systems
especially Mel Jackson who have encouraged me and provided the means for me to
complete this thesis, also Dr Andrew Vickers for a constructive review.

Reg Parker and Mark Dowding who have kept the day job going for the majority of the
time and have provided a good sounding board for ideas.

Thanks are also due to the Rolls-Royce Technical Library at Bristol for their help in finding
the reference material and Praxis Critical Systems Ltd for their support to allow me to
complete the work.

My thanks to Dr John May of the University of Bristol and Dr Karen Vines of the Open
University for advice about statistics. .

Many thanks also go to Frank Jensen and Lars Nielsen of Hugin Expert AS, Phil Clark of
Cambridge Controls, Peter Dunn of University of Southern Queensland and The Open
University ACS department for providing me with software tools at very reasonable/free
rates.

Prior to the work on this thesis I worked on the DTI funded FASGEP project IED4/1I9004.
The material presented in this thesis is significantly different from the F ASGEP project,
however some common roots need to be acknowledged.

I am also grateful for valuable contributions made via the F ASGEP project by: Lloyd's
Register, Lucas (TRW) Aerospace, esc Computer Sciences Ltd., Nuclear Electric, The
Open University, Bristol University, Dr M Falla and my former colleagues in Rolls-Royce
pIc.

" '''':Ul~~':!n ~ J.I '" .. ··' .. ···t-I
".'",) 1_ ... '

\ .. 0
- 1 r·~·\ ') "nnz' 1 \ Lvv

iib@y

2

31 0257945 8

Related Publications
III 1111 111111

Fault Prediction for the software development process
J May, P Hall, H Zhu, T Coclcram, N Bird
in Mathematics of Dependable Systems, based on the proceeding of a conference on Mathematics of
Dependable Systems organised by The Institute of Mathematics and its Applications and held at Royal
Holloway, University of London in September 1993
ed. C Mitchell and V Stavridou Oxford University Press 1995 ISBN 0198534914

A method of integrating disparate measurements for determining the adequacy of design reviews
T Cockram, J May
presented at the Safety Critical Systems Club conference on the measurement of reliability and safety. London
December 1993

Human Error in the Software Generation Process
T Cockram, J Salter, K Mitchell, J Cooper, B Kinch, J May
in Technology and Assessment of Safety Critical Systems ISBN 0-387-19859-8
February 1994 Springer-Verlag ed. F Redmill, T Anderson

Estimating faults introduced by software maintenance
T Cockram, J May
Proceeding of CSR Conference on Software Evolution: Models and Metrics Dublin
September 1994

Metrics in the FASGEP project
TJ Cockram
in proceedings of Application ofmetrics in industry 1995 conference London
December 1995

Human Failure
TJ Cockram
in the proceedings of DTI workshop on Human Factors ed F Redmill Derbyshire April 1996, available from
the Department of Trade and Industry SafeIT Document Distribution Centre, 35 Benbrook Way,
Macclesfield, Cheshire, UK, SKI I 9RT

Fault tolerant design methodology in software for safety related systems
TCockram
In proceedings of the NATO RTO A VT panel symposium on Design principles and methods for aircraft gas
turbine engines Toulouse II-IS May 1998.

Where Inspections and Audits Fit Into the Safety Process and How Can We Have Confidence in their
Effectiveness
TCockram
in Lessons in System Safety ed. F Redmill and T Anderson proceedings of Safety Critical Systems
Symposium 2000. 2000. Southampton: Springer ISBN 1-85233-249-2.

Gaining confidence in Software Inspection using a Bayesian Belief Model
TCockram
in Software Quality Management VIII Approaches to Quality Management ed. Chadwick et al
British Computer Society 2000 ISBN 1-902505 25 5.

Gaining confidence in Software Inspection using a Bayesian Belief Model
TCockram
Software Quality Journal January 2001 Vol 9 Nol p31-42

3

Table of Contents

CHAPTER 1 - INTRODUCTION AND RESEARCH OBJECTIVES 1·1

1.1 Introduction ••••••••.••.•••.••••.•••.••••••••••••••.. 1-1

1.21Iypothesis .. 1·1

1.3 New 'fork .. 1·2

1.4 \Vider Implications .. 1·3

CHAPTER 2- A REVIE\V OF SOFf\VARE QUALITY ASSURANCE AND
INSPECTIONS ... 2·1

Intro()uction ... 2·1

2.1 Software Developnlcnt Processes ... 2-2
2.1.1. What is a process1 .. 2-2
2.1.2 Who uses the process1 ... 2-2
2.1.3 Software errors .. 2-6

2.2 Software Quality Assurance Processes .. 2·9
2.2.1 Walkthrough .. 2-10
2.2.2 Technical Reviews .. 2-11
2.2.3 Software Inspections ... 2-12

2.2.3.1 Fagan inspections .. 2-12
2.2.3.2 Alternatives to Fagan inspections .. 2-18
2.2.3.3 Computer supported inspections .. 2-21
2.2.3.4 Criticism of inspection processes .. 2-22

2.3 Strengths and weakness of current research .. ~ ••••••• 2-22

CHAPTER 3· BAYESIAN BELIEF NET\VORKS .. 3·1

Introduction ... 3-1

3.1. Review 01 l\fodclling 1"'heory ... 3-1
3.1.1 Developing a model. .. 3-1
3.1.2 Formulating the problem and selecting an appropriate model type ... 3-2
3.1.3 Alternative modelling methods .. 3-2
3.1.3 Graphical Probability Models ... 3-4

3.2 Bayesian Belief Networks ... 3 .. 6

3.3 Strengths and weaknesses of Bayesian Belief networks ... 3-16

3.4 Conclusions ... 3·16

CIIAPTEI~ 4 ·l\'IODEL DEFINITION ... 4·1

Introduction ... 4-1

4.1 The software inspection process .. 4-1
4.1.1 Plan .. 4-2
4.1.2 Prc-nleeting .. .1: .. 4-2
4.1.3 Conduct ... 4-2
4.1.4 Records " ... 4-2

4

4.1.5 Follow-up ...•.....•.......... 4-3

4.2 Model requirements .. 4·3

4.3 Model Description ... 4-5

4.4 Network attributes•.. 4·8
4.4.1 Network potentials ... 4-8
4.4.2 Input metrics .. 4-10

4.5 Model Initialisation ... ~ : ~ 4·13

4.6 Conclusion ... 4·19

CIIAPfER 5- CASE STUDIES AND EXPERIMENTAL DESIGN 5-1

Introduction ... 5-1

5.1 Case Studies ... 5·1
5.1.1 Design inspection method ... 5-2
5.1.2 Software inspection method .. 5-3
5.1.3 Data collection method .. 5-4
5.1.4 Inspectors and moderators questionnaire .. 5-6
5.1.5 Post inspection data collection .. ~ ... 5-6

5.2 Experiment design ... 5· 7
5.2.1 Sensitivity Analysis ... 5-8
5.2.2 Initial Testing .. 5-8
5.2.3 Verification Testing ... 5·8
5.2.4 Network Calibration .. : ... 5-9
5.2.5 Calibration Testing .. 5-11
5.2.5 Evaluation Testing ... 5-11

5.2.5.1 Alternative model selection ... 5-11
5.2.5.2 Evaluation Test Method .. 5-12

5.3 Conclusions .. 5.14

CHAPTER 6- SENSITIVITY ANALYSIS AND MODEL TESTING 6·1

Introduction ... 6.1

6.1 Sensitivity Analysis ... 6.1
6.1.1 Sensitivity analysis purpose ... 6-1
6.1.2 Sensitivity analysis method ... 6-2

6.1.2.1 Sensitivity experiment design .. , ... 6-2
6.1.2.2 Sensitivity of calibration .. 6-3
6.1.2.3 Data Analysis method .. 6-3

6.1.3 Sensitivity analysis results ... 6-4
6.1.4 Discussion of sensitivity results ... 6-6

6.1.4.1 Sensitivity of the basic model :.: ... 6-6
6.1.4.2 Sensitivity to calibration .. 6-6

6.2 Initial Verification ... 6-8
6.2.1 Method .. 6-8
Figure 6-3 ... 6-9
6.2.2 Results ... 6-10

6.2.2.1 Initial testing: simple analysis .. 6-10
6.2.2.2 Initial Testing Scoring ... 6-11

6.3 Practical Network Calibration ... 6·12

5

6.3.1 Results ... 6-12
6.3.1.1 Simple evaluation .. 6-13
6.3.1.2 Scoring ... 6-14

6.4 Additional Experiments ..•................... 6·14
6.4.1 Experiment descriptions .. 6-16

6.4.1.1 Size of calibration data set experiments ... 6-16
6.4.1.2 Missing combinations within the learning set .. 6~17

6.4.2 Sensitivity analysis .. 6-18
6.4.2.1 Models 4, 5 and 6 Sensitivity analysis ... 6-18
6.4.2.1 Models 7 Sensitivity analysis ... 6-20

6.4.3 Scoring .. 6-21
6.4.3.1 Models 4, 5 and 6 Scoring and significance test results .. 6-21
6.4.3.1 Model 7 Scoring and significance test results .. 6-22

6.4.4 Results evaluation .. 6-23

6.5 Comparison experiments .. 6·24

6.6 Conclusions .. 6·25
6.6.1 Sensitivity Analysis ... 6-25
6.6.2 Model Perfornlance ... 6-26

CIIAFfER 7- CONCLUSIONS .. 7·1

7.1 Software Inspections .. 7·2
7.1.1 Comparison with other models of software inspection effectiveness .. 7-2

7.2 What this new work contributes to the understanding of software inspections and their
contribution software productivity and safety .. 7·4

7.2.1 Model structure ... 7-4
7.2.2 Prior Belief Elicitation .. 7-4
7.2.3 Verification techniques .. 7-5
7.2.4 Model Performnnce .. : 7-5
7.2.5 Applications of this research .. 7-6
7.2.6 Comparison with other BBN models of software quality .. 7-9

7.3 Further Research Agenda .. 7·10

7.4 Sunlmnry•..•.................................... 7.12

CIIAFfER 8- REFERENCES .. 8·1

References .. 8·1

APPENDIX A • EXPERT OPINION SURVEY .. At

Allntrod"ction .. Al

A2 Survey Questionnaire · .. A2

AJ Group A data ... A 7

A4 Group D Data .. A15

AS A/lalys;s of Grollps A and B data ... A23

A6 ACCUl\IULATED DATA ... ~: ~ .. A24

A 7 CONCLUSION ... A33

6

APPENDIX B MODEL INITIALISATION DATA .. BI

APPENDIX C CASE STUDIES CHECKLISTS, QUESTIONNAIRES AND DATA
RECORDED .. Cl

C.I Introduction ... Cl

C.2 Software Inspection checklist .. : Cl
C 2.1 Assembler Code checklist ... C3

C.3 Ada Conventions .. C4
C3.1 Naming Conventions for Ada .. C4
C3.2 Ada Language Subsets ... C5
C.3.3 Program Structure ... C7
C.3.4 Layout and Style of Ada Source Code .. C7
C 3.5 Example .. CIO
C.3.6 Use of Ada Libraries ... Cl2
C3.7 Ada Testbed Penalties ... C13

C4 Questionnaire for inspection team members to complete ... C16

CS Questions lor the moderator to complete . .. C17

APPENDIX D .. -.. Dl

Dl Adaption program ... Dl
D2.1 Build Log .. D2

D2 Results files .. D3

APPENDIX E .. El

El Logistic Regression .. El

E2 Evaluation Test results files .. E8

7

Table of figures

Figure 2-1 .. 2-3
Figure 2-2 .. 2-4
Figure 2-3 .. 2-5
Figure 2-4 .. 2-6
Figure 2-S .. 2-7
Figure 2-6 .. 2-8
Figure 2-7 .. u .. 2-14
Figure 2-8 .. 2-25
Figure 3-1 .. 3-5
Figure 3-2 .. 3-5
Figure 3-3 .. 3-6
Figure 3-4 .. 3-7
Figure 3·5 .. 3·11
Figure 4·1 .. 4-1
Figure 4·2 .. 4-4
Figure 4·3 .. 4-5
Figure 4·4 .. 4·7
Figure 4·S .. 4-8
Figure 4-6 .. 4·16
Figure 4·7 .. 4-17
Figure 4-8 .. 4-18
Figure 6·1 .. 6·4
Figure 6·2 .. 6·5
Figure 6·3 .. 6-9
Figure 6·4 .. 6·9
Figure 6·5 .. 6·10
Figure 6·6 .. 6·11
Figure 6·7 .. 6·11
Figure 6·8 .. 6·13
Figure 6-9 .. 6-14
Figure 6·10 .. : ... 6·14
Figure 6.11 .. 6·18
Figure 6.12 .. 6-18
Figure 6.13 .. 6·20
Figure 6-14 .. 6-20
Figure 6.15 .. 6·21
Figure 6.16 .. ~ ... 6·21
Figure 6.17 .. 6·22
Figure 6.18 .. 6· 22
Figure 6.19 .. 6·24
Figure 6·20 .. 6·25

~:~~: ~:~:: ~:~
Tables

Table 2.1 ... 2·16
Table 2.2 ... 2·17
Table 3.1 ... 3·10
Table 4·1 ... 4·15
Table 4·2 ... 4·15
Table 4·3 ... 4·16
Table 6.1 ... 6·23

CD ROM - Contents
Results files as listed in Appendix 0 & E, Thesis.pdf

8

Abstract

Adherence to a defined process or standards is necessary to achieve satisfactory software
quality. However, in order to judge whether practices are effective at achieving the required
integrity of a software product, a measurement-based approach to the correctness of the
software development is required. A defined and measurable process is a requirement for
producing safe software productively. In this study the contribution of quality assurance to the
software development process, and in particular the contribution that software inspections make
to produce satisfactory software products, is addressed.

I have defined a new model of software inspection effectiveness, which uses a Bayesian Belief
Network to combine both subjective and objective data to evaluate the probability of an
effective software inspection. Its performance shows an improvement over the existing
published models of inspection effectiveness. These previous models made questionable
assumptions over the distribution of errors and were essentially static. They could not make
use of experience both in terms of process improvement and the increased experience of the
inspectors.

A sensitivity analysis of my model showed that it is consistent with the attributes which were
thought important by Michael Fagan in his research into the software inspection method. The
performance of my model show that it is an improvement over published models and over a
multiple logistic regression model, which was formed using the same calibration data.

By applying my model of software inspection effectiveness before the inspection takes place,
project managers will be able to make better use of inspection resource available. Applying the
model using data collected during the inspection will help in estimation of residual errors in a
product. Decisions can then be made if further investigations are required to identify errors.
The modelling process has been used successfully in an industrial application.

9

Chapter 1 - Introduction and Research Objectives

1.1 Introduction
As with many quality assurance processes software inspections impose a cost, which has to
be borne, with apparent, limited, tangible, added value to the product, and it is accepted
that quality assurance is an overhead on the ~evelopment costs of a product. However, the
cost of having a poor quality product is even greater, both in terms of actual product costs
and reputation. The added value from inspections comes from increased confidence in the
product from the software producers and from their customers, and further by potentially
reducing programme and life cycle costs downstream from the development stage at which
they are applied. By involving the correct people within an inspection team problems can
be resolved early therefore eliminating unproductive rework reducing both the technical
and business risks, and ultimately preventing rejection of the product by the customer.

The initial aim of this work was to review software quality assurance within the
development process and more specifically the area of software inspections, with a view to
establishing areas of strengths and weakness and to identify areas of work which would
benefit from further research. A review of current literature shows that software inspections
have been successful in identifying errors within software products close to the point of
their introduction, and therefore improving software productivity. However, software
inspections are still very variable in application and effectiveness, depending greatly on the
ability and experience of the individual inspector. These attributes, including the human
factor. which influences the effectiveness of a software inspection, have not been
investigated before in detail by previous researchers.

The main aim of this work is the development and evaluation of a predictive model of the
effectiveness of software inspections. Current models of effectiveness do not address the
human factors issues, and make assumptions which are difficult to substantiate. A type of
graphical probability model (GPM) known as a Bayesian network has been selected. which
provides a means by which the model can learn from experience. Modelling the
effectiveness of software inspections using Bayesian network techniques has not been
attempted before. The application of Bayesian networks provides a means of initialising the
model from inspectors' experience. with the model having the ability to learn and optimise
its performance from the results of inspections. This technique provides answers to some
of the questions and limitations raised by current models, which predict inspection
effecti veness.

1.2 Hypothesis

The principal hypotheses that are investigated in this thesis are:

• Bayesian Belief Networks can be used to determine software inspection process
efficiency.

• Bayesian Belief Networks provide a better modelling approach to estimating the
effectiveness of a software inspection than simple statistical regression models.

1-1

In addition, the following research questions are also answered as spin-offs from the
hypotheses. They all impact on detailed issues of software inspection process effectiveness.
(Note the numbering used below provides cross-referencing to later sections in the thesis).

1.2.1. What is the contribution of the experience of the inspection team to the
effectiveness of the software inspection process?

1.2.2. What is the contribution of the experience of the inspection moderator to the
effectiveness of the software inspection process?

1.2.3. What is the contributi~n of the adequacy of preparation time to the effectiveness of
the software inspection process?

1.3 New 'York
The new work described covers:

• The definition. of requirements for the model, based on an analysis of the research,
addressing the strengths and weakness of the software inspection process and the current
software inspection effectiveness models;

• Design of the model, using the application of causal networks to describe the influences
of various attributes and their dependencies;

• Population of the model with a priori belief using the results of a survey of expert
opinion. A comparative study between two groups of experts and the translation of the
results into the initial values within the Bayesian network;

• Calibration of the model using evidence obtained by an analysis of a number of software
inspections conducted, using a consistent process;

• Evaluation of the model.

The evaluation of the model will consist of two parts:

I. Initially, sensitivity analysis of the model will be used to determine which parts of the
model have been determined to have the greatest effect on the result. The analysis will
be conducted with only the a priori belief and again after the model has been calibrated.

2. The determination of the performance of the inspection effectiveness model. This is a
measurement of how well the model predicts the performance of a software inspection
compared with its actual performance.

The calibration and evaluation of the model uses case studies from a number of software
projects in the same organisation where formal software inspections have been conducted,
and where product and process metrics have been collected. The case study data, which has
been used for calibration, has been kept separately from that used for evaluation, and the
performance of the model has been measured to show the improvements over existing
effective models. Comparative studies show the effect of the model's learning process on
the initial belief of the experienced inspectors.

The analysis of the results from both the calibration and evaluation activities provides
identification of all the important attributes in conducting an effective software inspection.
Further, it shows which combinations of attributes are important for a manager to optimise
for effective and productive inspections.

1-2

The criteria for a successful model are:

• the evaluation tests of the model show that in the case studies, the model provides
reasonable results;

• sensitivity analysis of the model identifies the key parameters that can be fed into a
process improvement programme to improve the quality of software;

• the results from the model provide confidence to allow the results to assist in the
development of a safety case and in the certification of software projects to a given
standard.

1.4 Wider implications

The wider implications for the project are:

Research: The project provides a means of evaluating graphical probability models. It also
provides information on the number of test cases required to achieve calibration, and the
effect of calibration on a priori belief.

Computing industry: The application of the specific model of software inspections provides
software developers with a more efficient means of conducting inspections, and in
concentrating on the higher value-added attributes of an inspection. It also improves the
efficacy of these inspections, which will result in improved quality products.

It could then be argued that by reducing the number of defects in a product it has a positive
impact on safety. The effective identification of defects close to their introduction in the
software lifecycle will reduce the amount of regression testing required when defects are
found down-stream and hence increase productivity.

1-3

Chapter 2 - A revie,v of sofhvare quality assurance and
inspections

Abstract

Adherence to procedures or standards is necessary to achieve satisfactory software quality.
However, in order to judge whether practices are effective at achieving the required integrity of
the product, a measurement-based approach to software development is required.

Product inspections are used in the manufacturing industry to screen products prior to delivery,
and, similarly with software, testing has been used as a product inspection prior to delivery (or
even post delivery). Relying on testing to achieve the required level of quality is not a cost­
efficient process. Evidence shows that the most productive approach is to correct errors as
close to the point of introduction as possible, but, unfortunately many software development
process models are more concerned with the way in which the software product is produced
than with its quality. Process reviews, in a similar manner to design reviews within
manufacturing industry, provide a means of measuring and achieving the desired level of
quality.

The design review process is not as rigorous or repeatable as one would expect - there is a
variability of its effectiveness as it is particularly sensitive to the experiences and abilities of the
participants. To improve the process a number of techniques such as walkthroughs, technical
reviews and formal software inspections have been proposed, although the literature is not clear
as to the definition of each technique.

Variations on the techniques have been proposed to improve rigour and efficiency, however
there is debate over what is the best process to apply for the particular project, and concerning
its stage of development and complexity. Improvements, using tools, have been suggested to
assist with the conduct of a software inspection.

Introduction

This chapter sets the work described in this thesis on quality assurance processes and in
particularly software inspection metrics within the context of existing research. It describes
the use of software quality assurance within the software development process and the
historical evolution of software inspections and describes the strengths and weaknesses of
current practice.

The purpose of this chapter is to show where the original research described in later
chapters is related to current research and how it makes a contribution to knowledge.

2-1

2.1 Software Development Processes

A large amount of software developed in the 1950's and 60's was reported to be of such
low quality that some 90% of it could not be used as delivered [General Accounting Office
1979]. This indicated a lack of quality in the development of software. Demming makes
the general point about quality, that there is a need to build quality into a product rather
than obtaining it through inspecting and testing the delivered product [Demming W E
1986]. With software products this quality must be achieved by managing the development
of software through a process.

2.1.1. \Vhat is a process?

A software development process is a discipline by which control can be imposed on the
design and development of a software product. Feiler and Humphrey defined a process as
a set of partially ordered steps intended to reach a goal, this definition leads to an
assumption that a process is a sequence of steps, with the components being called the
process elements [Feiler P and Humphrey W 1992]. A process step is defined as an atomic
action of a process that has no externally visible substructure.

IS012207 [International Organization for Standardization and International
Elcctrotechnical Commission 1995] defines a process as a set of interrelated activities,
which transform inputs into outP':1ts. It also notes that the term "activities" in this
definition also covers the use of resources. The ISO definition appears to be wider in that it
implies that processes can contain concurrent elements. The process used is specific for
each individual software development, we therefore choose to represent processes in an
abstracted form, which we call the process model. This will be discussed in further detail in
this chapter.

To control the development of software, Madhavji [Madhavji NH 1991] states a process
may contain the following elements:

• Prescriptive, requiring that the process should be performed in a particular way
• Proscriptive, which requires that a process should not be performed in a particular way
• Descriptive in that it describes the way in which development is actually conducted.

2.1.2 \Vho uses the process?

There are a number of motivations for controlling the process.

The project manager wishes to have improved estimates of costs and time-scales to prepare
bids, to have a structure by which he/she can plan to make most efficient use of resources
and subsequently monitor the process.
The software developer is looking for appropriate tools, methods and environment to
support the current activity and may need guidance on the activity and the context of that
activity, together with other developers.
The customer (often represented by the quality assurance activity) needs to know that the
project's development is meeting functional, as well as cost and time-scale requirements.

2-2

The customer also needs to know that the quality of the product is of a high standard (in
this context quality means the usability and the dependability of the end product in tenns of
reliability, availability, maintainability and safety). In safety related systems there is a
regulator or certifier who requires evidence that the software has been developed in a safe
manner, according to the set standards.

Considering a1l these different perspectives, we can see that there are many constraints and
interactions associated with a process. I have visualised these perspectives as a maze
shown in figure 1, which is based on the ideas given in [Madhavji NH 1991]. The diagram
below shows the process functions represented as a set of constraints shown by the
segmented arcs and interactions indicated by connecting lines.

Figure 2-1

The process maze

Hollockcr [Hollocker CP 1990] considers the issues in a similar way as a set of control
conflicts. Figure 2-2 shows the conflicts within a software development process. He
considers three stakeholders, project management, configuration management and quality
management. The conflict between the quality management and project management is the
drive from the project to meet delivery schedules against the requirement to produce a
quality product. Between configuration management and quality management is the
progress ion of the product and updates, effectively the management of change. Between
project management and configuration management is the delay in applying the procedures
to authorise updates in the code.

2-3

Product status
Quality vs schedule

Quality
Management

Project
Management

Product status
Product progressIon
Update procedlng

Configuration
Management

Figure 2·2

Process conflicts

Product status
Authorize update

Curti [Curtis B, Kellner M et al. 1992] has provided a taxonomy of perspectives for
process models:

• unctional representing - what process elements are being performed and what flows of
information entities are relevant to these process elements.

• ehavioural representing - when process elements are performed and how they are
performed through feedback loops, iteration, decision-making conditions, entry and exit
criteria, etc ..

• Organisational representing - where and by whom in an organisation process elements
ar performed.

• Informational representing - the entities that are produced or manipulated by the
pr ss.

Proc models are also described as lifecycle models, that is they describe each of the
teps in a software development process from initiation to delivery. These models take a

high level perspective of software development and initially concentrate on the functional
representation of the proces . The most well known of these models, initially described by
Royc [Royce WW 1970], i the classic waterfall software development lifecycle, where he
described the stages of oftware development from requirements through to testing. He also
described the need to involve the customer in reviewing the early stages of the lifecyc1e as
a participant in the formal process stage reviews. These processes are commonly used in
mechanical design, i.e. preliminary system reviews, critical design reviews and product
acceptance reviews. Parallels for these in software are shown in Figure 2-3 below.

2-4

System
Requirements ~

Software
Requirements ~ (

Preliminary
Program Design)

,--_A_n_al_YS_iS_-,1 ~
Program
Design

Coding

Figure 2·3

Waterfall lifecyc1e process

Testing I
Operation

There have been many software process lifecyc1e models described, and many of these can
be related back to the waterfall model as this provides a simple visualisation of the process,
which can be used for project management. The documented process often describes the
ideal or intended process as reported by Parnas and Clements [Parnas DL and Clements PC
1986].

The waterfall lifecyc le model , is a simplistic view, as it does not represent actual practice,
as there arc many constrain ts and pressures which cause developers to deviate from the
defin ed process . In practice many projects still document software development progress as
if the project was being developed to this ideal process.

To desc ribe the actual process used to develop the software in a sufficiently generic way,
one approach used by the FASGEP project is to use the concept of an "atomic process"
[Cottam M, May J et al . 1994]. An atomic process can be considered as a single activity or
task undertaken by an individual. The atomic process may be decomposed into its lowest
lcvel entiti es, i. c.

• an input product (or set of products)

• the process (or activity or task)
• an output product (or set of products).

This is shown is Figure 2-4.

2-5

Input
Product

Figure 2-4

An atomic process

Output
product

The complete development process can be described by linking atomic processes via the
products. The output product of one atomic process being the input product of another,
either sequentially in series or concurrently in parallel, which can be represented in a linear
diagram or directed acyclic graph (DAG) to indicate the progress of a project in time.

In general terms two types of atomic process have been characterised:

• Development processes, i.e. specification, design or coding including re-work
• Quality assurance processes, i.e. Reviews, Walkthroughs, Inspections

Development processes can be regarded as a potential source of error introduction, and
quality assurance processes as potential means of identifying errors. These errors can then
be removed by applying another atomic development process.

2.1.3 Software errors

The wear-out mechanisms that occur with hardware cannot occur in software, therefore all
software errors are systematic errors; i.e. they are built into the software. An important
mechanism for this type of error introduction is human error, which results both from our
nature as individuals and in the way in which engineers act and communicate in groups
[Tomlison C, Cockram T et a1. 1997]. Traditionally, with safety related systems, reliance is
placed on a managed development process and testing to find faults within the software.
The problem with this approach is that the errors are only found at the end of the
development process. It is known, however, that a high proportion of software errors are
introduced at the start of the development lifecycle during the requirements phase, e.g. Lutz
[Lutz R 1993] found that some 70% of software faults in mission-critical space systems
were due to requirements errors.

Software errors can also be introduced during any of the subsequent stages of development.
Software errors, when detected, lead to re-work especially when detection occurs later in
the process, i.e. testing. Then the re-work of the previous development stages is often at
considerable expense and consequent re-testing. Boehm [Boehm B 1981] identified a 100-
fold increase from the cost in finding errors at the requirements phase of a project to those
found during the operational phase of the software. Th~ error correction process, however,
is not perfect and further faults may be introduced by the re-work.

2-6

A software error will only be manifested as a failure of the system when a particular input
sequence, exercising the portion of the software code containing the fault, is presented to
the system. This set of inputs may never occur during the operation of the software and the
fault remains dormant for the life of the system. Therefore it is not possible to consider
software in conventional reliability terms, and this is confirmed by considering the profile
of software integrity against time. With conventional reliability growth models it is
assumed that the integrity of a product will improve over time, however with software, a
"Christmas tree" like profile is often seen [Sommerville I 1992].

Remus and Zilles [Remus Hand Zilles S 1979] provided a simple model of error removal
and integrity progression using the reliability figures from similar types of software. They
estimated the number of errors in a project would be:

Number o f errors remaining = total errors - number of errors found by reviews and inspections - number of
errors found by testing.

The problem with this equation is that if we wish to know the number of errors remaining
then we also need to know the total number of errors. They make an assumption that the
total number of errors in a project will be the same as that of other similar projects.

As the project progresses , errors are removed by the quality assurance and testing
processes, however ncw errors can be introduced by error correction process which is in
itself not perfect. It should also be noted that the absence of errors found during quality and
testing processes does not indicate that the product is free of error [Graham DR 1992].

In the FASGEP project [May J, Hall P et al. 1993], as a contribution to this paper, I
described a similar mechanism for integrity progression. The quality assurance processes
(Qj) shown in fi gure 2-5 can be considered as not affecting their input products directly. It
is the consequent development process (Dj) that corrects any software errors that have been
identified by the quality assurance process.

D. Q.

11

Figure 2-5

An example software development process

These processes cannot be assumed to identify aJl of the errors present in the input product,
so in the model it is necessary to identify the remaining errors in the product.

In Figure 2-6 the removal of errors from an atomic development process Dj results in a
denuded development atom (which is indicated as Dj') and a reduction of the scope of the

2-7

quality process to only the unmodified portion of the development atom (which is indicated
by Qi').

The effect of removing the errors in process D t in figure 2-5 is shown in figure 2-6. The
errors, which were found by quality process Qt in development atom D), are corrected by
the addition of a development process Ds. This process is to correct the error identified in
Qt. The subsequent quality process Qs is to ensure that the modification to the product
indicated by 12 has been correctly done. The errors in subsequent development processes,
i.e. 02, D3, 04 remain uncorrected.

I,

Figure 2·6

A modified development process showing the effects of correcting errors found
in process Dt

As a result of identifying errors throughout the software development, a complete picture
of the process can be built up using these constructs.

2-8

2.2 Software Quality Assurance Processes

Our concepts of integrity and reliability of a product result from the assurance of the
quality of the product to a standard. Quality has been described as "The totality of features
and characteristics of a product or service that bears on its ability to satisfy given
needs"[Buckley FJ and Poston R 1984]. Similarly Grady [Grady R 1993] describes quality
as "Fitness for use, satisfying customer needs, and absence of defects". IS0900i
[International Organization for Standardization 1997] provides a model for such a quality
assurance standard, IS09OOO-3 [International Organization for Standardization 1997] and
the TicklT guide [DISC 1998] provide guidance for the application of the standard to
software.

IS0900 1 places emphasis on traditional manufacturing quality control in a contractual
environment. This standard is a fixed hurdle for an organisation to achieve as it is possible
to have a well-documented and controlled process but still produce the incorrect product.
Alternative approaches to the ISO standard [Coallier F 1994] are concerned with
continuous improvement or capability measurement, Le. as in the SEI Capability Maturity
Model. This model grades the maturity of an organisation's software development process
into five levels: [Paulk M, Curtis B et a1. 1991]

Levell: Initial - At this level the organisation is ad hoc and often chaotic with few
formalised procedures existing, and where they do exist, there is no management
mechanism to ensure that they are used. Indeed, management may not
understand problems and issues for a given project, such as lax change control,
software installation and maintenance problems, or the need to integrate software
tools.

Level 2: Repeatable - At this level a new manager has no orderly basis for understanding
the organisation'S development projects. New team members have to 'learn the
ropes' informally from other team members by observation of actual practice and
soon.

Level 3: Defined - At this level measurement is focused on specific tasks to indicate the
effectiveness of project organisation.

Level 4: Managed - At this level, the cost of gathering data becomes onerous.

Level 5: Optimised

It is assumed, given the above definition, that Level 3 maturity has been reached and that
IS0900 1 certification has been achieved before applying the concepts described in this
thesis. Only with these levels of process maturity will this work be of practical value.
Organisations below this level would not benefit from this work and improvements should
be concentrated on generating a repeatable process.

Design reviews, walk-throughs and inspections form part of many quality assurance
processes. ISO 9001: 1994 [International Organization for Standardization 1997] identifies
the need for a contract review of the requirements, and design reviews covering
organisational and technical interfaces, design-input reviews and design verification
reviews

2-9

ISO 9004:1987 [International Organization for Standardization 1994] provides guidance on
conducting reviews, i.e. "At the conclusion of each phase of design development, a formal
systematic and critical review of the design review should be conducted." These reviews
and inspections are part of a quality assurance process used for all types of engineering,
however their application to software requires particular care due to the abstract and non­
tangible nature of the products and the inevitable complexity of software. Three techniques
have been described for software quality assurance processes: Walkthrough, Review and
Inspection.

The IEEE glossary of software engineering terms [ANSIlIEEE 1983], provides the
following definitions of terms:

Walkthroughs

A review process in which a designer or programmer leads one or more members of the
development team through a segment of design of code, that he or she has written,
while the other member ask questions and make comments about techniques, style,
possible errors, violation of design standards and other problems.

Design reviews

I. A formal meeting at which the preliminary or detailed design of a system is
presented to the user, customer, or other interested parties for comment and approval.

2. The formal review of an existing or proposed design for the purpose of detection
and remedy of design deficiencies that could affect fitness for use and environmental
aspects of the product, process or service, and/or for identification of potential
improvements of performance, safety and economic aspects.

Software inspections

A formal evaluation technique in which software requirements, design or code are
examined in detail by a person or group other than the author detecting faults,
violations of development standards and other problems.

1I011ocker [Hollocker CP 1990] describes walkthroughs as a process for reaching a
consensus of understanding; reviews as a process for determining completeness and
correctness, and inspections as fitness for use. There is confusion in the literature and in
application of the terms used. The IEEE definitions are for different processes producing a
similar outcome, but the Hollocker definition leads to different outcomes for different
processes. For this discussion, the definitions given in the IEEE glossary will be used.

2.2.1 \Valkthrough

The structured walkthrough process described by Yourdon [Yourdon E 1979] is now rather
outdated; it has been principally used for code examination. Experience from 1982 [Hart J
1982],1 states that walkthroughs were better than round-robin reviews. Round-robin
reviews were described as a process where each member of the reviewing team asks
questions in tum until the questioning is exhausted. Round-robin reviews are typical of
many manufacturing design reviews. There are limitations with this type of process, as

I Although in this paper there is somc confusion bctween the terms walkthrough and review

2-10

noted in the paper, which result from human characteristics, with attendees "not wishing to
rock the boat" or to seek out issues unless they were considered by an individual as a major
issue. Later evidence from experiences at NASA [Sherif YS and Kelly Je 1992] has shown
that defect identification rates between walkthroughs and software inspections were in the
ratio 1:90.

Walkthroughs may still provide an effective means of quality assurance with user interface
driven software development processes such as rapid prototyping. Bias [Bias R 1991]
describes how usability walkthroughs have been effective at conducting user interface
scenarios with the end users of a product.

My experience of applying walkthroughs has shown that they tend to become more like
lectures on the product where detail may be skipped and large amounts of material covered
too quickly, and where participants can become passive observers rather than actively
contributing to the process. In mitigation, the participants are being educated about the
product, but this is not the purpose of a quality assurance process.

2.2.2 Technical Reviews

Historically, Babbage is reported to have shown his computing engine programs to Ada
Lovelace and to anyone else who would comment on them, and Von Neuman is also
reported to have submitted his programs to colleagues for review [Weinberg GM and
Freedman DP 1984].

Technical reviews occur generally within engineering and are concerned with ensuring the
completeness, correctness, dependability and measurability of the product in a cost­
effective manner; they are often defined as covering the complete range of reviews,
walkthroughs and inspections [IEEE 1988]. The reports produced by the technical review
process document the progress of the project. Management reviews or project reviews tend
to concentrate on issues such as costs and timescales.

Freeman [Freeman P 1975] argues that designs need to be reviewable. By this he means to
understand the design decision process through an examination of design rationale. In other
words he means an understanding of the problem, consideration of alternative solutions,
evaluation of the alternatives and decisions made. I have argued elsewhere that the
rationale should start with requirements and continue throughout the development lifecyc1e
as part of the design process [Cockram T, Tiley D et a1. 1997].

Kim [Kim LPW, Sauer C et a1. 1995] argues that technical reviews that include elements of
inspections, reviews and walkthrough should be combined as software development
technical reviews, but with placing more emphasis on human aspects of the process.

Human elements are not well covered by the conventional development and quality
assurance processes, therefore to combine the techniques could result in a loss of
effectiveness. It would be more appropriate to use a set of techniques consecutively to
achieve the effectiveness of each, even if this results in a potential loss of productivity.

2-11

2.2.3 Software Inspections

2.2.3.1 Fagan inspections

The standard for software inspections was described in Fagan's classic paper [Fagan M
1976], which, although rather dated now, still provides the basis of much software
inspection practice. He describes the need for improving methods for ensuring quality' in
the production of software, he also states that inspections are a formal, efficient and
economical methods of finding errors.

His work follows the principals of statistical process control described by Demming
[Demming W E 1986] to make improvements in the quality of the software produced.
Software inspections are a technique where the software is examined in a formal process
with a clearly defined series of operations to identify errors with the software. He describes
these inspections as being conducted by a number of people with defined roles:

1. a moderator to lead the inspection;
2. the designer of the program;
3. the coder who is responsible for translating the design into code;
4. the tester who is responsible for testing the code.

The moderator is seen as key to the process whose role is to lead the inspection team and to
produce the synergy from the team so that the combined team effect is greater than the sum
of the individuals working alone. .

Three types of inspection are identified: 10 for high-level model design, II for design
completion and 12 for code, the first two being equivalent to preliminary system reviews
and critical software reviews described by Royce [Royce WW 1970].

Fagan's inspection process requires five stages:

1. Planning and overview, which is an education process (effectively similar to
walkthroughs);

2. Preparation where the inspectors do their homework using checklists to familiarise
themselves with the product and to produce lists of errors to bring to the meeting;

3. The fault logging meeting;
4. Rework to correct the errors found;
5. Follow-up to ensure that all the fixes are correctly applied.

Errors are formally identified during the fault-logging meeting, however these may have
been found during the preparation stage. The solutions to the errors should not be discussed
at the logging meeting. Errors are classified as missing, wrong or extra, with a consequence
of major or minor, for example, a miss-spelt word could be classified as a minor, wrong
error.

Fagan describes how data from the inspection process can be used to determine the
effectiveness of the reviewing process in finding errors, and to determine norms against
which particular problems can be identified. In particular he identified that the correct
inspection rate was important so as not to skip detail, and not to loose productivity by
dwelling on one issue for too long. In collecting metrics, Fagan was concerned that the
Hawthorne effect (described for example by [Conte SD, Dunsmore HE et a1. 1986]) would

2-12

not affect the results of the measurement process. He selected the control sample, after the
developers had accepted inspections as common place. He found that inspected products
had 38% fewer errors than products that had been walked through and there was a 23%
increase in code productivity as a result of identifying and correcting design errors earlier
in the software development lifecycle. In defining error detection efficiency he uses the
formula:

Eff
' . Errors found by an inspection
IClency = - - - -

Total_ errors_in_ the_product_ before_ inspection

There is a problem with the denominator of this equation, which is not discussed in Fagan's
paper, being that it is not possible to know the total number of errors in a product before
inspection. At the time when an inspection is conducted only the numerator of the equation
is known. In all but the most trivial of programmes we only know an approximate figure
for the denominator after the product has completed its development and use, and even
after it has been decommissioned we will still only know the total number of faults found.
Many faults in the software can remain dormant until particular sets of conditions are
applied to execute the error, which will cause the fault to manifest itself.

Fagan describes in a later paper [Fagan M 1986] how the application of the software
inspection techniques can be beneficially applied to -the complete development process,
identifying an increase in the effort required in the early stages of requirement and design
but with a substantial decrease in the effort required in the coding and testing phases of a
project. Here he makes an important definition that a defect is an instance in which a
requirement is not satisfied, linking the criteria for the successful conclusion of an
inspection to meeting the requirements. He introduces the concept of a so-called third hour
of the logging meeting for feedback, where the author of the inspected item can ask
questions of the inspectors.

Fagan also provides a causal model (Figure 2-7) for the contributions towards a successful
inspection using a fishbone diagram suggested by the work of Ishikawa [Ishikawa K 1982].
It should be noted that this model is essentially a static model of the inspection process
within an organisation and would be difficult to apply to individual inspections. The model
identifies some important issues relating to whole inspection process, in particular the issue
of training is raised for various participants and non-participants of inspections.

He states that managers should not participate directly as inspectors, as inspections should
not be used for individual performance assessment, but that managers do need to know the
benefits of inspections and support their use. He also states that moderators need training
in leadership and in creating synergy and that all participants need training in their roles
during the inspection and the benefits of the process.

Fagan's assertion that it is possible to train moderators to create synergy cannot go
unchallenged. It is my contention that the teams themselves create the synergy, and that
although moderators can motivate and facilitate, they can also kill off synergy by
inappropriate actions as described in DeMarco and Lister [DeMarco T and Lister T 1987].

2-13

.~ __________ ~~ ______ ~ ____ ~~ __ ~ ~~OO

Evtdlnlooncomlorquollty

II

01 ttl""

ManIg."

Figure 2·7

Fagan's fishbone diagram

Humphrie [Humphries WS 1989] suggests that software inspections are only effective in
detailed design and code phases of the development lifecycle. He also states that software
in pections are associated with level 3 on the SEI CMM process assessment level.

Jones [J nes CL 1985] and Mays & Jones [Mays RG, Jones CL et al. 1990] using Fagan
in pection method suggested further enhancements to the software inspection process by
pr viding additions to the technique aimed at defect prevention. The major improvements
t the technique include raising the profile of the initial meeting, setting measurable targets
for the in pection, defining checklists and exit criteria. It introduces a causal analysis
meeting using techniques2 described by Phillips [Phillips RT 1986], and actions targeted at
improving the proce s and preventing the defects identified from reoccurring. Additional
c u a1 defect categories are provided by: communication, oversight, education and
transcription, and the stage during development when the fault was introduced.

In addition to the in pection meetings, action meetings to introduce process improvements
are pr posed, together with a release post-mortum meeting to record the lessons that are
learnt by the project. This later meeting is often missed in my experience with the same
error ccurring in subsequent projects.

2 ausal analysis te hnique are part of the quality improvements brought out in Japanese manufacturing
indu try by Demming [Demming WE 1986] and Juran [Juran lM, Gryna FM et al. 1974], where the causes of
err r are investigated to identify their root cause.

2-14

A number of handbooks on applying software inspection have been produced and are
recorded below:

Hollocker - Software reviews and audits handbook [Hollocker CP 1990] is rather dated
now; it is a general handbook, on software quality assurance techniques, it includes
guidance on conducting walkthroughs, reviews and audits. The book contains extensive
checklists, recording forms and report model texts. .

Gilb and Graham - Software Inspections [Gilb T and Graham D 1993], is a relatively recent
handbook, is based closely on Fagan inspection method as refined by Jones and Gilb. It is
written from an external consultant's perspective and attempts to be an educational
textbook for inspection novices. It appears to be aimed more at supporting the process at an
organisational level rather than support for the individual inspector. One thing to note is
that they suggest that the author should not be the reader/presenter of material for fear of
the author skipping or attempting to cover up problems. This approach assumes a low level
of maturity in both the author and the process, where at higher levels of maturity,
inspections could be seen as providing positive benefit. Candlin [Candlin R 1996] in
attempting to use Gilb and Graham book as a basis to inspect software found that the rates
suggested for inspection were too quick for inexperienced inspectors and only minor faults
were found as a consequence.

Strauss and Ebenau - Software Inspection process [Strauss SH and Ebenau RG 1994]
which is also relevant again follows Fagan method for software inspections. This is written
more from an inspectors view taking into account practical experience from inspections
conducted in AT&T. It also provides checklists and an annotated bibliography
[Brykczynski B and Wheeler DA 1993] on software inspections. They note that inspection
data analysis is an important part of the inspection process as it provides the ability to
measure and control the performance of the inspection process, and the quality of the end
product.

Early experience in applying inspection techniques [Kitchenham BA, Kitchenham A et aI.
1986] had success even though the full process was not adopted. In ICL, Kitchenham
loosely followed Fagan's approach. However, the inspection participants including the
moderator were not independent but had been involved with the development of the
software. No checklists had been developed and therefore they regarded their process more
as "dry checking" than inspections. For the code inspected, the methods used found
between 73% and 75% of the errors. Not all the design was inspected as the project
manager considered that some modules were simple and well understood. This assumption
was vindicated in practice as the simple code after testing appeared to have had total lower
defect rates than the inspected code.

More recent expereince, e.g. Reeve's [Reeve JT 1991] experience at applying Fagan
inspections at MEL as part of an IS 0900 1 process, noted a 1 to 90 cost saving between
hours used for inspection and hours saved in subsequent rework. Analysis of the defect
data showed the majority of errors to be missing data or ambiguous statements. Similarly
Russel [Russel GW 1991], in a very large project at Bell-Northern with some 2.5 million
lines of code, also found inspections to be very cost effective and beneficial, despite some
initial opposition from both managers and software engineers. The error discovery rate was
found to be between 0.8 to 1 defect per man-hour, which was between two and four times
better than dynamic testing. Inspections were found to be the best mechanism for finding

2-15

extra code (which could not be found by conventional testing). Inspections were seen as
complementary to but not replacing testing.

Doolan [Doolan EP 1992] at Shell Research applied inspections to software supporting
seismic investigations. He found that by using Pareto analysis, the application of
inspections during the early stages of a project gave the most benefit at the least cost.
Productivity figures of 1 to 30 hours saved are noted. This is less than that claimed ·by
others, but could be explained as the process deviated from the Fagan model in that there
was no restriction on the time used for discussing solutions during the logging meeting.
Doolan argues that by removing the restriction the meetings achieved better synergy.
Inspections were found to promote better team work due to shared understanding in the
inspection meetings, technology transfer which made succession (inevitably engineers
move on during a software development) easier and improved the quality culture, standards
awareness and process awareness. In fact the standards documents became working
documents unlike many IS 0900 1 approved companies where they sit on the shelf gathering
dust. On the negative side he noted difficulty in starting the process and that input
documents to the software team, over which they had no control, may have been full of
errors.

Bush [Bush M 1990] and Kelly [Kelly Je, Sherif JS et al. 1992] have reported on the use
of formal software inspections as technical review processes with the NASA Jet Propulsion
Laboratories. Bush notes that estimated savings of $1595 per defect have been obtained.
The Pagan method was tailored for use including the third hour of the logging meeting to
discuss problem solutions and to extend the process into project concept and initiation
phases, software requirements and beyond code into test and acceptance/delivery and
finally into operations [NASA-l 1993], using a rigorous standard [NASA-2 1993]. Mixed
teams of inspectors were used including representatives from systems, software, test and
product assurance. Only 16% of the inspection time was spent on the code, the remainder
on inspecting the other parts of the development process. The defect density data from 203
inspections during three years experience at JPL is given below. Kelly noted that defect
densities decreased exponentially as a result of correcting defects during the initial stages
of a project and not left to escalate in later development stages.

Defect density Major3 Minor

Requirements (R I) 6.5 23.4
Architectural design (10) 2.5 16.4
Detailed Design (II) 3.5 10.6
Source code (12) 1.1 11.5
Test plan 10.3 11.8
Test procedures . 6.4 13.0

Table 2-1

Software defect density at NASA JPL

Kelly used curve fitting techniques to develop an exponential model of defects per page
as the project moves through its development stages: y= 3.1ge -O.6h where x is defined
by the inspection stage as:

3 Major defect defined as an error in correctness/logic or completeness

2-16

x
Stage

Table 2-2

Kelly did not address how applicable his model was to other organisations, so without
further experimental evidence, his work is of little practical value. .

Weller [Weller EF 1993] has published inspection experience from Bull Information
Systems in which he concentrates on the measurement of inspections, and notes that
inspections instrument the software development process. A major problem he notes is
reluctance of project managers to accept that engineers do any activity other than
coding.4 This view, despite much evidence (as cited in this chapter) to the contrary, is
persisting, as discovered recently by Hall and Wilson [Hall T and Wilson D 1997]
where quality was seen as "running interference to the development of the product".
Weller notes that conducting inspections is not a silver bullet to produce good software,
and he states that "no amount of inspection can make up for design flaws. You must
inspect all basic design documents". An inspection must also include the requirements
as well as design, as an incorrect requirement is probably worse than a major coding
error.

Weller also noted that human issues are important in achieving effective inspections,
with the team's effectiveness being dependent on product knowledge and their own
inspection rates. He suggested avoiding the use of loaded terms, which have been used
previously, and that some data accuracy may have to be sacrificed to make data
collection easier. He further noted that the use of a PC supporting the moderator during
the logging meeting was found to be a distraction, suggesting that paper forms were
used to record data during the meeting, and that the data recorded was then
subsequently fed into a database by the moderator. Whilst from a mathematical
viewpoint, data accuracy is important, it is better to have some data simply recorded
than not at all.

Weller agreed with Russel [Russel GW 1991] that it is better not to conduct any testing
before inspection as pre-testing tends to lower inspection motivation, resulting in some
reluctance to raise problems with something that is working. Pre-testing also results in
project pressures to omit the inspection process completely. Weller's data for
inspection effectiveness is more optimistic than other reported data with some 80%
efficiency claimed at the end of unit test compared with just testing without inspection,
and a comparison of 6 hours per defect found during test compared with 1.43 hours per
defect by inspection. The effect on inspections on software maintenance is also
discussed as it has been found to be one of the most error prone activities in software
development. Repair defect rates can be high, 50% for one line of code or up to 75%
for five lines of code. Where more extensive reworking occurs then rates drop to 35%
for 20 lines of code. Inspections were reported to improve the quality of maintenance
fixes. The model in Figure 2-6 also implies this problem.

There is reluctance by organisations to publish any defect data, although the number of
papers discussing quality processes and lessons learnt are increasing, for example,
experiences from Motorola [Weiss AR and Kimbrough K 1995].

4 Commonly known by the term WHISCY "Why isn't Sam coding yet"

2-17

Experience at Lockheed [Bourgeois KV 1996] showed that the profile for major defects
was approximately similar for each development phase of the project. This could be as
a result of letting defects through to subsequent stages of development, for example
unclear design documents resulting in defects in the code. A link between inspection
rate and inspection effectiveness was found, with poor effectiveness resulting if too
much was inspected too quickly and with too little preparation. This link was also
found by Christenson [Christenson DA, Huang ST et al. 1990] where defect detection
increased with, a) increasing preparation effort, b) decreasing examination rate, and c)
decreasing product size. Where the product size was increased then the preparation rate
decreased and examination rate increase indicating less care and detail being given to
the inspection. Hall and Fenton [Hall T and Fenton N 1996] noted that in one
organisation producing safety- critical code, a significant amount of work in every
software lifecycle phase was not inspected. They had not effectively incorporated
inspections into their development process and this had resulted in a misalignment
between the organisation and software developer'S quality goals. I have also seen this,
where evidence of inspections during parts of the development lifecycle are missing,
with the requirement to complete an inspection being overridden by the project
manager, even though this was part of the declared process.

Applying inspections more widely Redmill et al. [Redmill FJ, Johnson EA et al. 1988]
argue that the software inspection method can be applied to documents; this is
important as many software products appear as documents, i.e. requirements
specifications, designs. The error classification for software was extended from
missing, wrong, and extra, to include ambiguous, non-standard and higher level. The
results of experiments showed that a rate of 4.5 minutes per page was achieved and
defects rates of one major per 3.3 pages and one minor defect per 0.7 pages were found.
The success of this extension is not surprising, as formal documentation should have
the same rigour as software.

2.2.3.2 Alternatives to Fagan inspections

Britcher [Britcher RN 1988] argues that the issue with inspections is one of correctness,
i.e. for the code to be compilable (and correctly compilable). lie suggests that checks
applied in Fagan code inspections are too weak to find complex problems and that
more formal techniques such as topology, algebra, invariance and robustness be
included in the inspection. Dyer [Dyer M 1992] supports this view in that verification
based inspections should move towards formal criteria such as rigorous argument and
logical correctness, although the rigor provided by completing proof obligations is
unnecessary. Defence Standard 00-55 for the procurement and development of safety
critical software [Ministry of Defence Directorate of Standardization 1995] accepts
rigorous argument as an alternative to formal proofs when this is justified.

Parnas and Weiss [Parnas DL and Weiss OM 1987] gave the first serious criticism of
software inspection practice following the wider adoption of Fagan's method. He found
that the software inspection/review process suffered a number of problems:

• The participants were being swamped with information;
• They were not familiar with the design goals; _
• They did not have a clear responsibility for an aspect of the product and as a result

the product was not being completely covered;

2-18

• Participants can feel intimidated or embarrassed;
• Authors are willing to leave errors in a product as they know they will be found;
• There is limited interaction between participants;
• Participants were being asked to review/inspect beyond their competence and

experience;
• Un-stated assumptions were going unnoticed.

The active design review approach they propose, as an alternative to the Fagan
inspection method, is to focus the activities on those aspects of the product, which suits
the participant's experience and expertise. Their aim was to achieve the maximum
coverage of the product being inspected with the minimum overlap. To achieve this
there needs to be a careful selection of the reviewers. The process consists of small
meetings between reviewers and designers with the aim of two-way communication;
the reviewers making positive assertions about the product, not just pointing-out
defects.

Unfortunately there have been few experimental results published on the use of active
design reviews, which I consider to be a step improvement over Fagan method. There is
however material which uses variations of the active review process.

Bisant and Lyle [Bisant DB and Lyle JR 1989] describe a two-person inspection
process. They conducted an experiment comparing a walkthrough with two person
inspections and the full moderator lead Fagan inspection process. They found that two
person inspections were more effective than walkthroughs, but were less effective than
full inspections. They found that two-person inspections were a good training tool for
inexperienced inspectors. This is an important issue as there is a need to build a pool of
inspection experience so that more efficient inspections can occur in future.

Tripp et al. [Tripp LL, Struck WF et al. 1991] published experience on applying the
Fagan software inspection method by multiple teams to the inspection of documents.
This work is an expansion of Redmill's [Redmill FJ, Johnson EA et al. 1988] work on
document inspections. The inspection method was used in the production of an
aerospace software development standard RTCA DOI78A. Multiple experienced teams
were allocated sections of the standard. Each section was between 12 and 16 pages,
with an estimate of 2 hours per page for preparation. The number of defects found
showed near linear growth for the number of teams inspecting the same material, with a
low redundancy in error detection (with ten teams there was a 14% duplication of
errors). Similar results were found when applying multiple team inspection to an Ada
development standard. The main conclusion that can be drawn from this work is that
the best results where obtained when a wide experience pool of inspectors was used.

Further work in the application of inspections to requirements has been conducted
applying Perspective-Based Reading [Shull F, Rus let al. 2000]. This approach applies
inspection techniques to focus each inspector on a specific aspect of the requirements.
Each member of the inspection team takes responsibility for an aspect of the
requirements, e.g. user, designer, tester.

Martin and Tsai [Martin J and Tsai WT 1990] presented a N-fold inspection which
provided similar evidence in the use of N independent teams to inspect user
requirements documents, where they report that less than 4 out of 10 teams found the
same fault. Their data could be as a result of fault complexity, or a flawed process.

2-19

They noted improvements with the reliance of the correct mix of experience and a lack
of bias in the inspection team to detect certain types of faults. Their work was expanded
using a controlled experiment [Schneider GM, Martin J et al. 1992] which used an
error seeding method to introduce known errors into user requirement documents. They
found that there was variability in the result of inspection team performance and that
there was difficulty in locating some type of error, e.g. missing functionality.

Knight and Meyers [Knight JC and Meyers EA 1991], [Knight JC and Myers EA 1993]
propose phased inspections which are an important extension to Parnas active design
reviews [Pamas DL and Weiss DM 1987]. They consist of a series of partial
inspections called phases, a phase being a single property or smaIl set of related
properties. The goal of phased inspections is to improve the dependability and rigour of
the inspection process. Their approach is to use a computer-supported checklist and to
highlight and record on the computer concerns for each phase of product. It is claimed
that by using the computer to support the inspection a more rigorous process results.
This approach relies on having an adequate checklist for each phase of the inspection.
Phased inspections appear to be the current practice method for conducting software
inspections.

Russel [Russel GW 1991] states that inspections can add between 15 and 20% to
development costs and can increase time scales by as much as a third. To investigate
the effectiveness of logging meetings within a software inspection, Votta [Votta LG
1993] argues that inspection meetings are not as effective as managers and developers
think they are. He also argues that inspection fault logging meetings cost projects time
particularly with the difficulty of scheduling meeting times when all the participants
can be available. In a no-meeting process he suggests using electronic logging of errors
and only using face to face meetings when the inspector has raised an issue where a
meeting with the author is necessary to resolve controversial issues between them. He
suggests that this approach could replace the inspection meeting, with the inspection
leader responsible for the collation of error data and for managing the follow-up. He
warns that this approach is not validated, as there was not enough experimental
evidence available to support it. Fagan [Fagan M 1986] however argued the fault
collection meetings were essential to provide synergy which he describes as an
additional phantom inspector in the room.

Porter & Johnson [Porter AA and Johnson PM 1997] conducted experiments to test the
effectiveness of meeting-based inspections as compared with a no-meeting inspection.
They found that synergy was only evident in 29% of defect discovery and there was no
significant impact from synergy in the meeting. Further they also noted that meeting­
based methods were no more effective than the non-meeting methods. The individual
detection method raised a higher issue rate but at the expense of more false positivesS

and if the work was not phased gave more duplication of issues. They noted, however,
that certain classes of error, i.e. due to complexity, did appear to benefit from meetings.
The results from this research appear to support the view that inspectors are reluctant to
raise issues in meetings, particularly where they themselves are unsure about the issue.
With the limited benefit of error-logging meetings, they suggest that discussions are
limited to complex issues.

, A false positive issue is one which is raised but on subsequent discussion with the author is found to be not
an issue.

2-20

Porter et a1. [Porter AA, Votta LG et al. 1995] also conducted experiments to test the
effectiveness of inspecting software requirements specifications. These experiments
found that using checklists for requirements specifications were no more effective than
using Ad-Hoc inspection methods. Inspection using requirement scenarios was found to
be the most effective method of discovering issues. They also note that fault collection
meetings did not add to the fault detection effectiveness.

2.2.3.3 Computer supported inspections -

Johnson [Johnson P 1994] suggests that the efficiency of inspections could be
improved through the use of tool support and developed the Ff Arm computer
supported inspection mediator tool. The tool consists of three windows, the item under
review, the checklist and an issues window for logging the results of the inspection. He
suggests that the use of computers improves the consistency of inspections. Johnson
also notes that the use of computer support results in a different inspection process with
more asynchronous activity than paper based methods.

Alternative tools have been proposed by Iniesta [Iniesta JB 1994] to support
inspections in Spanish Telecommunications. The effectiveness of inspections had been
questioned by managers who regarded them as -very expensive spell checkers. He
produced a specification for a tool to support the moderator with automatic collection
of improvement proposals. The tool produced a sorted list in document order of the
proposals. The tool assisted moderators with monitoring reviewer's progress. Authors
were required to respond to the improvement proposals and then the moderator to
follow-up and maintain track of the status of the project. Experience with the use of this
tool supported Fagan's concern that too much time can be spent on finding solutions
rather than identifying problems. Modifications to the tool made it less easy for
inspectors to propose solutions, as they were required to provide a justification.

Trevonen [Trevonen I 1996-1], [Trevonen I 1996-2] and Iisakka and Trevonen [Iisakka
J and Tervonen I 1998] propose tool-supported inspections using the quality attributes
defined in IS09126 [International Organization for Standardization and International
Electrotechnical Commission 1991]: functionali ty , reliability, usability , efficiency,
maintainability and portability. They propose the use of a goals, rules checklists and
metrics models, to develop inspection checklists, as an extension of the goal, question,
metric model proposed by Basili and Rombach [Basili V and Rombach HD 1987].
They suggest a mixture of no-meeting logging where comments can be sent directly to
the author, a virtual logging meeting using computer support co-operative working
tools, and only meeting to address controversial issues. A limited logging meeting is
suggested, with limited attendance to address those issues which cannot be resolved in
the virtual logging meeting and pair review as suggested by Bissant & Lyle [Bisant DB
and Lyle JR 1989] when the domain experience of the inspectors is low.

Macdonald and Miller [Macdonald F and Miller J 1999] have developed a tool
"ASSIST" Asynchronous/Synchronous Software Inspection Support Tool. It uses a
domain language known as Inspection Process Definition Language, which models the
inspection process. The ASSIST tool provides a management window in which the
material is allocated to inspectors and allows progress to be monitored. The inspector
uses browsers to view the relevant items that are being inspected and to allow
inspectors to annotate the items and to record the findings of the inspection.

2-21

2.2.3.4 Criticism of inspection processes

The methods described in 2.2.3.2 above involve restructuring the inspection process, by
changing the number of participants, the order of the steps, the size of the steps or the
number of times each step is executed. Porter et al. [Porter AA, Siy H et al. 1988]
conducted experiments to attempt to find out the causes of variation in software
inspections. The results from finding variations in team size were not significant, nor
were the variations in the number of sessions significant The effect on defect detection
was not improved by performing repairs between inspections, although the interval
between inspections was increased. There was little correlation between pre-inspection
testing and the number of defects found. Preparation time showed a positive trend, but
the main effects appeared to be the meeting duration time and the individual inspector's
experience. In this experiment, however, there was insufficient data to draw
conclusions from the effect of team composition. A linear model of software
effectiveness was produced based on the number of defects, the phase, inspector's
experience and the log of product size.

Defects - Phase + log(size) + Rb + R,
Where - is interpreted as modelled by a Poisson distribution.

This model is limited in that it is only based on a snapshot of the process and does not
have the ability to change as the experience of the inspectors improved.

Johnson [Johnson P 1994] noted that the current practice for conducting inspections
added significant expense and clerical overhead to projects and produced obstacles for
group processes. On the other hand he notes that formal technical reviews were so
effective that Fujitsu used them to replace system testing. He also noted that there had
been little work in comparing inspections against testing, although some work has been
reported comparing walkthroughs against testing [Myers GJ 1978].

2.3 Strengths and weakness of current research

Building quality assurance into the software development lifecycle has proved effective
in reducing the number of defects in a product at the point of delivery. The conducting
of reviews, walkthroughs or inspections during the development process has been
shown to increase the productivity of the complete project, but at the expense of
increasing the time required for the early stages of the project development. The best
benefit is achieved by identifying and removing errors as close to the point of their
introduction as possible. Fagan's work [Fagan M 1976] on software inspections has
been widely accepted as the main improvement to software quality assurance over the
last 20 years. Formal software inspections have been widely adopted in the software
industry. Inspections have not replaced testing, and Fagan himself sees inspections
being complementary to static code analysis and requirements verification testing
[Fagan M and Knight JC 1991]. Several improvements to the process have been
proposed, all of which are based on the same underlying Fagan process.

Computer support for the inspection process through the use of software tools has been
proposed with a number of prototype tools developed. These today, however, are aimed
at providing assistance with moderation and recording issues and follow-up. These

2-22

tools have not been accepted on a commercial scale with only a limited number of tools
developed, e.g. Checkmate [SyberNet Ltd 1998] which supports C and c++
inspections.

Given the undoubted success of fonnal software inspections what are the remaining
issues to be addressed by research?

• Numerous different detailed approaches to the software inspection process.

There is no definitive set of attributes that make software inspections effective.
Fagan provided a set, which has been challenged, particularly his emphasis on the
use of fault logging meeting. The published experimental evidence on the variation
of techniques is not conclusive, and in fact shows variability in effectiveness of
inspections using the same detailed approach. A large-scale study of all the different
approaches to software inspections is beyond the resources of a single researcher. As
noted earlier there is a distinct reluctance to release inspection infonnation. This has
also been the case within the author's own organisation. Project managers fear that
disclosure of any errors discovered by the quality assurance processes could be seen
as failures in themselves or their team.

This issue is beyond the scope of a single researcher and has therefore not been
addressed in this research.

• Large dependence on the experience of individuals

The inspection process relies on the experience of individual inspectors to find
errors. This implies that to make an inspection effective the most experienced
software engineers should be used to take part in inspections. They, however, have a
preference to continue with their development tasks rather than working on
inspecting other colleagues work. If the most experienced engineers concentrate on
inspection activities, their experience effectiveness then starts to diminish as they are
not building on their experience through their own lessons learnt. A human factors
study on the motivation of inspectors and their experience base provides an
interesting research area, which has only superficially been addressed e.g. [Porter
AA, Siy H et al. 1988].

This topic has not been addressed in detailed within this research.

• Labour intensive and therefore expensive.

Inspections are human processes and are therefore labour intensive, although there is
some minimal tool support available for conducting inspections, the majority of the
work is done through the efforts of the individual inspectors. A manager is required
to support the inspection process and to assist in making the best use of the available
resource. Although it has been shown by many of the references above that
inspections are cost effective, generally some managers do not appear to be
convinced. Managers need a tool to show the effectiveness of software inspections
and what are the key attributes to an effective inspection.

This topic has been addressed in this research, as part of its aim is to improve the
productivity of software inspections by knowing their value.

2-23

• Inspection effectiveness models that require knowledge of all errors in a product

All the published inspection effectiveness models require knowledge of the total
number of errors with a product, or the number of errors remaining in a product after
inspection and correction. Fagan makes use of these quantities within his equation .of
effectiveness. Unfortunately these quantities are not available at the time' of
inspection, and may never be known unless the execution of the software cause all
of the errors in the software to be manifested as faults. What is needed is a model of
inspection effectiveness that does not require knowledge of the number of errors. It
should also be possible to use the model predictively prior to an inspection as a
management aid to ensure that the resources are available and to provide assistance
in making the inspection as effective as possible.

This thesis proposes such a model.

• Inspection effectiveness models make questionable assumptions

The published inspection effectiveness models [Christenson DA and Huang ST
1988],[Christenson DA, Huang ST et al. 1990], [Porter AA, Siy H et al. 1988] all
make major assumptions about the nature of software inspections and the way in
which errors are distributed. In Christenson's model [Christenson DA and Huang ST
1988], [Christenson DA, Huang ST et al. 1990] of code inspections he assumes that
the density of errors is proportional to the density of problem reports raised. Porter et
al. [Porter AA, Siy II et al. 1988] make a similar assumption but uses a generalised
linear model rather than the straight-line approach of Christenson. That assumption
is unreasonable, as the absence of errors detected does not indicate freedom from
errors, only that the process has failed to find them. Counting the numbers of errors
identified in an inspection is not sufficient (See Figure 2-8). Say we found X errors,
then this could represent all the errors in a product, resulting from a good product
and a good review process. The same number of errors X, however, could be only a
fraction of the total number of errors, resulting from a poor inspection process
applied to a bad product. In fact many combinations of product and inspection
process could result in X errors being discovered. He also assumes that the process
of making errors in the code is a random process. This implies that the error density
over different projects is constant. This could be possible if it is assumed that there
are many different sources of error. A similar mechanism occurs in mechanical
reliability, however, as the causes of error are eliminated and defects repaired, as in
the case of a software development process, non- random distributions become
important. With software certain types of error can dominate e.g. requirement errors
[Lutz R 1993]. This random distribution is only true when the different projects are
directly comparable, e.g. the same software development team, a similar sized
project etc. The models also combine data from a number of disparate sources in an
uncontrolled way, without considering the dependencies between the sources of
information.

2-24

Total number of errors

Number of errors
found b inspection

Figure 2-8

Examples of different inspection effectiveness

The model of inspection effectiveness proposed here, does not make any assumption
about the density of errors within a product. It is based only on the disparate
attributes and expert opinion on the dependencies between attributes that contribute
towards inspection effectiveness.

• Inspection effectiveness models that do not capture the experience of inspectors.

It is clear from the literature that the experience of the inspectors is an important
attribute in the effectiveness of an inspection. Current models and experiments, e.g.
Porter et al. [Porter AA and Votta LG 1994] attempt to eliminate the effect of
inspectors learning from the inspection process. This assists with conducting clean
experiments although it does not reflect reality. Inspections are effective because of
the lessons learned, so any model of e ffecti veness should include this learning
process and be adapted as experience in conducting inspections grows. Current
literature has not addressed the potential for the use of artificial intelligence in
improving the effec ti veness of software inspections.

My model of software inspection effectiveness makes use of previous experience
and expert judgement, and investigates the potential for the model to learn with
ex perience.

2-25

Chapter 3 - Bayesian Belief Networks

Abstract

In this chapter I review Bayesian Belief Networks, in the context of other possible
modelling methods. This chapter makes the case for the use of a Bayesian technique to
address these problems and in particular the use of Bayesian Belief Networks in this
application. The chapter first outlines the essential features of these networks and examines
alternative modelling techniques and makes the case for the application of Bayesian
statistics, outlines how these models may be used and shows how the results obtained from
a model can be verified against actual experience.

In trod uction

In the previous chapter, I examined research that had been carried out on the evolution
of software quality assurance concluding with the evaluation of the effectiveness of
software inspections. In this chapter I describe how Bayesian Belief Networks are a
suitable method for modelling software inspection in the context of problems identified
in existing software inspection effectiveness models. These problems include the use
by existing models of knowledge of all the errors in a product, assumptions about the
distribution of errors and the lack of inspectors' experience within the models.

3.1. Review of Modelling Theory

3.1.1 Developing a model

Bender [Bender EA 1978] describes mathematical model building as a process that
involves imagination and skill. The process he suggests contains the following steps:

1. Formulate the Problem. What you wish to know? The nature of the model you
choose depends very much on what you want it to do.

2. Outline the l\Iodel. At this stage you must separate the various parts' of the
universe into unimportant, exogenous and endogenous variables. The interrelations
among the variables must also be specified.

3. Is it useful? Now stand back and look at what you have. Can you obtain the needed
data from measurement and use it in the model to make the predictions you want? If
the model fits the situation, will you be able to use it?

4. Test the l\fodel. Use the model to make predictions that can be checked against
data or common sense. If the predictions are acceptable they should give some
feeling for the accuracy and range of applicability of the model. If they are less
accurate than anticipated, it is a good idea to try and understand why, since this may
uncover implicit or false assumptions.

To expand on Bender's process I suggest that a fifth process step be applied.

3-1

5. Conduct sensitivity analysis. This is applied as part of the model optimisation to
determine the applicability of the variables within the model. Do the variables
contribute to the model; can the model be simplified by removing ineffective
variables? Bender does support this concept but only through an illustrative
example.

3.1.2 Formulating the problem and selecting an appropriate model type

The problem is to model the effectiveness of software inspections that makes use of
previous experience and expert judgement, and investigates the potential for the model
to learn with experience. The model should also not require the use of information not
available at the time of an inspection, e.g. the total number of faults in the product
being inspected.

Stage one of the model definition process is to formulate the problem. From the review
in the chapter 2 the use of linear models, e.g. [Christenson DA and Huang ST 1988]
has been shown to be of limited value. This can be expected as the effectiveness of the
inspection depends on both the item being inspected and the skills and experience of
the inspectors. This relationship is likely to be non-linear.

The structure of the model needs to be considered by brain storming. What are the
possible influences on the subject of interest and how do they relate to each other? A
simple influence diagram or conceptual model could be drawn that this stage.
[Checkland PB 1981]

A simple non-linear model could be to tabulate the relationship between the input
variables and the required output. The table could be populated from either heuristics,
or from previous data. A deterministic model of this type does not represent the reality
of the problem. The effectiveness of all inspections are not determined solely
dependent on a set of fixed inputs. Inspections are human processes [Fagan M 1976]
and therefore an element of non-determinism is required.

This narrows the selection of the model to a probabilistic type of model, and I have
chosen to use a model using conditional probabilities. A static model of this type can be
built by examining the influences on what makes an effective inspection and building
up a network of these influences to calculate a probability distribution for the
effectiveness of an inspection based on its influences.

One suitable candidate model would be a Bayesian Belief Network. This model is also
appropriate for use in dynamic situations where a stochastic model is required. Here the
model learns from the experience of previous inspections and expert knowledge. There
are alternative model types that could have been chosen which have the ability to learn.

3.1.3 Alternative modelling methods

A number of alternative approaches to modelling relationships which learn have been
developed including nonmonotonic reasoning, fuzzy logic, Bayesian Belief Networks,
Dempster-Shafer calculus and Artificial Neural Networks.

Non-monotonic reasoning [Reiter R 1987] is an 'approach to learning where knowledge
is logically ordered to provide diagnosis of problems. Inference is obtaining by
applying a set of rules to determine the logic pathway to the resolution of the problem.

3-2

The result is deterministically based on a rule base and has no ability to learn from the
actual outcome of the event. The approach is qualitative rather than quantitative and
was therefore rejected.

Fuzzy Logic [Zadeh LA 1983] in this context extends the application of non-monotonic
reasoning by applying overlapping boundaries to decision points in the set of logical
rules. In the non-overlapped area, decisions are applied according" to the rule base.
When decisions are made in the fuzzy area, these are based on a set of fuzzy rules,
which use the memory from previous values of the event to select the appropriate rule.
Fuzzy logic suffers from the need to define not only the set of rules but also the
membership of the fuzzy sets thus leading to a combinational explosion with a large
problem domain. A fuzzy model is also limited, as it cannot adapt its rule base on the
basis on the actual outcome.

Bayesian Belief Networks are based on Graphical Probability Models (GPM) and use
the structure of a aPM together with a numerical model of the dependencies between
the attributes to calculate the probability of a property having a certain state or range of
states using Bayesian statistics. The numerical model of dependencies can be used as a
means of providing a-priori experience to the model. The artificial intelligence property
comes from the ability of the model to adapt the numerical model of the dependencies
if the state of the unknown property is known together with the data used to draw the
initial inference of the probability that the property would have state.

Shafer [Shafer G 1985] argues that a Bayesian approach is an argument that assesses
the strength of evidence in a particular problem, by only drawing an analogy with the
evidence that would be a particular outcome from a game of chance. Shafer argues that
belief functions in Dempster-Shafer calculus provide a better means of determining the
probabilistic outcome of an event. It uses the idea of determining the plausibility of an
event, which is the probability of the event occurring if all the unknown facts were in
favour of the event occurring, and the belief in the event which is all the current
evidence for the event occurring. The actual probability of the event occurring will lie
between its belief and its plausibility. The difference between Dempster-Shafer
calculus and a Bayesian Statistical model is conceptual. In the Bayesian statistical
model it is assumed that there is an event that either exists or does not exist. However
in Dempster-Shafer theory only evidence in favour of the hypothesis is considered, and
assumes that there is no causal relationship between a hypothesis and its negation,
therefore the lack of belief in an event does not imply disbelief. Gordon and Shortliffe
[Gordon J and Shortliffe Ell 1985] provide a diagnostic example where the use of
Dempster-Shafer theory replaces initial uncertainty about an event by belief or disbelief
as evidence is accumulated. The application of Dempster-Shafer calculus is, however,
limited in that it has no capability to model the dependencies between attributes. This is
considered a major weakness of the approach as the problem has many dependencies
between attributes. On practical level Dempster-Shafer theory was rejected as it is not
supported by readily available tools and that the mathematics are less tractable than
Bayesian Belief Networks.

An alternative approach would have been to use an artificial neural network to create a
model [Czachur KJ 1995]. These networks use sets of data to compare the behaviour of
random networks with the desired result and to use a transfer function to reconfigure
the connections and weightings within the network successively until a satisfactory
result from the model is obtained. This process is known as training the network to

3-3

recognise certain patterns of data and to produce the appropriate response to these
patterns. As the network structure is random no prior knowledge is used. Instead they
rely on the posterior information to achieve the desired model performance. Bayesian
networks, in comparison, use a deterministic structure to form the network and include
experience through the use of prior probabilities. The major disadvantage with this type
of approach is the very large amount of data compared with a Bayesian network
required to establish a model. -

As discussed in Chapter 2 one of the key issues in determining the effectiveness of a
software inspection is the experience of the individual inspectors'. The selection of the
Bayesian Belief Network method provides a means for including the experience of
inspectors by capturing the experience as the prior probabilities within the network.

3.1.3 Graphical Probability :Models

Graphical probability models are based on the idea of mapping causal relationships
within a network. This approach was first described by Wright [Wright S 1921],
[Wright S 1934].

These ideas were extended to combine probabilistic methods in an expert system with
the causal networks which was described by Pearl [Pearl J 1988-1], [Pearl J 1988-2].
Here he introduces the idea of procedural semantics based on a causal model of a set of
variables U in a directed acyclic graph (DAG) in which each node corresponds to a
distinct element of U with arcs showing inferred causation. A variable X is said to have
a causal influence on a variable Y if a strictly directed path from X to Y exists in every
minimal causal model consistent with the data.

The problem is represented by the causal structure, with prior belief asserted for each
leaf node within a tree structure and application of Bayes theorem allows the inference
for each junction within the tree to be updated. Bayes Theorem states that the
probability of A, given that B is known, is equal to the probability of B given that we
know A, multiplied by the ratio of probabilities A and B.

P(A&B) = P (AlB) P (B) = P(BIA) P(A)

A causal net consists of a number of nodes, which represent variables, which can take
discrete values (or a continuous distribution, which can be approximated by a series of
discrete values over the range of the distribution), linked together. The links represent
the dependencies between the variables. Each link represents the influence, which the
value of one variable has on the value of another (if the influence is zero, then there is
no link). The influence depends on the combination of nodes: in general if one node
can take n values and the other m values, the influence of one node on the other is an
nxm matrix.

3-4

Formal
Actions

C1

Adequate
Inspection

Rate

Quality of
Inspection
Procedure

C2

81

Defined
Evaluation

Criteria
C3

Figure 3·1

. Defined
scope of

inspection
C4

The top node in the example (Figure 3-1) is for the Quality of Inspection Procedure. In
designing this part of the network it has been decided that this depends on formal
actions, adequate inspection rate, defined evaluation criteria and a defined scope of
inspection. These are shown by the directed links on the diagram, from the parent nodes
to the (dependent) child. These parent nodes within the network are described as
evidence nodes for which data is provided and from which combined with a model of
dependencies between these attributes estimates can be calculated. These evidence
nodes are required to be conditionally independent from each other. It is necessary to
select metrics for evidence nodes that are orthogonal. The network can also have a
number of nodes that link evidence nodes and may be used to describe a hierarchy
within the model. These nodes are therefore conditionally dependent on the inputs and
therefore the relationship between the inputs must be described. The relationship
between these attributes is determined from past experience (expert judgement) and is
known as the prior belief.

x y

Figure 3·2

In the DAG shown in figure 3-2 above. the value of Z depends on two inputs X and Y.
If the value of Z is not known but if we have evidence for the value of X and that the
value of X has no influence on the value of Y. then X and Y are conditionally
independent. If however the value of Y is influenced by the value of X then the inputs
X and Y are not independent. Additionally if Z has its own data associated with it then,
the values for X and Y are conditionally dependent on Z to satisfy it. Therefore data
used to provide evidence for X and Y must be separately determined.

3-5

The structures used by Pearl [Pearl J 1988-2] in his models were all based on tree
structures, i.e. with no cross links, therefore evidence could only be applied in one
branch of the model at a time. Moreover the multiple application of Bayes equation in
updating the belief within the tree becomes computationally intractable in large
networks.

3.2 Bayesian Belief Networks

The tree structures for Bayesian Belief Networks have been developed by Lauritzen and
Spiegelhalter [Lauritzen SL and Spiegelhalter DJ 1988] who define an expert system as
containing a knowledge base, with assumptions about the domain, the structure of
propositions or facts about the system related by rules, frames or networks. Their
approach is to define a causal network with links between nodes, in a similar way to
influence diagrams or the Bayes trees described by Pearl [Pearl J 1988-2]. The network
is not limited to tree structures as cross-links are permitted, provided they do not create
a directed cycle.

Their approach is to use the topology of the graph to develop a simplified set of
equations to perform local computations. The network example given in Figure 3-1
above can be expanded so that it is less trivial. The result is shown in Figure 3-3. This
network will serve to demonstrate the approach. The model could be further expanding
by using cross-linking, however this is not necessary as cross linking is avoided in
practice as it introduces undesirable dependencies between nodes.

Figure 3·3

The first stage is to build up the evidence potentials within the network. This is done by
considering an undirected graph that is formed by providing links between un-joined
parents of a common child by removing the causation direction arrows from the graph.
The next stage is to triangulate the graph, i.e. there are no cycles of more than four or
more nodes without a chord (undirected link) or short cut as shown by the dotted lines
in figure 3-4.

The network now appears as:

3-6

Figure 3-4

This approach is used to build cliques6 of the triangulated graph Figure 3-4. Any joint
distribution involving nodes on the network can be expressed as a simple function of
the individual marginal distributions on the cliques. Therefore marginal distributions
only involve a subset of the nodes on the graph.
In the above example the cliques are represented by:

C2. C3. C4•
C6. B2
B2. Al

The joint probability distribution of the graph is:

p (el & e2 & e 3 & e 4 & Cs & e 6 & B I & B2 & AI> =
p (el) p (e2) p(e3) p(e4) pees) p(e6) P(BI) P(B2) P(B I' e l & e1 & e 3 & e4) P(B2' es & e 6)P(AI' BI

&B2)

However a computationally simpler form can be made if it is represented in terms of
the evidence potentials where tp is the evidence potential function.

The evidence potential is a function of the conditional probabilities of the nodes on
each clique. Which can represented as

tp (C .. C2• C3• C4• B I) = P (CI) P (C2) P (C3) P (C4) P (nil CI&C2&C3&C4)
'P (Cs. C6, B2) = P (C5) P (C6) P (B21 C5 & C6)

'¥ (B .. B2, AI) = P (B I) P (B2) P (All BI & B2)

The resulting calculations make it easier to update the belief in the node states, by
absorbing evidence into the network using the clique calculations.

6 A clique is defined as the maximal complete subset.

3-7

This idea was extended by Spiegelhalter et al [Spiegelhalter DJ and Lauritzen SL 1990]
using moment matching to produce junction trees7

• A fast algorithm is used to calculate
the marginal probabilities within the network. These algorithms were implemented in
the BAlES project [Spiegelhalter DJ, Dawid AP et al. 1993].

In the prototype HUGIN tool [Anderson SK, Olesen KG et aI. 1989] HUGIN
(Handling Uncertainty in General Influence Networks) developed as part of ESPRIT
project P599 - A knowledge based assistant for Electromyography, the junction tree is
automatically constructed, by moralisation8 of the graph and the triangulated 'to-from'
cliques that are selected to provide optimum runtime of the flow propagation algorithm
[Jensen FV, Lauritzen SL et aI. 1990]. The compilation file using HUGIN for this
example is:

7 A junction tree exists if for each pair of nodes in the tree, alT nodes on the path between them contain the
intersection of the terminal nodes.
• A moral graph is one in which siblings share common parents. Moralisation is the process of graph editing
to produce causal trees rather than cyclic graphs by inserting and deleting arcs use the moral rule.

3-8

Marriages (bigamy allowed) :

Marrying C6 and C5
Marrying C3 and C2
Marrying C3 and C1
Marrying C3 and C4
Marrying C2 and Cl
Marrying C2 and C4
Marrying Cl and C4
Marrying B2 and Bl

Triangulation by minimum fill-in weight heuristic: .
Fill-in links and node numbering:

9 C6
8 C5
7 C3
6 C2
5 C1
4 C4
3 B2
2 B1
1 A1

Cliques:

Clique 1, 3 members (A1, Bl, B2), table size = 1
Clique 2, 5 members (Bl, C4, C1, C2, C3), table size = 1
Clique 3, 3 members (B2, C5, C6), table size = 1
Total clique table size: 3

The junction forest:

Creating junction tree with clique 1 as root ...
Cliques 2 and I linked, separated by {B1} (table size = 1)
Cliques 3 and 1 linked, separated by {B2} (table size = 1)

Checking tables for all nodes .•.

Assignment of potentials to cliques:
Node C6 assigned to clique 3
Node C5 assigned to clique 3
Node C3 assigned to clique 2
Node C2 assigned to clique 2
Node C1 assigned to clique 2
Node C4 assigned to clique 2
Node B2 assigned to clique 3
Node B1 assigned to clique 2
Node A1 assigned to clique 1

Given the definition of the network its marginal distributions for each node in the
network need to be characterised. To quantify these distributions we specify conditional
probability values for each state of the child, given each state of the parents. For
example for the causal network above expert opinion may suggest the following
distribution:

3-9

States of Parent Nodes Probabilities of states of child
For Adequat Define Define Poor Fair Goo
mal e Evaluati Scope d
Acti Inspecti on of
ons on Criteria inspec

Rate tion
No No No No 0.9 0.1 0
No No No Yes 0.8 0.1 0.1
No No Yes No 0.8 0.1 0.1
No No Yes Yes 0.8 0.2 0
No Yes No No 0.7 0.2 0.1
No Yes No Yes 0.6 0.2 0.2
No Yes Yes No 0.6 0.2 0.2
No Yes Yes Yes 0.5 0.3 0.2
Yes No No No 0.4 0.3 0.3
Yes No No Yes 0.2 0.3 0.5
Yes No Yes No 0.2 0.3 0.5
Yes No Yes Yes 0.2 0.2 0.6
Yes Yes No No 0.1 0.2 0.7
Yes Yes No Yes 0.1 0.1 0.8
Yes Yes Yes No 0.1 0.1 0.8
Yes Yes Yes Yes 0 0.1 0.9

Table 3·1

These values can be determined from expert opinion, metric data collected from a'
number of projects or from published data. The porosity of published data as discussed
above limits the use of this option and therefore in many cases expert opinion is
required to initialise the network. Unfortunately, Ayton [Ayton P 1994] shows that
humans are not to be trusted in applying judgement to the solution of complex tasks,
which is the case in determining a conditional prior probability table. It is now
recognised that the concerns raised can be avoided by the use of simple elicitation
techniques [Ayton P 1998], which have been addressed (see section 5.1.3).

French [French S, Cooke RM et a1. 1991] also notes the following requirements in
using expert opinion:

• Preservation of independence of the experts during knowledge elicitation.
• Temporal consistence to ensure that the judgement once made is not changed unless

there is evidence to the contrary.
• Calibration of the expert opinion against actual evidence.

An alternative to using a pure Bayesian Belief Network, which just uses chance nodes,
is to use utility theory together with an influence diagram of the type proposed in
Marshall and Oliver [Marshall KT and Oliver RM 1995]. An influence diagram of this
type is simply a Bayesian Belief Network extended with utility nodes and decision
nodes. Utility nodes are used to represent each contributing part of a utility9, Utility
nodes are conventionally indicated on an influence diagram by rhombi. Utility tables in
the units of usefulness, e.g. cost, define utility nodes. Decision nodes define the place in
the influence diagram where decisions need to be made, e.g. whether to undertake an
action. These are conventionally defined by re-ctangles. Decision nodes are not given a

9 Utility can be defined as the usefulness of a decision measured on a numerical scale.

3-10

prior belief table, bu t the resul ts are calculated from the utility function defined by the
influence diagram (See figure 3-5). In an influence diagram there must be an
unambiguous order among the decision nodes. That is, there can be only one sequence
in which decisions are made.

More experienced Inspectors Number of errors

Better Inspections

Figure 3-5

Influe nce di agrams have applications where there is a need to know the influence of a
limited number of variables in a complex relationship in determining whether to follow
a specific course of ac tion, or not. In this application , the problem of determining the
effecti veness of a software inspection is not appropriate for an influence diagram, as
there are large numbers of variables and a series of possible outcomes. It would be
poss ible however to use an influence diagram to determine the effectiveness of
changing a particular variable in the inspection.

One method for incorporating evidence into the Bayesian Belief Model is by
propagation [Jensen F J 998]. This can be considered to be a batch model where a series
of tes t case fi les are used and the resulting joint probability distribution for the nodes
is updated on the basis of the batch of data. The probabilities are calculated for each
state of the ev idence in the model. The evidence potentials are multiplied onto the
clique potenti als (see Chapter 3), the resulting potential on a set of evidence variables
where v is the marginal probabi lity for V, giv n the evidence on al l variables within the
model except fo r V itself. Thi mode of propagation is known as "Sum Normal". As an
alternati ve " Max Normal" propagation is available, but this is used when the object is
to fi nd states be longing to the most probable configuration of the model. In other words
it uses normali sation with 100 being assigned to the mo t probable configuration and
ev idence normalised against this configuration. The HUGIN tool supports this feature
in conjunction with utility nodes for decision support applications. The weakness of
th is approach is that there is a tendency for the maximum likelihood assumptions to
result in ex treme choices for the parent conditional probabilities at non-evidence nodes,
and results in slow convergence towards the ac tual findin gs .

One of the m:l in re:lsons for using Bayesian networks is their ability to learn from the
evidence recorded. Several alternative approaches to enable the network to learn are
available.

Using the curve fitti ng technique, the evidence from experiments could be used to
rev ise the condit ional probabilities so that the predictions obtained most closely fit the
resu lts obtained. This approach is known as direct modelling. The model network
wou ld requi re to be converted to a mathematical expression and by using a model­
fi tt ing algorithm, e.g. least squares the revised conditional probabilities can be

3- 11

calculated. Where data is missing then a type variable representing uncertainty in belief
is added. This is known as retrieval of experience. Not all the data needs to be absolute
value data, qualitative data can be represented by a series of integers to represent the
range of factors. The implementation of this method, however, would be very complex
with large models. Every single entry in the conditional probability tables represents a
random variable and hence data, which covers all the complete range of the variables,
would be required. The problem with this approach is the combinatorial explosion that
occurs due to interdependence of the variables.

An alternative approach employs the posterior form of Bayes equation as suggested in
[Spiegelhalter DJ and Cowell RG 1992], where the. result and the evidence is known
and is used to calculate the intermediate distributions to support the results. Taking the
initial engineering judgement for a probability distribution at a node as p (1), Evidence
E is entered into the network for both the inputs and the known output. This
information is then used to calculate a new set of belief for the engineering judgement
J. The posterior distribution p(J) based on the experimental results is:

(J) = p(J I E) peE)
p peE I J)

By repeated application of this calculation for each set of experimental evidence the
conditional probabilities will be (in a well formed model) refined as the model "learns"
from the evidence provided by the experiments. This results in accumulating
experience over time. This approach however is computationally expensive. .

It may be possible that there is sufficient data available to allow the network to revise
all of its parameters within the network by learning from the data sets. This activity as
been defined as training [Krause PJ 1998]. It is more usually the case that not all of the
data is available from data sets and use made of expert judgement to provide the
missing parameters for the network. In this case a process known as adaptation revises
the parameters within the network.

One improvement over a simple application of Bayes equation is to assume that the
prior distributions of the random variables within the network are defined as a
Dirichlet10 distribution. The advantage of this assumption is that for each variable.
which has a Dirichlet prior distribution, the posterior distribution will also be a
Dirichlet distribution. An equivalent process is used in statistical software testing where
a Beta prior distribution is conjugated with binomial sampling to produce a Beta
posterior distribution [Gardiner S 1999].

In detail the HUGIN adaptation process the conditional probabilities p(vlpa(v» for each
node variable v in the model and each configuration of the parents of v, pa(v) are
considered to be completely independent random variables. The prior distribution of
these random variables is taken to be a Dirichlet distribution because this is the

10 0' 'hI d' 'b ' b d 'b f(I) r(ao al-J 0*-1 h me ct IstnutJonscan e escnedby: X al'",a,t = XI .. x,t were
r(al) .. r(a,t)

rca) is a gamma function (a>O) [Robert CP 1994].

3-12

conjugate prior for multinomial samplingll. The adaptation of the distributions for the
independent variables occurs each time that a case is observed. The weakness of this
approach is when there is missing data. In this case the statistical sequential calibration
model does not produce Dirichlet distributions from Dirichlet priors [Abrahamsen P
1992].

A refinement to this approach is the aHugin adaptation process described by Oleson et
al. [Olesen KG, Lauritzen SL et al. 1992], that uses a fading facility where past
evidence is forgotten at an exponential rate. The fading depends on the decay rate with
a long memory able to provide better adaptation, but is very slow at reaching
equilibrium, with a shorter rate giving more dynamic performance, but at the expense
of noise.

A limitation of the use of adaptation methods using Dirichlet distribution is that if there
is incomplete data in the data set then the posterior distribution will not be a Dirichlet
distribution. In this case the missing entries in the data set will be ignored or missing
cases can be ascribed to an ad hoc dummy state, however this can introduce bias as
these cases may be relevant. Alternative strategies for learning algorithms have been
described:

• Gibbs sampling [Hastings W 1970] apples Monte Carlo sampling methods using
Markov chains. This method only applies if the Gibbs sampler is irreducible, i.e.
the distribution must be such that the distribution has no zeros. A practical
application of this method was developed in the form of the BUGS software [Gilks
WR, Thomas A et a1. 1994].

• Expectation-maximisation (EM) algorithm [Dempster AP, Laird NM et al. 1977]
iterates though two steps, an expectation step and a maximisation step. In the first
step the expected sufficient statistics for the missing data is calculated and in the
second the observations of the missing data is maximised. This method is limited
where a substantial amount of the data is missing. The maximising algorithm can
then find local maxima rather than the true maximum. The learning process using
the EM algorithm has been found to be painfully slow as noted by Thiesson
[Thiesson B 1995].

• Bound and Collapse [Ramoni M and Sebastiani P 1999] - bounds the set of
possible estimates consistent with the minimum and maximum of all the possible
missing conditions and then collapses the set to a unique value using an assumed
pattern of the missing data.

It is possible that some evidence may be conflicting with the model. To measure this
Jensen [Jensen FV, Chamberlain B et a1. 1991] provides a suspicion index or conflict
equation:

conj(x, .. y) = log2 P(x) .. P(y)
P(x* ... * y)

II This is a mathematically convenience as, if the prior is a Dirichlet distribution then the posterior will also
be a Dirichlet distribution. This has the effect of reducing the complexity of the adaptation calculations
required

3-13

if conf(x, .. y) is positive then the data is possibly conflicting. and therefore can be
retracted12 from the model.

To test the effectiveness of the model results there are a number of possible approaches.
Standard statistical methods e.g. Edwards and Havranek [Edwards E and Havranek T
1987] have been proposed. However these do not take into account the sequential
learning process within the network. It is, however, always possible to make a single
point check on the significance of a single result using standard statistical tests [Freund
JE and Walpole RE 1987]. A more appropriate method is to measure the distance
between the predicted distribution and the actual distribution and assign a penalty score
based on the distance. This technique has been applied in statistical weather forecasting
[Murphy AH and Winkler RL 1984].

Two scoring bases are available, logarithmic and quadratic.

The logarithmic rule proposed by Cowell et al. [Cowell RO, Dawid AP et a1. 1993]
assigns penalty marks on the basis of the following equation:

If Pm (y) is the software inspection effectiveness distribution after mth test case and the

actual effectiveness y then the logarithmic score is S m = -log2 Pm (Y) where Y is the

predicted probability for the actual value y.

Therefore a correct deterministic prediction will have a value Pm = 1 and therefore a
score of zero, but a prediction of 0.6 would produce a score of 0.511.

As each test case is applied to the model the total penalty score S which is the sum of
M

the individual penalty scores is S = ISm
m=l

If Y has n states, the expectation Em of the score for the predicted distribution used on
/I

the mth test case is given by Em = -L Pm (Yi) log2 Pm (Yi) with a variance V m of
A:=l

/I

Vm = LPm(YA:)log! Pm(Yk)-E;
A:=1

The standardised test statistic based on the null hypothesis test of significance used ZM

I,mS. - LmE.
is: Zm = 1 ~I '. Zm should tend to a mean of 0 and with a variance of 1 if

VL~Vi
appropriate predictions are made. The goodness of fit between the models probability
forecast and the actual results are assessed using the test statistic Z. If IZI < 2 then the
model predictions can be said to be satisfactory. If however IZI > 2 this would indicate a
significant mismatch between the model and the data.

[Cowell RO, Dawid AP et a1. 1993] describes the method using a simple binary
prediction (success or failure). This approach can be extended where the result is a
range of possible values and the prediction is a distribution of probabilities as in the

12 Retraction is where evidence is removed from a network by Bayesian propagation

3-14

case of the software inspection effectiveness model. To make this extension, however, I
have needed for each test case to assume that the model is detenninistic. That is, I am
only interested in the model value that corresponds to the actual result and assume that
all the other values in the distribution are failure cases. This has the result of making
the model look conservative.

An alternative to scoring is to compare the results with a trusted oracle or alternative
reference model as described by Cowell [Cowell RG, Dawid AP et al. 1993]. This
technique was not used, as a trusted oracle or reference model for this problem was not
available.

An alternative to Cowell's score is the quadratic or Brier score [Brier GW 1950]
proposed for use in Bayesian models by Marshall and Oliver [Marshall KT and Oliver
RM 1995] and by Jensen [Jensen FV 1996] who uses a similar distance measure
between the predicted distribution (P (w» and the actual value (p. (w)):

w
Dis~P,P·}=})p (~_p·(~}2

_1

There is a problem with these scoring mechanisms, however. If the distribution is flat
and then the score would be good even with a bad model. In general, flat distributions
only serve to show that more data is required. Conversely, a near correct prediction
with a narrow distribution, would in this case score badly. The model in this case may
be near optimum and require a little tuning or will be corrected via machine learning.
An extended statistical significance test as described by Cowell [Cowell RG, Dawid
AP et al. 1993] using the statistical moments of expectation and variance measurement
can be used to provide evidence to identify this.

There are a number of tools that have been developed to implement Bayesian networks,
of which HUGIN [Hugin Expert NS 1998] of the commercial products is the best
known. This has been extended as a results of a European Framework IV project to
produce the SERENE tool [Hugin 1999]. Alternative commercial products are
Analytica [Morgan MG and Henrion M 1998] which has been developed for supporting
automated decision systems using influence trees and Ergo [Herskovits EH and Dagher
AP 1997] for medical diagnosis. Research tools include: GeNIe [Druzdzel M 1998]
using a similar structure to IIUGIN but using a different method of producing junction
trees, IDEAL [Srinivas S and Breese J 1990] is written in Lisp and runs on a UNIX
platform was developed for Rockwell, and Java Bayes [Cozman FG 1998], which has
been developed for Internet reasoning.

The application of Bayesian networks has been demonstrated by experience in several
domains such as medical diagnosis [Andreassen S, M. ct al. 1987], [Herskovits EH and
Dagher AP 1997] where much of the early work in applying Bayesian networks was
done. Further applications include the assessment of damage to structures in civil
engineering [Reed DA 1993], reliability estimation [Shaw M 1991], system
dependability [Neil M, Littlewood B et al. 1996], [Fenton N, Littlewood B et al. 1998].
A recent use is for providing intelligent help for Microsoft Office 97 [Horvitz E, Breese
J et al. 1998], where the active "paper-clip help icon" invokes a Bayesian search engine
given the query provided by the users the network finds the most likely topics to
support the query.

3-15

3.3 Strengths and weaknesses of Bayesian Belief networks

The strengths of Bayesian Belief networks to support the development of a software
inspection effectiveness model can be summarised as:

• They have the ability to model problems in an intuitive way through the application
of causal networks providing a structure for the attributes of problems and their
dependencies.

• They can provide an estimate of the effectiveness of a software inspection based
only on the evidence from metrics available during the inspection.

• They provide a means of including initial belief about the relationship between the
model attributes by specifying the initial belief for each conditional state of the
attributes within a dependent relationship within the network.

• Through the application of the Bayesian learning algorithm they allow the network
relationships to learn from the outcome from actual examples.

• Tools allow the Bayesian calculations to be rapidly performed, and allow what-if?
questions to be asked of the network.

The weaknesses of Bayesian Belief networks to support the development of a software
inspection effectiveness model can be summarised as:

• Each state of each variable must be assigned a prior probability requiring a large
initialisation effort. This problem can been mitigated by limiting the combinational
explosion of multiple states through the use of a compact network and limiting the
number of possible states for a variable to hold. It should be noted that recent tools,
e.g. SERENE [Fenton N 1999] have facilities to provide interpolation between
given values of expert judgement. The IMPRESS tool [Neil M, Fenton N et al.
1999] extends this ability by allow the distribution to drawn using a visual editor.

• The structure of the network is fixed, if this is incorrect or the network is poorly
formed then the results of using the network will be incorrect and the learning
process cannot correct this. The use of a scoring method as part of the verification
process can identify an incorrect network structure.

• The number of cases required for learning to enable the model to be "calibrated"
could be large. This would also be the case where an artificial neural network was
used. Bayesian Belief Networks are potentially better than artificial neural
networks, as the prior belief, if correct, will produce a network closer to calibration
and will require fewer calibration examples for learning. A verification process can
then be used to determine if the network has been correctly calibrated.

3.4 Conclusions

3-16

I conclude that Bayesian Belief Networks can be used for developing a model of
software inspection effectiveness if:

• The key variables of the problem can be defined;
• The dependencies between the key variables can be defined;
• The experience of experts can be captured as prior belief in the model;
• Sufficient observations from inspections are available for model caJibration.

As the response to each of these questions is "yes" the problem can be modelled
feasibly using a Bayesian Belief Network.

The following chapter describes the definition of these variables, the modelling of the
dependencies between them, the initialisation with expert opinion and the definition
and collection of metrics to populate the model.

3-17

Chapter 4 Model definition

Abstract

In this chapter I describe the application of a Bayesian Belief network to a model that can
be used to estimate the effectiveness of software inspections. The key variables and metrics
for the model are defined, an analysis of the software inspection process, and their
dependencies modelled. I then describe the process of initialising the model using the
experience of software inspectors.

Introduction

Given that a Bayesian Belief Network is a feasible method for modelling the
effectiveness of software inspections, in this chapter I describe the model, which has
been developed to measure software inspection effectiveness. The definition model
starts with an analysis of the software inspection process to define the key variables.
which will form the model.

4.1 The software inspection process

Based on the existing software inspection techniques described in chapter 2, the
software inspection process can be summarised as in figure 4.1 below:

Design and Development Proc ess
DEVELOPMENT LlFECYCLE ...

...... t' ...
I Deliverables I Inspection Stages Inspection Outputs

I Risk log Plan
Material

r Actions

Participants
Conclusions

Location f-.J Lessons Learnt -:-
Time

I
~IMetrics J Pre-meeting

Preparation

I Inspection Proces s
Conduct
Record

Sentence

1
Follow-up

Close out actions

Figure 4·1

4-1

4.1.1 Plan

Experience by Gilb and Graham [Gilb T and Graham D 1993] suggests that planning is
often neglected in the software process and in particular inspections. In summary the
planning activities required are:

• Appoint a person responsible for planning the inspection;
• Identify the appropriate attendees for the inspection including the moderator and

invite them; .
• Identify all the documents associated with the inspection;
• Check that documents meet the entry requirement for inspection;
• Define roles for attendees;
• Divide the material into manageable pieces;
• Find an acceptable meeting time and place;
• Allow adequate time for pre-meeting work;
• Set a preliminary date for the inspection and update estimates as development

proceeds;
• Define the exit criteria for a successful inspection.

The key point is to ensure that inspections are planned, and do not just happen without
proper preparation.

4.1.2 Pre-meeting

An effective inspection relies on each attendee adequately preparing for the inspection.
The authors need to have the material prepared in advance and have marshalled the
information they need to answer the questions that the inspectors are likely to ask. The
inspectors in turn need to spend time so become familiar with the material to be
inspected and have questions ready to test their understanding of the design. Whilst the
individual's personal experience is important, support can be given through the
application of checklists which can encapsulate the experience gained from past
mistakes and successes.

4.1.3 Conduct

The actual means of conducting the inspection were described in the previous chapter.
The particular method chosen by a project will depend on the project requirements and
constraints and the experience and training of the inspectors.

4.1.4 Records

Records generated during the software inspection normally consist of reports, which
include:

• issues,
• actions,
• risks,

4-2

• close out and conclusions.

4.1.5 Follow-up

An inspection cannot be considered complete until the product meets the exit criteria
defined for the inspection and all the actions and issues raised during the inspection
have been closed out. The inspection moderator should ensure that each action has
been satisfactorily dealt with and action· plans have been agreed to resolve the issues
before confirming that the stage of inspection has been completed. Lessons learned
from the inspection should also be recorded and checklists should be updated.

4.2 Model requirements

The objective of this thesis is to develop a model that can predict the effectiveness of
an inspection during the planning and execution stages of the inspection. Project
managers can use this tool to plan the use of the available resources for inspection in
the most effective way.

The requirements for the software inspection effectiveness model therefore need to
build from the attributes that affect (or cause) an effective inspection. Additionally, the
model should not require any information concerning the number of errors within the
product being inspected. This is a new feature of this model as all the published models
of inspection effectiveness use the number of errors found during the inspection as an
attribute. As a consequence, existing models can only be applied after the inspection.
Further, if managers wish to predict the effectiveness of an inspection they would need
to apply analogy between a past inspection and the planned inspection. The analogy
approach has been used in many software metrics models, such as estimating costs for
projects, e.g. Boehms CoCoMo model [Boehm B 1981], but this model requires
calibration of environment constants which tune the model for the particular
environment. By using a form of artificial intelligence within the model, the model,
once initialised can adapt to suit differing environments using a learning process. Again
the use of artificial intelligence has not been previously reported in measuring the
effectiveness of software inspections.

A Bayesian Belief model for predicting the effectiveness of software inspections was
selected based on the evidence given in 3.1 above. The process for developing a new
Bayesian Belief can be defined as:

1. Network definition;
2. Initialisation - setting up marginal distributions on individual nodes;
3. Collect evidence;
4. Propagate evidence;
5. Observe the effects of the evidence on the network.

As a starting point I could take the fishbone diagram of the causal influences for the
quality of software inspections (Figure 2-7) described by Fagan [Fagan M 1986]. This
diagram however, describes the influences on the quality of inspection processes in

4-3

general and not the effectiveness of a particular inspection. As discussed in Chapter 2,
Fagan measures inspection effectiveness in terms of the ratio between the number of
defects found during the inspection and the total number of defects found during the
life of the product, which does not meet the requirements for an inspection
effectiveness model given above. I have redrawn Fagan diagram to give an indication
of the type of attributes that influence the effectiveness of the inspection. These
influences are shown as a tree diagram in Figure 4-2 below.

Figure 4-2

Tree diagrams present a means of modelling. However these suffer from the need to
rationalise the level of information within a diagram, and although containing
directional arrows do not indicate the meaning of the relationships and the nature of the
dependencies. A modelling technique used in representing knowledge, which provided
this information, is a semantic network [Hodgson JPE 1991], [McGraw KL and
Harbison-Briggs K 1989].

Semantic networks were developed as a form of cognitive modelling that allows
individual or collective knowledge to be recorded in a systematic way. A semantic
network is a graph whose nodes are defined by the objects of a network and whose
links denote the relationship between the nodes. The links between nodes are labelled
with the relation between the nodes. Two forms of relationship can be used an "IS-A"
r lationship denoting a member of a set, or an "HAS" relationship denoting a property
characteristic.

Simplifying Fagan's model and building on the literature and my experience of
conducting software inspections, I developed a semantic network (Figure 4-3) that
represents the attribute that influence good software inspection effectiveness. Working
from the objective, a good software inspection network was built down to the
measurable attributes that will be used in the Bayesian model.

4-4

Is Influenced
b

How big is the
inspection

Good
Inspection

etfectiveness

Is influenced
by

Requires

Can be achieved by

Using a suitable
inspection

method

Is
Idenlllied

by

Is defined by

4.3 Model Description

A
good moderator

Figure 4-3

Requires

Adequate
preparation

Requires

Is achieved by

The semantic network I have described Figure 4-3 represents the attributes that
influence good software inspection effectiveness. Working from the objective of a good
so ftware inspection, the network was built down to the measurable attributes that will
be used in the Bayes ian model. The semantic network can be redrawn in the form of a
causal network that can be used by the Bayesian inference engine. A causal network is
a specific form of the semantic network where the structure of the network remains as

4-5

the knowledge representation, with the nodes of the network representing the network
attributes, either as input variables (evidence) or calculated inferences (outputs). The
arcs of the network represent the dependencies between the attributes, which are
defined by the state tables for the network, however the sense of direction of the arcs
are reversed to represent the causal or definitional link rather than the influence.

In the network above the main component of the network relates to the quality of the
inspection process, this however cannot be measured directly so an additional
component that relates to the product size and complexity has been used. This allows
defect data to take into account both the process use and the size of the product
inspected.

The causal network form of the model is shown in Figure 4-4 below.

(Please note Figure 4-4 was generated from the HUGlN Tool and therefore some of the
node names have been truncated)

Neil et al [Neil M, Fenton N et al. 1999] propose that Bayesian Belief Networks can be
built using a small number of natural and reuseable patterns that are described as
idioms. These idioms are not complete belief networks but are fragments that represent
generic types of uncertain reasoning. Five idioms have been identified:

• Definitional/Synthesis - these model the synthesis or combination of many nodes
into nodes for the purpose of organising the belief network. They are also used to
model the deterministic or uncertain definitions between variables.

• Cause-consequence - models the uncertainty of an uncertain causal process with
observable consequences.

• Measurement - models the uncertainty about the accuracy of a measurement
instrument.

• Induction - models the uncertainty related to inductive reasoning based on
populations of similar or exchangeable numbers.

• Reconciliation - models the reconciliation of results where there are competing
measurement or prediction systems.

Using these definitions of idioms they can be applied to the semantic network. Those
relationships that are defined in the semantic network by an IS-A type relationship map
directly into the definitional/synthesis idiom. Even direct measurement relationships
can be considered to be of this type. The model described in Figure 4-3 can then be
stated to be a model, which uses deterministic reasoning to establish the unknown
attributes from the known attributes.

4-6

Quality of preparation

Formal actions

Adequate Inspection rale

Figure 4-4

4-7

Using the measurement idiom to extend the Bayesian Belief network defined in figure
4-4 above, the accuracy of the prediction, which the model makes, can be included.

An improvement to the model shown in Figure 4-4 could be made using the following
addition shown in figure 4-5. By adding a node for the quality of the development
process, the total number of errors can be brought in to give a measurement idiom for
the actual inspection effectiveness. This addition would reduce the reliance on the
assumptions made in section 4.4.1.

Figure 4·5

4.4 Network attributes

The evidence nodes in the model are populated by metrics that will be collected or
estimated for each inspection under evaluation.

4.4.1 Network potentials

Given the structure of the network described in Figure 4-4 above, the network evidence
potential (as described in chapter 3.2) for each clique of the network is defined below:

For the top node of the network - inspection effectiveness = P (Inspection effectiveness
I Quality of Inspection Process, Size of item/subject being inspected, Complexity of
item/subject being inspected)

Fagan above (Figure 4-2) described the causal relationships for the quality of an
organisation's inspection process. The causal attributes in his network diagram above
are for an individual inspection. It has therefore to be assumed that the organisational
influences described by Fagan will be common for all inspections within an
organisation and therefore can be treated as a single calibration factor, which will be
resolved by the Bayesian updating of the model during its calibration.

As discussed earlier the model of software inspection effectiveness predicts the ratio of
errors found in an inspection compared with the total number of errors in the product.
To conduct the evaluation of the model we therefore need to know the total number of
errors in the product. One approach would be to model the total number of errors by
adding the network shown in figure 4-5. This model uses the quality to the
development process as an attribute for estimating the total number of errors. Results

4-8

from the FASGEP project [Cottam M, May J et al. 1994] suggest that this attribute is
very complex. Without a measurement for the total number of errors it would appear to
make the evaluation of the model impossible, as the total number of errors will depend
on the subsequent testing of the software and use to which the software is put, which
will vary between applications.

A weak argument to counter this is to take data from the Adams' experiment [Adams
EN 1984] which suggests that beyond a certain level of error finding effort, the
likelihood of finding additional errors by testing or through use was found to be altered
little. The empirical evaluation of the model can therefore use the total number of errors
found following testing to be sufficient to allow the law of diminishing returns
suggested by the Adams' ex~eriment to apply. It is assumed that the product being
inspected has few "findable" 3 errors and hence the inspection effectiveness can be
considered conditional, independent of the quality of item being inspected.

In developing this model the key attributes for the effective inspection need to be
rationalised. Taking the stages of an inspection (see Figure 4-1), the major tasks are the
quality of preparation for the inspection and the quality of the error logging.

= P (Quality of Inspection Process I Quality of preparation, Quality of error logging)

For the quality of preparation, three attributes have been identified, these will be
determined from simple Boolean metrics.

= P (Quality of preparation I Experience at inspection preparation, Adequate
preparation time, Adequate inspection checklist)

The quality of the error logging depends on the quality of the inspection method or
procedure being used and the quality of the inspection team.

= P (Quality of error logging I Quality of inspection method/procedure, Quality of
inspection team)

The quality of the inspection team consists of the quality of the moderator and the
quality of the team members.

= P (Quality of inspection team I Quality of moderator, Quality of team members)

As discussed in Chapter 2 there can be variations on the hasic inspection method. The
detailed differences between these have not been included in this study, instead the
attributes of any basic inspection method have been included. Four attributes have been
identified and these will be determined from simple Boolean metrics.

= P (Quality of inspection method/procedure I Formal actions, Adequate inspection
rate, Defined exit criteria, Defined scope of inspection)

J) Findable error is an error that can be found as a result of inspection, analysis or test prior to the release of
the software.

4-9

For the quality of inspection team members three attributes have been defined, these
will be determined by simple Boolean metrics

= P (Quality of inspection team members rream size, Experience in inspection role,
Adequate application experience)

Fagan [Fagan M 1986] described the importance of the moderator in facilitating "the
inspection. Three attributes have been defined, these .will be determined by simple
Boolean metrics or from the moderators subjective judgement.

= P (Quality of moderator I Adequate domain knowledge, TraininglExperience at
inspection, Communication skills)

4.4.2 Input metrics

For each leaf node in the network I need to define metrics to provide the data to update
the model. These metrics need to quantity the attributes that are represented by the leaf
nodes in the model. The quantities to be measured are a mixture of both objective data
and objective opinion. The choice of metrics also has to be pragmatic, i.e. easily
measured as they are often viewed by the project managers as an overhead on the
development budget for the software. An aim of this research is to improve
productivity and therefore the cost of collecting a metric must be less than the benefit
gained by recording it.

The ideal approach is therefore to select metrics which are available for free, either
automatically collected by software tools being used by the development team, or
collected for other reasons, e.g. change/modification requests which are required to
maintain the configuration management process. Therefore the number of new metrics
was kept to a minimum.

The range of values to be recorded also needs some consideration, as the Bayesian
Belief model requires discrete inputs so that the scales need to be converted into
discrete ranges. The wider the range the larger the effort required to populate the model
the initial belief.

Using the results from past research together with my experience of conducting
software inspections I have defined the following metrics for these nodes.

• Size of item/subject being inspected

An effective inspection will clearly depend on the product presented for inspection.
Of the product attributes, the size of the product will have the greatest influence.
There is there a limit on the size of product than can be inspected with the detailed
consideration it deserves. For requirements and design inspection, the size of the
product is usually considered to be the number of pages. The standard metric for
code size is NCLOC14

• This measure is consistent for a language however the
inspection task includes the quality of the comments and the style of the source
code presentation.

14 NCLOC Number of lines on non-comment code, i.e. lines of program text that are not lines only
containing comments or a blank line

4-10

• Complexity of item/subject being inspected

The complexity of the product will also influence the performance of the inspection
[ONeill 0 1997]. A complex product will take more time to inspect than a less
complex product. The issue then becomes which metric should be used. For
requirements and design, the structural complexity measures as described by Fenton
[Fenton NE 1991] are used. For the code there has been much debate over
complexity metrics, for example [Shepperd MJ 1988], but· as a simple indicator of
complexity, McCabe cyclomatic complexity measure [McCabe TJ 1976] was
chosen.

• Experience at inspection preparation.

Preparation for the inspection consists of looking at a product to identify concerns
and to identify gaps in understanding to be tested during the logging meeting.
Effective preparation prior to the logging meeting requires the inspector to be
experienced. Bisant and Lyle [Bisant DB and Lyle JR 1989] suggest that
inexperienced inspectors should work with a more experienced inspector to learn
from their expertise. The metric selected uses the subjective judgement of the
inspector by asking the question. "Do you think you have sufficient experience at
inspection preparation?"

• Adequate preparation time

Ackerman et a1. [Ackerman AF, Buchwald LS et al. 1989] and others cite adequate
preparation time as a metric for determining the effectiveness of the inspection
preparation. This is a subjective question and it is left to judgement of the inspector
was used to determine what is adequate. The question "Was there adequate
preparation time?" was used.

• Adequate inspection checklist

Most authors agree that checklists are required to support the preparation process as
these represent the collected experience and lessons learnt. Meyers [Myers OJ 1979]
notes that an important part of the inspection process is the use of checklists to
identify common errors. Using a checklist, however, should not be considered as
the definitive requirement for addressing the areas of concern, but for guidance.
The question "Was there an adequate inspection checklist available?" was used.
The subjective judgement of the inspector was used to determine what is adequate.

• Formal actions

Formal actions from an inspection are required to ensure that the errors identified
are addressed and that a follow-up occurs. This is a basic IS09001 [International
Organization for Standardization 1997] quality requirement to ensure that actions
raised are formally recorded and closed. A simple checklist question is therefore
sufficient. The question "Do formal actions result from the inspection?" was used.

• Adequate inspection rate

4-11

Fagan [Fagan M 1976] cited adequate inspection rate as a required metric, as he
noted that where an excessive inspection rate was used this resulted in fewer defects
being found. Experimental work, e.g. Porter et al. [Porter AA, Siy H et al. 1988]
shows a correlation between inspection rate and the effectiveness of the inspection.
The actual rate was recorded and then compared with the recommended rates
[Strauss SH and Ebenau RG 1994] for code 50>x>150 NCLOC per hour for code
or 5>x > 12 pages per hour for documents. An inspection rate outside of this fange
the range was considered to be inadequate.

• Defined exit criteria

The conditions under which an inspection can be said to complete successfully by
meeting its requirements are needed. Setting the exit criteria is part of the
inspection planning process. It also provides measurable targets for the inspection.
A simple checklist question is all that is needed. The question "Does the inspection
have a defined exit criteria?" was asked.

• Defined scope of inspection

Having a defined scope for the inspection concentrates the effort in the inspection
process on the objective of the inspection and does not waste time on addressing
side issues. This is an issue raised by [Gilb T and Graham D 1993] to ensure that
the focus of the inspection is to identify and log the errors found. I can see no·
advantage in determining a scale of scope and therefore I have used a simple
checklist question. The question "Does the inspection have a defined scope?" was
asked.

• Team size

The size of the inspection team influences its quality. Too small a team (say just
one inspector) can lead to issues being missed and small teams have the potential
for mind-set thinking. Conversely too large a team leads to reluctance for an
individual inspector to raise an issue. It can also lead to diversions from the scope
of the inspections, with the inspection becoming an educational process rather than
an error identification process. By consensus in the published material, e.g. [Fagan
M 1986] 4 or 5 members including the moderator is considered the optimum size.
Using this criterion the actual team size was be tested against the recommended
size, size (x): 3< x <6 = adequate. outside of this range was considered inadequate,
as either to large or too small a team is less effective.

• Experience in inspection role

Selecting an inspector with experience in the role he or she has been asked to carry
out was identified by Knight and Meyers [Knight Je and Meyers EA 1991] as a
major improvement to the inspection process. Good practice is for an engineer to be
brought into an inspection team to learn and gain experience [Bisant DB and Lyle
JR 1989]. Three years within the role has been selected in discussion with a group
of experience inspectors as the value for an experienced inspector.

• Adequate application experience

4-12

Experience in the application is also required to identify issues that are important to
the application. Of particular interest is the effect of the system interfaces on the
product being inspected. There may be issues that an inspector without the
necessary application experience will miss. Two years, on the basis of my
experience, was selected as the value for adequate experience of the application
domain.

• Adequate domain knowledge

A moderator is not required to have specific experience in the application or the
project being inspected, however, they do need adequate knowledge of the domain.
The moderator was requested to judge subjectively if his or her own domain
knowledge is adequate to moderate the inspection effectively. This is a reasonable
question to ask, as the moderator should have enough experience of conducting
inspections to know if they have enough domain knowledge.

• TraininglExperience at Inspection

Moderator training and/or experience was considered by Fagan to be an important
attribute in the quality of the inspection process. The criteria for this are either
completion of formal moderator training, or three years experience at carrying out
inspections. This level of experience in my opinion as an experience practitioner is
sufficient to have participated in inspections and being able to understand the role
of the moderator in an inspection without the need for formal moderator training. It
is possible that less experience will give an inspector enough experience to conduct
the moderator role, but in this case the formal training is desired.

• Communication skills

To facilitate an inspection the moderator must be able to communicate, to listen
actively and encourage team members to communicate. The moderator was
requested to judge his or her own communication skills as poor, fair or good. This
is a reasonable question to ask, as the moderator should have enough experience of
conducting inspections to know if they have the necessary communication skills.

4.5 Model Initialisation

The Inspection Effectiveness model requires initialising by establishing the prior belief
of the conditional probability distribution of intermediate variables. The initialisation of
a Bayesian network requires that the a priori belief in terms of the conditional
probability for each state of the variables in the parent nodes be specified. Experience is
used to provide a priori conditional probability value for each node matrix. For the
evidence nodes, which are at the bottom of the network, the initial distribution for each
state of these variables is set to be flat over its range, i.e. the evidence has an equal
probability for each state.

This experience was elicited by conducting a survey from two independent groups of
engineers with experience of inspection. The two groups operate a similar inspection

4-13

process at two different sites of the same organisation. The two groups were asked the
same set of questions, the results were recorded are the variance between the two
groups responses compared (see Appendix A). .

4-14

As an example the results for the quality of moderator collected from the combined
groups were:

Most Import Neutr Not Irrelev
Import ant al Import ant

ant ant
Communicati 13 26 6 0 0
on skills
Inspection 7 20 15 2 0
experience!
Training
Adequate 3 21 12 2 0
domain
knowledge

Table 4·1

Attribute ranking

1 2 3
Communicatio 19 14 6
n skills
Inspection 12 12 15
experience!
Training
Adequate 9 11 19
domain
knowledge

Table 4·2

(Full details and results from the survey are provided in Appendix A.)

The results from the survey were then translated into the a-prori conditional probability
tables that are required for the Bayesian Belief Network. These tables were completed
using a brain storming activity I facilitated with a sub-set of the inspectors surveyed.
The inspectors completed the tables using the ranking determination as the guidance for
completing all the values in the table. It would have been possible to request all the
inspectors to complete the tables, however, this idea was rejected as this would have
been very time consuming and it would have resulted in a lower number of returns.
There would also be a potential for personal agendas to weight the tables unfairly.

An alternative method, which was not used, would be to use the normalised values
from the survey and then use a given distribution, e.g. a Beta distribution to populate
the a priori conditional probability tables. For continuous distributions there is some
support provided within HUGIN version 5.2, although this is not provided for discrete
distributions, which is being used here. Although this method is more mathematically
based, it will provide prior probabilities based on the given distribution, rather than the
expert opinion of inspectors.

4-15

As an example results of the brain storming activity generated the following table 4-3
for the prior belief, for the quality of moderator:

Probability distribution for
the quality of moderator
Poor

0.85
0.5
0.2
0.6
0.2
0.1
0.7
0.25
0.1
0.5
0.15
0.05

Fair Good

0.1 0.05
0.3 0.2
0.3 0.5
0.3 0.1
0.6 0.2
0.1 0.8
0.25 0.05
0.5 0.25
0.3 0.6
0.3 0.2
0.35 0.5
0.1 0.85

0.9 -h-----...:..,....,-,......"....

0.8

0.7

0.6

0.5 +f - ft"- rT

0.4

0.3

0.2

0.1

Input variables

Domain Inspection
Experie Experienc
nce e/

Training
Poor Poor
Poor Poor
Poor Poor
Poor Good
Poor Good
Poor Good
Good Poor
Good Poor
Good Poor
Good Good
Good Good
Good Good

Table 4·3

O~~~~~~~~~~~~~~~

Figure 4·6

Communicati
on Skills

Poor
Fair
Good
Poor
Fair
Good
Poor
Fair
Good
Poor
Fair
Good

cPoor

• Fair

o Good

Figure 4-6 is a graphical representation of the table above. The probability for each
combination of states is indicated by the height of the bars. Each group of three values
represent the poor, fair and good estimation of probability for the quality of the
moderator given the domain experience, inspection experience/training and
communication skills inputs. The graphs are ordered in the same order as the table
above, with all poor values on the left and all good values on the right.

4-16

For each network node these tables were provided as part of a HUGIN "netfile", as an
example the part of the file representing the quality of the moderator is shown below:

potential (C17 I C21 C20 C19)
{

data = ((((0.85 0.1 0.05) % No <= 3 years poor
(0.5 0.3 0.2) % No <= 3 years fair
(0 . 2 0.3 0.5)) % No <= 3 years good

((0.6 0.3 0.1) % No > 3 years poor
(0.2 0.6 0.2) % No > 3 years fair
(0.1 0.1 0.8))) % No > 3 years good

(((0.7 0.25 0.05) % Yes <= 3 years poor
(0.25 0.5 0.25) % Yes <= 3 years fair
(0.1 0.3 0.6)) % Yes <= 3 years good

((0.5 0.3 0.2) % Yes > 3 years poor
(0.15 0.35 0.5) % Yes > 3 years fair
(0.05 0.1 0.85)))) i % Yes > 3 years good

The results of the brain torming activity and the complete HUGIN netfile are provided
in Appendix B.

The resulting initialised network screenshot from the HUGIN tool is shown in figure 4-
7 below.

Experience at Inspection preparation (C13)
Formal llctlons (C9)

o Inspection etTccttvcness (C 1)

~
• 23.1 1 0 < 20%

17.12 20%<40%
• 16.97 40% < 60%

19.62 60% < 00%
24 .29 00% < 100%

o Quality of Error 10goIng (C5)

t J2 82 poor
27.39 fair
3979 good

Quality of inspection me1hodJproceduro (C7)
o Quality of Inspection process (C3)

t• 2999 poor
27 .70 fair
42.30 gooll

o Quality of Inspection team (CO)
o Quality of Inspection l eam members (CtO)
o Qualityofmolleralor (C17)
o Quality of preparation (C6)
<:) Size of nem/subJect being Inspected (e2)
o Team size (C22)
o TralnlngJExperlence at Inspection (C20)

Formal atHons

Figure 4-7

Initialised network in the Hugin Tool

4- 17

The new process I developed used for generating the model of software inspections can
be summarised by the flow chart shown in figure 4-8.

Problem

+
Solution feasible

with Bayesian
Network model

+
Draw semantic

network

..
Classify

components!
Idoms

+
Define Bayesian
network structure

I
-~ •

Survey Define model
practitioner metrlcs

opinion

+ +
Define Initial
values for all Collect metrlcs
model states

+ I
Initialise model
with prior belief

l

Calibrate model

+
Verify model

+
Use model

Figure 4-8

4-18

4.6 Conclusion

In this chapter I have shown that I have built in a systematic manner a model of
software inspection effectiveness which I have developed using the process described
in figure 4-8 above. The model variables and the associated metrics have been defined.
The dependencies between the variables have been modelled using knowledge
engineering techniques, which allowed the generation of the Bayesian Belief Network.
A survey of expert opinion has been conducted and the data used to characterise the
dependencies between variables as prior belief. This new systematic means of
determining prior belief is an improvement over previous methods, e.g. [Good IJ 1965]
and [Winkler R 1967], which by their own admission, are time consuming and
intimidating.

4-19

Chapter 5 - Case Studies and Experimental Design

Abstract

In this chapter I discuss the selection and description of the case study material and the
design of the experiments conducted using this material. The experiments on the Bayesian
Belief model of software inspection effectiveness were conducted using a number of case
studies of inspection. The majority of the work uses a set of software inspections
conducted by a team developing software for a conditioning monitoring and fault
diagnostic system. Experiments have also been conducted applying inspection techniques
to other parts of the software development lifecycle.

The discussion of the case studies covers, the type of projects selected for the case study,
the types of inspections conducted by the projects, examples of the checklist and criteria
used. There is also a discussion of the adequacy of coverage provided by the case studies.
The attributes, metrics and data that are associated with the case studies are also addressed;
which includes the data collection questionnaire, the means of data collection and storage
and the application of data collected. The discussion of experimental design covers, the
initial testing of the model using a control set of inspection data; calibration of the model
using another set of data; observing the effects of data propagation and retraction. The
chapter concludes with a discussion of the testing of the calibrated network using the
control set of inspection data.

The analysis of the experimental data is discussed in subsequent chapters.

Introduction

In this chapter I describe the selection and types of case study used for the subsequent
experiments on the model of software inspection effectiveness defined in the previous
chapter. I also describe the range and type of the experiments designed to test the
model. The results of these experiments can be found in Chapter 6.

5.1 Case Studies

The case studies were selected from projects that would complete their development
lifecycle during the duration of this study and from projects where the project managers
would allow data to be collected. It should be noted that project managers are still
reluctant to have metrics data published. particularly if that data includes quality andlor
fault data. This may be due to a fear of the data being used or quoted out of context
leading to an impression that the project is not of the quality expected. I argue that the
provision of such data in fact gives a degree of confidence in a project, as it is clear that
there is nothing to hide.

The projects were also selected so that data could be collected from a number of stages
of the development lifecycle and that there would be data available from testing. One
project approached refused permission to publish their data at a late stage of this thesis.

The case study used in establishing this thesis was a software project developed by a
consortium of companies who were developing conditioning monitoring equipment,

5-1

although all the data used for the study was obtained from one of the partners in the
consortium.

At the request of these companies, the names of the companies and individuals
involved have been identified in this document anonymously.

In an attempt to ensure some consistency in the results the software developmOent
process used by companies which had reached level 30f the SEI process assessment
model was required. The groups of companies on the case study project had been
independently assessed as reaching at least level 3.5 using the SEI process as described
in the AMI guide [ami consortium Metrics Users' Handbook].

The case study "Project 1" is a condition monitoring system which is used with a gas
turbine engine for a European customer. A risk analysis of the Project 1 application
shows that its use is safety related and therefore the software inspections and checklists
were required to be to standards that are appropriate for this safety integrity level. The
study covers the design, coding and testing phases of the software development
lifecyc1e, with inspections conducted during the design and coding stages. The errors
identified in subsequent testing were used in providing evaluation evidence for the
software inspection effectiveness model.

The project was designed using the L VM-OOD technique described in reference
[Shumate K and Keller M 1992] and coded mostly in a sub-set of Ada, with eight
modules coded in 68020 assembler. Project coding conventions were specified and
these were included in the inspection checklist, which is given in Appendix C. The
code for the project consists of 1261 code units consisting of Ada separate package
specifications and bodies, package instantiation of generic packages, task bodies,
procedure bodies, function bodies and 68020 assembler. The detailed breakdown of the
code units and the metrics associated with them is detailed in Appendix C.

5.1.1 Design inspection method

The design inspection took the form of a critical design review (CDR). The CDR
consisted of two parts. The first part of the CDR being an internal inspection of the
software design including representatives of the system specifiers, design authors,
coders and independent quality assurance. The project technical leader moderated the
inspection. The checklist for this part of the review is given in Appendix C; the second
part of the CDR was a formal presentation lead by the project manager to a wider
audience including the end-customer. I have only considered the first part of the CDR,
as this part was an inspection with the objective to find errors in the design. The
conventional second part of the CDR was designed to be an educational review, with
issues raised almost coincidentally. The checklist for this second part of the review is
almost superficial:

1. Which higher level documents have been used to establish the Software Detailed
design?

2. Are the above-mentioned documents configured, approved and issued?

5-2

3. Are there any open problem reports or design notes against the phase-related
documentation?

4. If yes, is it acceptable to defer these open items?

5. Are there any requests for deviation?

6. Are the requests for deviation acceptable to the customer?

7. Have all analyses been performed? (Le. traceability analysis and data flow analysis
if applicable).

The second part of the CDR offered little in providing data and was therefore rejected
from the study.

5.1.2 Software inspection method

The software inspection method used by Project 1 is based on the phased inspections
described by Knight and Meyers [Knight Je and Meyers EA 1991]. The inspection
method used by Project 1 also uses the idea of inspectors logging issues independently,
with a meeting only held when a difficult or contentious issue is raised, which was
suggested by Votta [Votta LG 1993]. In contrast to Votta's proposal, however, a
moderator was appointed by the project to act as prompter and where necessary as an
arbiter. To provide consistency of the metrics collection of formal software measures
and to identify basic errors a simple static code analysis using a customised front end to
the LDRA Testbed tool [Hennel MA and Hedley DD 1989] was used as a fonn of
automated inspection.

The inspectors appointed to inspect an author's work were either other members of the
project team or other experienced software engineers within the same department.

Fourteen inspectors were used of which 6 had been authors of modules for this project,
In the case of the 6 who had been authors, the modules they inspected were not
modules that they had been involved in writing. The inspector moderators' were
software quality controllers who are members of the quality department and therefore
have an independent reporting route from the authors and inspectors. Three moderators
were used for Project 1.

The inspection process used, consisted of the following steps:

• The material to be inspected was prepared by the author;

• Independent inspectors and a moderator were assigned to the object to be
inspected by the project manager;

• The material placed under developmental configuration control by the author was
issued for inspection.

5-3

The material provided for the code inspection consisted of:

The object to be inspected - code listing;
The design for the object;
The inspection checklist including copies of applicable standards;
The acceptance criteria for the inspection;

- The results of the automated inspection;
The inspection record sheet.

• Issues found during the preparation and the inspection logging were recorded on
the record sheet by the inspectors. The moderators also repeated this process;

• Any issues recorded were referred to the moderator and resolved or recorded as
formal actions if necessary following a meeting with the author;

• The data from the inspections were entered into an Access database by the
inspectors and moderators;

• Where the exit criteria for the inspection were completedlS
, the inspection was

closed;

• The records and actions from the inspection were placed under configuration
control.

5.1.3 Data collection method

Poor data-collection techniques and poor requirement definitions for the metrics have been
the causes of the limited success and acceptance of several other metrics based projects
[Evangelist WM 1988].

It is generally the case that for a successful data-collection exercise, as much of the data as
possible should be automatically collected. The model of software inspection effectiveness
requires the collection of data from several sources, from the inspection process and from
subsequent testing; I concluded that to collect all the data by automatic means was
impractical and would impose severe restrictions on the data available to the model.
However as much data as possible was automatically collected.

In addition the metrics used should ideally be formal measures16 (for example, the size of
item being inspected).' In this model there is also a need to collect the more subjective
measures, such as data on inspector's experience and opinions. These include factors such
as the adequacy of knowledge, which can realistically only be determined by direct
questioning of the individual. Interviewing each inspector and moderator would have been
possible, however at the request of the project manager, rather than interrupting engineers
and quality assurance personnel, it was agreed to use a questionnaire, which they could
complete at their convenience. The questionnaires used are given in Appendix C.

15 i.e. all the acceptance criteria have been completed, Of any outstanding issues deemed acceptable by the
Ptfoject customers.
6 Those which have an objective measurement scale.

5-4

Questionnaires have several inherent weaknesses in their ability to obtain consistent data,
particularly where question relates to attitude or opinions.

The following issues relating to the design of the questionnaire have been considered:

1. Question wording directly affects the validity and reliability of a questionnaire. For
example the use of extreme values in the wording of a question can produce different
results from those only requesting a value [Schuman H and Presser S 1977].

2. The format of the questions is also important. Should the question be open or a closed
question? Closed questions can force people to choose between the given options,
instead of answering the question in their own words. Yet because closed questions
give the range of possible answers, they are more specific than an equivalent open
question [Converse JM and Presser S 1986]. The data obtained from closed questions is
therefore more likely to be of use in providing a useful metric.

3. Since questionnaires rely solely on the interpretation and feelings of the respondent
without the influence of an interviewer, their answers may be biased and may exhibit
some degree of subjectivity.

4. Respondents are sensitive to the context in which the question is asked, as well as the
particular words used to ask it. As a result, the meaning of almost any question can be
altered by a preceding question [Richardson Jed. 1992]. A means of addressing this
problem is to check the answers to one question with the answers to another question
designed to obtain the same information but in a different place within the
questionnaire.

As already stated, it was a requirement that the project be able to collect data on the
feelings and opinions of the individuals involved in the software inspections. The
difficulties associated with capturing honest and subjective opinions can be reduced using a
questionnaire approach which allows a more "anonymous" response, than a face to face
interview. Using a questionnaire also allows more control over the normal problem areas of
subjectivity and bias. Conventional metrics collection processes are designed to reduce the
effects of subjectivity and bias, but it is the objective of this study to find the subjective
feelings of the inspectors.

The questionnaire had been independently piloted as part of the FASGEP project [Cooper J
and Kinch B 1996], that allowed any problems with interpretation and implementation to
be resolved prior to its use in this research. It should be noted that the FASGEP
questionnaire is more extensive that the tailored version used here.

Another concern in collecting data from questionnaires is the so-called 'Hawthorne Effect'
[Grady RB and Caswell DL 1987], [Schein E 1970]. This effect is where the act of
measuring leads to a change in the data being measured. This was found in the 1920's
during a series of productivity studies of production workers. Short-term improvements in
productivity were observed purely from the act of measurement, but with no change in
process. I have mitigated against this effect in the data collected from the case studies in
two ways. Firstly the inspection process is intended to record certain data and therefore
collecting this data was not an unusual event for the inspectors so the Hawthorne effects

5-5

will be common to the inspections studied. Secondly, the individual questionnaires were
issued to the inspectors after they had completed their work without any prior warning,
within two days of completing the inspection so that the memory of the inspection was
fresh, and that subjective opinions would still be valid and to minimise the Hawthorne
effect.

5.1.4 Inspectors and moderators questionnaire

The inspectors' questionnaire (see Appendix C) contains both direct questions, which has
produced data to feed directly into the model and questions to validate some of the
subjective answers provided by the inspectors. The moderators questionnaire is focused on
the role of the moderator which feeds into the 'Quality of moderator' node of the model.
Other questions about the product and process have been included to be completed by the
moderator. Some of the answers have been automatically collected by the static code
analysis of the software, e.g. size and complexity.

5.1.5 Post inspection data collection

To provide data for the model calibration and verification, data from the subsequent testing
and rectification phases of the development lifecycle was required. The main source of this
data was the problem report and correction system used by the project to monitor and
record all changes to the software. As part of this system, an analysis of all problems and
changes is conducted. This analysis identifies the point of introduction. In this study the
problems that were introduced prior to an inspection and not found by the inspection are of
interest. The problem reporting database was queried and all problem reports of interest
were extracted. When the analysis showed that it fitted the unfound problem category, it
was recorded in the data spreadsheet for that model (See appendix C) for subsequent use in
calibration or verification.

As in Chapter 2 ideally the calibration and verification of the model requires data on the
total number of errors in the item being inspected. This number is always unknown,
however, it was possible to observe errors found either during testing or in use. In this case
I only considered errors that had been found during test as the number of errors found
during use should be very low as the testing is designed to simulate operational use
[Gardiner S 1999]. This is because software errors remain dormant until the operating
environment provides the stimulus required for an error to be manifested as a fault. This
supports the view that taking the number of errors at the point of delivery is very close to
the actual number of errors and the approach I have taken, to accept the total number of
errors is the number found by the end of testing, is valid.

5-6

5.2 Experiment design

In this section I describe the experiments to evaluate the model software inspection
effectiveness described in chapter 4 above. The model used data provided by the case
studies in these experiments to calibrate the Bayesian Belief model and to evaluate the
model. Here I describe how these experiments contribute to the calibration and verification
of the model. The five types of experiment conducted cover:

• Sensitivity analysis - to determine the effectiveness of the input nodes on the remainder
of the network and, more specifically, the conditional probability distribution of the top
node of the network.

• Initial testing - to evaluate the model network using only the prior belief which was
used to initialise the model.

• Network calibration - to revise the network potential based on the data obtained from
the case studies with a view to improving the performance of the model.

• Performance Testing - to compare the results of the model after the network has been
calibrated with a model that only contains the initial belief. This experiment judges the
results of the calibration process.

• Comparison - to evaluate the model by comparing the results with another model
which had been developed using an alternative modelling technique.

The data used for these experiments has been obtained from actual software development
projects as opposed to controlled experiments conducted purely for the purpose of
determining the performance of the model of software inspection effectiveness. As no
attempt was made to influence the conduct of the project the coverage of the data is limited
to that which actually occurred in the project. The weakness of this approach is that there
will be some parts of the model that will not be fully tested and other parts where a great
deal of data is available which will result in those parts of the network having a greater
influence. This is justified, as in the project used, these were the actual areas of the network
that were exercised and the combination of input states not found may well be never found
in practice.

The analysis of the results of the experiments is addressed in the. next two chapters.

5-7

5.2.1 Sensitivity Analysis

The method of sensitive analysis and the results are detailed in Chapter 5 below.

In the sensitivity analysis and in the subsequent evaluation tests, the data coIlec~ed
consisted of sets of observations for individual software inspection. One set of data for a
single inspection (including post inspection data) is defined ~n this thesis as a test case.

5.2.2 Initial Testing

The purpose of the initial testing is to provide a set of results for a benchmark against
which the learning potential of the network can be compared. The experiment has been
conducted using a set of data from Project 1, which has been identified as a control sample.
A sample of 100 test cases was taken, which represents about 8% of the total number of
test cases from Project 1. These test cases were selected at random from a list of the
complete results for the software objects inspected from Project 1 ordered alphabetically by
unit name. This ordering was selected, as it gave no preference to any of the attributes,
which are used by the model.

A sample size of 100 test cases was initially arbitrary, and was made to ensure that the
majority of complete test cases were reserved for model calibration. Subsequent
performance evaluation (see Chapter 6) has shown this sample to be a statistically
significant sample and adequate to evaluate the model.

The initialised network is used to calculate the inspection effectiveness for each test case.
Metrics from the data collection questionnaires were formed into case files, one test case
file for each software inspection. These files contain the input data for each of the variables
in the Bayesian network described in chapter 4 above. The case file is run on the Bayesian
network using the HUGIN tool with the resulting predicted distribution for software
inspection effectiveness (calculated using the prior belief and the input variables) recorded.
This initial testing only used the prior belief of the network; Le. it does not use reverse data
propagation or the Bayesian learning algorithm. The resulting distribution is then compared

with the actual software inspection effectiveness, which is found from the equation: !!:..!..
n,

Where n, is the number of issues found at the inspection and n, the number of issues found
during the inspection and subsequently during further inspections and testing that should
have been found during the inspection. The data for n, being found from an analysis of the
post inspection data collection described in 5.1.5 above.

5.2.3 Verification Testing

The purpose of the verification testing is to determine the accuracy of the prediction of
software inspection effectiveness and the actual effectiveness. The scoring rules [Cowell
RG, Dawid AP et a1. 1993] for a Bayesian network (see chapter 3.2) are applied to
determine the performance of the model. The initial stage of verification testing this only
uses the prior belief from the expert opinion survey and the brain storming session to form
the conditional probability assignments within the network.

5-8

These experiments do not use any data sets that have missing or incomplete data. There are
two justifications for this action.

1. One is that, given only 100 test cases have been used if some of these contained missing
data then the data sets may not cover the complete range of input variables to the
network.

2. Secondly where data is not available the Bayesian model treats each possible state of the
input as equally likely and thus for that node of the network only the initial prior
probabilities are used. This second case leads to the predicted software inspection
effectiveness being a broader distribution. This could lead to inconclusive results of the
experiment. For this reason the benchmark experiments require a full set of data so that
comparisons can be made between the calibrated and un-calibrated network.

Test cases where some of the data is missing will however be useful for evaluation testing
to examine the performance of the network under the conditions where data is missing. It
should also be noted that the initial data set does not provide complete test coverage, as to
do this would require data that cover each possible state of each input variable.

Data from test cases that have been used for the initial testing have been set aside for test
purposes only and I did not intend to be used for network calibration. The data from these
initial experiments however, was retained for verification testing of the calibrated network.

5.2.4 Network Calibration

When the networks probability predictions matches the actual frequency of occurrence
within a given tolerance, the network is said to be calibrated [OHagan A 1994]. The means
of calibration is the learning process described in Chapter 3. The network is calibrated
using metrics data from the case study being fed into the model via case files into the
Hugin tool. The resulting distribution of software inspection effectiveness predicted by the
model is compared with the actual software inspection effectiveness, which is found from

n
the equation: _T where the inputs for this equation are found from the inspection and post

n,
inspection data described above. By using the Bayesian propagation methods the
conditional dependency assignments for the intermediate nodes of the model are then
adjusted. It is therefore necessary to provide data on the actual results and if possible data
on the intermediate nodes of the network. Data from the post inspection activities described
above has been used. As the calibration proceeds the error between the predicted result and
the actual result (found by applying the scoring rules described above) should reduce as the
model learns from the data being entered. If the model is a 'good' well-formed model then
the error trend will be smaller. If, however, the error grows as the model learns, then there
are two possible reasons why this may be the case:

1. The learning algorithms are only constrained by the rule that the sum of the
probabilities for the states of a node must equal 1.0. Limits have therefore been
imposed on the range of values over which the conditional probability distributions can
be changed. Instinctively wrong sets of data, e.g. a node output being set "good", when
the inputs are all "poor" can be detected as conflicting data by applying Jensen
suspicion index or conflict equation using the Hugin tool. Data sets that contain
conflicting data adversely effecting the calibration of the model have been minimised

5-9

using a technique known as cautious propagation [Jensen FV 1995]. If conflicting data
is detected then the effected data sets have been identified and their effect on the
network removed from the calibration using data retraction.

2. With a poorly formed model then the effect of calibration on the conditional probability
assignments for the nodes within the network will tend to vary wildly with differing
sets of experimental data [Spiegelhalter DJ and Lauritzen SL 1990]. In this caSe the
structure of the model is likely to be incorrect. Poorly behaved parts of the network can
then be isolated and changes to these parts of the network investigated without
effecting the rest of the model. This approach is not possible using the HUG IN tool,
however, using the SERENE tool [Fenton N 1999], this type of investigation is
possible.

To avoid potential weakening of the model, test data sets that contain missing data have
been rejected. The HUG IN tool interprets missing data as a flatly distributed input for the
unknown variable, this results in an increase in the number of data sets required, as missing
data tends to flatten the resulting distributions. Missing data could also result in possibly
conflicting evidence which again will required additional test case data to complete
calibration. If some of the missing data within the test data sets is systematically missing
then it is possible that the calibration process will never affect some nodes within the
network and therefore the model may not converge to reasonable answers. Spiegelhalter &
Cowell [Spiegelhalter DJ and Cowell RG 1992] observed this problem.

There are three possible techniques for model calibration:

• Curve fitting
• Applying the posterior form of Bayes equation.
• Adaptation using a learning algorithm

These were summarised in Chapter 3. For the model of software inspection effectiveness
the strengths and weaknesses of each technique were considered.

Curve fitting was considered in Chapter 3 in detail. As there is no tool support for this
approach it was rejected as a method of calibration, as it would be too time consuming to
conduct manual calibration using this method.

The adaptation algorithm used by the HUG IN software has a feature that allows the
adaptation process to fade the memory of previous test cases. Ideally the adaptation process
should use all the inputted data from the test cases to learn. By setting the fading17 control
parameter to 1 no memory is lost. This setting however, results in the adaptation process
being very slow as data is accumulated, with the weight of the stored memory outweighing
any new data. A compromise between no memory loss and rapid learning is desirable. A
setting of 0.95 was chosen to provide slow fading of old data, and to allow the model to
react to new data being provided.

17 Fading is the process by which old evidence is forgotten by the network. with preference given to newer
data.

5-10

5.2.5 Calibration Testing

The purpose of the calibration testing is to detennine the effect of network calibration
process on the accuracy of the prediction provided by the model, the effect of network
calibration process on the accuracy of the prediction provided by the model. Having
completed the calibration, the set of test data cases used for the initial testing is reapplied to
the calibrated model. The resulting predicted distribution for' software inspection
effectiveness is recorded. The accuracy of the model before and after calibration using the
results of the prediction and the actual effectiveness is compared using both the quadratic
and log scoring mechanisms. As with the initial testing the experiment has limited
coverage as a relatively small data set has been used and therefore there is a limit to the
conclusion that can be drawn from it. The experiment shows the effect of the calibration of
the model using the data from Project 1.

Further verification of the model takes the case of data sets with part of their data missing.
These data sets were rejected, from earlier experiments. The results from these test data
cases have been evaluated, using the default equal distribution for each possible state of the
missing input.

5.2.5 Evaluation Testing

The purpose of this testing is to compare the results obtained from the Bayesian Belief
Model of software inspection effectiveness with a model developed using an alternative
modelling technique.

5.2.5.1 Alternative model selection

Traditional statistics suggest that a suitable model for predicting a response Y given a
variable x, would be to us a linear regression curve fitting estimation of the form:
y = a + B.x. + .. B.x(+ e; where a is a constant term, B the coefficient of the variable x, p
the power of variable x and an error term e to address the error between the model and the
observed data. Linear regression uses least squares method of estimation to fit observed
data against the model. Where the problem includes a set of variables the equation is of the
form

y=a+B.x. + .. B.x(+B2xf + .. B: +e.

The problems with using a linear regression model for the model of software inspection
effectiveness are as follows:

1. Error terms are heteroskedastic18

2. The error term is not normally distributed as the desired event can only take two values
true or false, violating a classical regression assumption

3. When the response is a probability then a linear regression model can predict
probabili ties greater than 1.

\8 Heteroskedasticity occurs when the variance of the dependent variable is different with different values of
the independent variables

5-11

Following advice a logistic regression model (logit) was selected to solve the problem.
This uses the equation of the form: Ln[p/(l-p)]=a + Bx + e where Ln (p/(l-p) is the natural
log of the ratio of the probability of the desired event occurring over the probability of the
event not occurring. B the coefficient for the variable x in this case is interpreted as the
odds ratio of the variable, Le.:

1oulcome=landll=lj
outcome = 0 and 1I = I
outcome - I and 1I - 0
outcome .. 0 and 1I .. 0

The denominator being the success ratio for the desired event occurring when the variable
has a value of 1 and the divisor being the success ratio for the desired event occurring when
the variable has a value of O. This equation is necessary to form a mathematical model of
problem when the regression has found the coefficients in the equation as the model needs
to find the successful cases, i.e. when outcome = 1.

Logistic regression is a non-linear transformation of linear regression giving an S-shaped
distribution function, which constrains the estimated probabilities for the response variable
to lie between 0 and 1. The coefficients of the model are estimated using a maximum
likelihood function.

Logistic regression models make the following assumptions:

1. The model is correctly specified, Le.:
a) The true conditional probabilities are a logistic function of the independent

variables
b) No important variables are omitted
c) No extraneous variables are included
d) The independent variables are measured without error

2. The cases are independent

3. The independent variables are not linear combinations of each other.

A simple logistic regression model is only capable of predicting the outcome of a single
event. What is required from this model is the ability to predict the probability distribution
for software inspection effectiveness given the calibration data. A mUltiple logistic
regression model of the form YI .. Ynis required.

5.2.5.2 Evaluation Test Method

The data used for regression modelling was obtained from the calibration data set. In the
initial attempts to define a logistic regression model, the calibration data could not be used
directly, as the regression model tools first tried requires all the variables to have numeric
values, however, some of the data has only true or false values. A simple 0 = false or 1 =
true could have been used, however, zero values for variables can prevent the maximum
likelihood function calculating the correct modt(.i coefficient, therefore values of 1= false
and 2= true were selected to avoid zero value variables. In the case of the communication
quality variable 1= poor, 2 = fair and 3 = good was chosen for the same reason to avoid a
zero value possibility.

5-12

The initial tools tried (Matlab combined with Glmlab) had limits on the size of the data set
used for the regression modelling. The first 100 cases from the calibration data set were
used to form the model. The logistic regression model was then used with the control data
set sample to evaluate the performance of the model. An Excel spreadsheet was used to
calculate the probability distribution of inspection effectiveness for each case. This type of
logistic regression model was very limited, as it was only possible to predict a single range
of effectiveness, e.g. 0 to 20% which can take one of two possible categories for each set of
calibration data (true or false). This binary logistic regression model could not be directly
compared with the Bayesian Belief Model. An alternative model was therefore required
that produced multiple dependent variables given a set of predictor variables. A
Multinomial Logistic Regression model was therefore required. This type of model is
useful in a situation where a set of dependent variables based on values of a set of predictor
variables. This type of regression is similar to logistic regression, but is more general
because the dependent variable is not restricted to two categories. Parameter estimation is
still performed using an iterative maximum-likelihood algorithm. The (Matlab combined
with Glmlab) was not capable of performing this type of modelling and therefore SPSS
was obtained to generate the model. SPSS was not as restricted as Glmlab in the size of
data set used for model calibration and therefore the full calibration data set was used.

I

The calculation of the Multinomial Logistic Regression was not completely successful as
the SPSS failed to calculate values for inspection effectiveness between 80% and 100%
effectiveness. The results log for the model generation (Appendix E) shows that there were
unexpected singularities in the Hessian matrix. The SPSS tool reported that there may be a
quasi-complete separation in the data and that some parameter estimates will tend to
infinity. The case-processing summary showed that all the data was valid and there was no
missing data. As the model was capable of generating parameter estimates for the other
four values in the multinomial model it should be possible to find the missing values for
the SO<100% case by using basic probability theory, i.e. 1: (P(0<20%) + p(20<40%) +
p(40<60%) + p(60<SO%) + p(80<100%) = 1 for all cases of data. As the logistic regression
model actual calculates the odds ratio, it is necessary to calculate the actual probability for
each case in the control sample before finding the missing value. In three cases of the
control data, however a negative value of probability for p(80<100%) was calculated. This
is clearly incorrect, as negative values of probability have no meaning. In other the cases
the values calculated appear reasonable and therefore I have chosen to use these and ignore
the three cases of negative probability.

Using the same evaluation methods used for the Bayesian Belief Model as described in
5.2.3 above, the log score and significance test metrics were calculated using the Excel
spreadsheet. A comparison between the Bayesian Belief Model and the Logistic Regression
model was made by observation.

5-13

5.3 Conclusions

In this chapter I have described the case study material available to provide the metrics on
which the experiments are based. These case studies provided sufficient data to form two
datasets, one for model calibration and the other set (selected at random) for control
purposes, which have been used in the experiments. The theoretical basis for the
experiments and their subsequent analysis has been discussed. The detailed methods used
to conduct the experiments have been described. An "alternative logistic regression
modelling technique has been discussed and a comparative experiment between a model
formed by logistic regression analysis and the Bayesian Belief Network has been described.

5-14

Chapter 6 - Sensitivity Analysis and Model Testing

Abstract

In this chapter I describe the results of testing the Bayesian Belief Model of software inspection
effectiveness using the data obtained from the case studies. The results of·a variety of tests
designed to test the sensitivity of the network; the accuracy of the results using only the prior
belief and the effect of using data to calibrate the network, are presented.

The analysis of the results provides an evaluation of the structure of the network, and confirms
that the node weightings are consistent with the expert opinion. I then discuss the effect on the
results of the experiments resulting from the calibration of the network and the consequent
change of the sensitivity of the model attributes. .

In the second part of the chapter I address the performance of the Bayesian model of software
inspection effectiveness, using the results of the experiments.

I cover the results of the testing. using the expert opinion contained in the prior belief. Then, in
the third part of the chapter I address the impact of calibrating the model using a Bayesian
learning process. This includes: a) a discussion of how to estimate the number of sets of data
which are required for the calibration, b) the effect of the data on the prior belief attributes and
c) identification that the model has received sufficient sets of data to achieve calibration.

The performance of the calibrated model is discussed through an analysis of the results of the
experiments conducted. The model has been verified by comparing the performance of the
model with the actual results obtained with the original sets of d:lta used for testing. A further
comparison is then made using the original sets of data but this time with the calibrated model.
The analysis of results of the model prediction covers: the performance scoring mechanism, the
accuracy of the "expert jUdgement" used for the initial belief. and the significance of the data
used and the results obtained.

The results of a further comparison between the output of the Bnyesian model compared with a
regression model are also presented.

Introduction

In the first part of this chapter I describe the results of a set of experiments which ~ere
designed to determine the effectiveness of particular input nodes on the remainder of the
network and, more specifically, the conditional probability distribution of the top node of
the network. This sensitivity analysis has been conducted by observing the affect of each
evidence node in tum on the network, compared with a nominal network. I discuss the
method used and the rationale for using the method, and the conduct of the sensitivity
experiments.

This part further describes the results of this analysis in which the RMS deviation of output
for each perturbation of the input node is compared with the nominal output.

6.1 Sensitivity Analysis

6.1.1 Sensitivity analysis purpose

The initial stage of verification of the inspection effectiveness model was to conduct a
sensitivity analysis of the software inspection effectiveness model. By this, I mean to

6-1

determine the affect or sensitivity of each individual node of the model on its child nodes
and in particular the affect on the top node of the network, which calculates the probability
of inspection effectiveness, based on its parent nodeS.

The purpose of conducting sensitivity analysis is to determine that the structure of the
model is sound, that is that a node affects only its related nodes (parent and child nodes)
and no other node within the model. It is also to show that the initial belief used to initialise
the model is consistent with the expert opinion provided. (See Appendix A and B).

6.1.2 Sensitivity analysis method

6.1.2.1 Sensitivity experiment design

For the initial analysis a nominal network was prepared by setting all the evidence nodes
with a flat distribution for each possible input state. This simulates the affect of having no
data available for the evidence nodes. The child nodes within the model then take a
resulting nominal distribution based on the evidence. The data was loaded into the HUG IN
[Hugin Expert NS 1998] tool using the inspection effectiveness network "insnetla.hbk"
which is the compiled version of basic network described in Chapter 4 and Appendix B.
The network was initialised, forming the basic model (model 1). The probability
distributions for each node in the initialised basic network were recorded in a spreadsheet
using the DDE (dynamic data exchange) copy facility provided by the HUGIN tool to
provide an active link to the Excel spreadsheet. The initialised distributions are defined as
the nominal data for each node. The nominal data is used as a baseline in the subsequent
analysis of the results.

Data was provided for each node within the network in tum, to set the node to the state
which is its "worst case,,19 condition and the resulting network calculated. This calculation
was conducted by the data being propagated through the network using the "propagation
sum normal" method. Propagation sum normal is the means where the data entered into a
Bayesian Belief network is used to calculate the new condition probabilities of the related
nodes based on the evidence entered into the model.

The HUGIN tool provides an alternative propagation method "prop max normal". The
"prop max normal" propagation method can be used to find states belonging to the most
probable configuration. If a state of a node belongs to the most probable configuration it is
given the value 100. All other states are given the relative value of the probability of the
most probable configuration they are found in compared to the most probable
configuration. As the propagation method only provides relative and not absolute
calculations the sensitivity analysis method could not be used and using the "prop max
normal" method only makes comparisons between the sensitivity of different nodes
impossible.

The results for the parent nodes within the network were recorded and the affects of the
data on the remainder of the network were observed. The model was then re-initialised
prior to a new data item for the next node being entered. For intermediate nodes each node
was forced into its extreme values and the condition of the higher level nodes within the

19 The data for a node that has the extreme negative influence on the model

6-2

network determined. The experiment was repeated for each node being set to its "best
,,20 d' . case con l11on.

Using the method described above, the individual contribution of each node in terms of its
position and influence described by the initial belief within the network can be determined
systematically. The method was chosen so that it was simple to implement and complete in
its coverage of the individual nodes. It does not, of course, give a complete coverage of the
data space, as it does not address combinations of unrelated parent attributes. Given that
part of the analysis was to show that a parent node only influences its children and no other
nodes, then in this case combinations of unrelated nodes can therefore be considered in
isolation. As eventually all the nodes are combined in higher-level children nodes their
affect will be combined where the data coverage is complete.

An alternative method is described by Jensen [Jensen FV 1996] where he uses the fraction

of achieved probability P(h I e') to determine the affect of a node on the outcome of a
P(h I e)

particular hypothesis. This method was not selected, as it required data covering the whole
domain of possible inputs. Jensen also notes that the method suffers from a heavy
calculation overhead as the number of combinations grows exponentially with the size of
the network.

6.1.2.2 Sensitivity of calibration

The sensitivity of the basic network is a measurement of the prior belief of the network,
which only represents the expert opinion and not the experience of the actual process being
used. The basic model is calibrated with experience using adaptation (the details of the
adaptation are described in this chapter and appendix D). The affect of adaptation is to
revise the conditional probability tables, which describe the dependencies between nodes to
make a better fit to the experimental data. The basic model sensitivity analysis is no longer
valid as a new initial network is generated (model 2). To understand how the calibration
process changes the sensitivity of the network, as it is adapted, it is therefore desirable to
repeat the sensitivity experiments using the new networks formed from the calibration
process. In addition to simple calibration, experiments have also been conducted. to
investigate the affect of fading 21 the affect of new evidence during calibration. The
sensitivity of the revised networks generated with differing levels of fading was also
measured using the same method.

6.1.2.3 Data Analysis method

The results of the experiment above yielded data for the basic network and for the worst
and best case data for each node within the network (See Appendix D). The results were in
the form of a probability distribution for the child nodes, given the data for the parent. To
compare the sensitivity of each node the distance between the nominal value and the

20 The data for a node that has the extreme positive influence on the model
21 Fading is a facility where past evidence is forgotten during the learning process at an exponential rate. The
fading depends on the decay rate with a long memory able to provide better adaptation, and with a shorter rate
giving more dynamic performance, but at the expense of noise.

6-3

extreme case data input was measured using "root mean squared" (RMS) difference which
is a nonnalised form of Brier score for the sensitivity of that node.

n

L(X.\: -Nom,,)2
S = -'--k_=l _____ Where S is the RMS sensitivity, n is the number of possible states

n
of the child node; X is the result of the child node given the extreme value of a parent node
and Nom is the corresponding nominal value.

The values for S for the top node of the network and intennediate nodes of the network
were then ranked in order of influence. These results were then compared with the structure
of the network and the expert opinion survey reported in Appendix A.

6.1.3 Sensitivity analysis results

The results of the sensitivity experiments are given in Appendix D and is summarised
below:

For the worst case conditions which represents the negative affect of the parameters that
would make the inspection potentially worse, the results are shown in Figure 6.1 below:

Worst case sensitivity

0.09,-----------------------------,

0.08 ·

0.07

l:' 0.06 .s:
~ 0.05
c

eX 0.04

!i
a: 0.03

0.02

0.01 .

•
•

• •

,
• • • • •

• • • • "

• Base rrodel

• Adapted netw ark Fading = 1

A Adapted netw ark Fading = 0.99

X Adapted netw ark Fading = 0.985

• • • .-O +--~~~~_4~~~~~~~~~_*-~~~._o_~~~~~

o 5 10 15 20 25

Node number

Figure 6-1

For the best case conditions which represents the positive affect of the parameters that
would make the inspection potentially better, the results are shown in Figure 6.2 below:

6-4

Best case sensitivity

0.18

0.16 " • Base rrodel

0.14 "
• Adapted Netw ork Fading = 1

.. Adapted Netw ork Fadng = 0.99

Z. 0.12

~ 0.1 'iii

x Adapted Netw ork Fading = 0.985

c
CD

0.08 III
II) • ::E

0.06 CC • •
0.04 • • • •
0.02

0

• ,
'.'.-' _t~_ " . . - - -o 5 10 15 20 25

Node number

Figure 6·2

6-5

6.1.4 Discussion of sensitivity results

The results of the sensitivity analysis are discussed in two sections; the first discussing the
results of the sensitivity of the basic model and the second the affect on the sensitivity of
the network following calibration. The greater the sensitivity of a node the greater. -its
influence within the model. .

6.1.4.1 Sensitivity of the basic model

The results of the sensitivity analysis show that the structure of the basic model is sound.
The influence of nodes within the network is a function of their relative position within the
network and of the conditional probability assignments made during initialisation.

The influence of the variables found by the sensitivity analysis of the basic network agrees
broadly to the expert opinion surveyed. Observation of the network during the experiments
also shows that a node affects only its directly related nodes. In the case of parent nodes,
they affect only their child nodes and in the case of intermediate nodes both parent and
child nodes are affecte,d but not unrelated nodes.

In two cases the sensitivity of the prior belief does not exactly match the expert opinion:

--
I. The expert opinion for the quality of inspection process node C3 indicates that the

quality of inspection preparations is more important than the quality of the error-logging
meeting. During the brain storming activity when the conditional probability
assignments were made the opposite ranking was implemented due to the views of the
engineers who were involved with this activity. Their views have been vindicated, as the
sensitivity of the node has not changed as a result of the adaptation process.

2. In the case of the quality of error-logging meeting node C5 the brain storming activity
reversed the ranking, however the sensitivity analysis showed that the contributions
made by each parent were similar. It was also noted that the calibration restored the
ranking (in the worst case conditions) to the expert opinion.

6.1.4.2 Sensitivity to calibration

This section discusses the sensitivity of the network to calibration. Three levels of fading
were used in the experiment. With fading equal to 1 no fading takes place, the degree of
fading increases as the value is decreased. Values of fading of 0.99 and 0.985 were used.
Attempts to use values of fading less than 0.985 produced out of memory errors and
observation of the resulting network suggests that mathematical under-flow was occurring
during Bayesian propagation.

6-6

Of particular note is that with fading. the calibration shows that the initialised network had
very pessimistic prior belief. The sensitivity results indicate this as the analysis shows large
differences between the worst case and best case results. In the worst case the results show
that with extreme fading. the model is so insensitive that the results from the model cannot
be relied upon.

Calibration with fading set to 1.0 did not affect the majority of high numbered nodes.
which exist at low levels within the node hierarchy. Calibration did affect the relative
importance of lciw numbered nodes, which are high in the hierarchy, particularly the
product attributes in their contribution to the overall inspection effectiveness node Cl.
With fading active in the best case experiment the product attributes increase their relative
importance over the process attributes by an order of magnitude, in the limiting case it
could be argued that the complexity of the product being inspected is the most important
attribute. Of the process metrics, the quality of preparation, the quality of the moderator
and the quality of team members' attributes became more important, with the quality of
inspection methOd/procedure less important. This evidence proves the mini hypothesis
1.2.1, 1.2.2 and 1.2.3.

The nodes, which were the least sensitive in the basic network, were also not significantly
affected by calibration.

6-7

6.2 Initial Verification

The initial verification of the software inspection model testing is to evaluate the model
using the network defined by the prior belief. An experiment was conducted, using a set of
100 cases of data from Project 1, identified as a control sample to predict the inspection
effectiveness in each case using the Bayesian Belief Network. The verification test· is' to
compare the prediction of the model using the results from the experiment, with the actual

inspection effectiveness found from the equation: !!:..!... Where n, is the number of issues
n,

found at the inspection and n, the number of issues found during the inspection and

subsequently during further inspections and testing that should have been found during the
inspection. The experiment was also conducted in part to provide a set of results for a
benchmark against which the learning potential of the network can be compared.

6.2.1l\Jethod

The experiment was conducted using the software inspection model defined by network
"instnetla.net" (see Appendix B). The network was loaded into the Bayesian Interference
tool HUGlN Version 5.2 and compiled. Test case evidence was loaded into the tool using
the runtime interface (figure 6-3) and then propagated through the network using the
"propagation sum normal" method (figure 6-4). The new probability distribution for the
inspection effectiveness node "CI" was recorded in an Excel spreadsheet using the DDE
copy facility.

6-8

Adequato InspeC1lon rate (C

• Adequate application ex perle
• Adequate domain knowiedoe
• Adequate InspeC1lon check lis
~ - - no
L _ 100.00 yes

Adequate preparation time « t- 100.00 no
- - yes

• Communication skills (C19)
• Complexity of itemJsubleC1
• Defined exit criteria (C11)
• Defined scope of InspeC1ion
• Experience at InspeC1ion
• Experience at inspeC1lon
~ - - no
L _ 10000 yes

• Formal actions (C9)
ID Inspection effectiveness (C 1
o Quality of Error logging (C5)
G> Quality of Inspection
<:) Quality of InspeC1ion proc
o Quality of InspeC1lon team
o Quaiity of Inspection team
o Quaiity of moderator (C 17)

Q Quality of preparation (C6)

Quality of preparation

Size of Itemlsubject being ins~!k:1-:::;;-:;;;-::;;;:::::;:::"'_"'."",",I"=~''''_''''~'''w}''..J'V'\.'VVI._s. __________ :J~Cl

Adequate inspection

• Adequate application
Adequate domain kn"wl'edlle
Adelluate inspection

t __ 1 000~ ;:5
Adequate preparation time

~ - - no
L _ 100.00 yes

• Communication skills (C19)
Complexity of Item/subject

• Defined exit criteria (C 11)
Defined scope of Inspection
Experience at Inspection
Experience at Inspection

~ - - no
L _ 100.00 yes

Formalactlons (C9)
blspectlon effectiveness (e

2.98 0 < 20\10
8.28 20\10 < 40\10
9.94 40\10 < 60\10

14.62 60\10 < 00\10
64 .19 00\10 < 100,\\:' I

(!) Quality of Error loooino (C5) , "1
o Quality of Inspection method! :a I---~It

o ~~~~~. ~ ~~~~~~:~~ ~~~:e~~.8 1
r"I • • _ l .. ,..." .. , nn . ft, ~ ,.,.,."..

Figure 6-3

Figure 6-4

6-9

6.2.2 Results

Two forms of evaluation were used. First a simple comparison between the shape of the
actual inspection effectiveness distribution and the mean inspection effectiveness
distribution predicted by the model. The latter value was calculated by taking the mean
value of probability for each state of effectiveness. This method of evaluation was used to
see if the shape of the predicted distribution was similar to the actual distribution for the
control sample.

The second means of evaluation is the scoring method that was described in chapter 5. The
log score for each case of the control sample and the significance of the result when
compared with the null hypothesis.

Appendix D contains spreadsheets tabulating all of the results.

6.2.2.1 Initial testing: simple analysis

.
0.8 ,

/
//

0.7

0.8

//
0.5

0.4

0.3
j/

/I
~J

~ --

0.2

0.1

o
0 ·20 20 · 40 40 · 60 60 · 80 80 · 100

% EllecUvlne ••

Figure 6·5

Figure 6-5 shows the results for the model, and for the actual inspection effectiveness. The
model values are the mean probability determined by the model, for each value of
in pection effectiveness, for the 100 test cases in the control sample. The actual values are
the normalised number of cases in the control sample, which actually achieved that level of
inspection effectiveness.

The simple comparison shows that the predicted distribution of the model is producing a
shape similar to that of the actual distribution, but the model is more pessimistic than the
actual results.

6-10

6.2.2.2 Initial Testing Scoring

The scoring system provides a means of measuring the individual performance of the
model compared with the actual results.

Log Score I. Basic network I

6

5
• • +

4
CIl ... • 8 3 • .+ .. . • • • • .. en •

2 • •• + •
•

• • •
+

•
•

• •
1 - •• + .+. •

+

0 -~--~~---4-----+-----+-----+-----r----~----~----~--~

o 10 20 30 40 50 60 . 70 80 90 100

Figure 6-6

The results indicate that in the majority of cases the model scores well in terms of the
actual results with a score of less than 1 showing a good match with the data.

The significance of these results compared with the null hypothesis is shown below:

Z

Significance test I. Basic network I

3

2.5 • • •
2

1.5 • •
1 • ... • • • .. • • • 0.5 •
O T-----~----+-----+~----+_----~.----~----~----~----_r-·._·~ . '. .

-0,5 10 20 30 40 50 60. .0 80 90 1 0
-1 ~i,' . -1,5 ..L-. ______________________________________ ~ __________________ __'

Figure 6-7

The standardised test stati stic Z (see Chapter 5.2.3) shows that the model fits the actual
data compared with the null hypothesis reasonably well, however there are three test cases
as shown in fi gure 6-7 where Z is greater than 2 which indicate the model forms poorly in
these cases.

6-1 1

6.3 Practical Network Calibration

One of the reasons for selecting a Bayesian Belief Network model to calculate an estimate
of the effectiveness of software inspections was its ability to learn from the experience of
evidence and the corresponding actual results. This process is known as calibrati9n
[OHagan A 1994]. The theory of the calibration technique was given in 5.2.3 above .. In
practice the network was calibrated using an adaptation program written in C++ running
under a Microsoft Visual C++ environment using the HUGIN API pre-compiled library.
The program called a calibration case file prepared from the case studies metrics collection.
This case file contains data from 700 cases together with the corresponding actual software
inspection effectiveness. Running the program produced a new network file "insnetl a­
new.net" and an experience table that notes the affect of the case file data in producing the
new network. Details of the program, the new network file and the experience tables are
given in Appendix D. The new network contains different conditional probability
assignments describing the dependencies between parent nodes and their child nodes. The
sensitivity of the network is therefore potentially different and therefore the sensitivity
analysis needs to be repeated on the new network.

One limitation, which is identified by the experience table, is the lack of variation in the
data for some parts of the model, particularly in the case of the parent nodes for the quality
of inspection method/procedure node C7, where all the data was constant. This is a
limitation of using real project data to provide case studies rather than staged experiments
where variation of all the attributes can be designed into the experiments. The only solution
to this problem given that only project data is being used is to look for projects where these
attributes are variable.

In addition to the basic adaptation program, was an investigation into the affect of
introducing fading which is a facility where past evidence is forgotten during the learning
process at an exponential rate. The fading depends on the decay rate with a long memory
able to provide better adaptation, with a shorter rate giving more dynamic performance, but
at the expense of noise. A fading value of 1 indicating that no fading takes place and values
less than 1 producing fading. In addition to the fading = 1 experiment described above
three values of fading were attempted: 0.99, 0.985, 0.98. New networks were produced for
the 0.99 (model 3) and 0.985 case, however the 0.98 experiment did not produce a new
network as an out of memory error occurred when the adaptation program was run.
Observation of the resulting network with fading set to 0.985 suggests that a mathematical
under-flow was occurring during Bayesian propagation.

The tests conducted on the basic network described in 6.1.1 above were repeated with the
calibrated networks with fading set to =1 and 0.99 replacing the network file "insnetla.net"
with the appropriate new file.

6.3.1 Results

The results obtained from the tests conducted with the calibrated networks were evaluated
using the same methods as the evaluation of the basic network and the results compared.

6-12

6.3. 1.1 Simple evaluation

Scaled di~~~bTu_ti_on _ _______________ -.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

~ Fading = 0.99
___ Fading = 1

-+-Model

--.-Actual

o -~---~----~---~---~
0·20 20·40 40·60 60·80 eO-100.

% inspection effectivenes

Figure 6-8

Figure 6-8 shows the results for the model, and for the actual inspection effectiveness. The
model values (the base model - no learning, learning with fading set to I, i.e. no fading and
with fading set to 0.99) are the mean probability determined by the model, for each valu~
of inspec tion effectiveness , for the 100 test cases in the control sample. The actual values
are the normalised number of cases in the control sample, which actually achieved that
level of inspection effectiveness.

The simple evaluation of the results shows only a small difference between Figure 6-8 and
Figure 6-5 . This indicates that the learning appears to have a limited affect on the average
di stribution of the results.

The most likely reason for thi s conclusion is that thi s method of analysis is too simplistic
with the averaging affect eliminating differences between the data. Taking the mean
di stribution of each half of the results shows that thi s is the case, with a small difference
between each half of the di stribution.

6-13

6.3.1.2 Scoring

The scoring methods address the individual case results and therefore may give an
indication to show if the learning is affecting the actual results.

Log Score
• Basic network

• Adapted Network Fading = 1

6
Ao Adapted network Fading = 0.99

5 • • , ...
4

f!
8 3 • • •
In • • • • ,

~.
.... ..,.. • 2 • a ... • • • ,:r-

1 a

0

0 10 20 30 40 50 60 70 80 90 100

Figure 6-9

It is apparent that the calibration of the network is changing the log score from the basic
network, but it is unclear if the change is always in the correct direction for the results.

The significance test results are similar to the scoring results with clearly one case where
the significance of the results were made worse by the calibration and two cases where the
test statistic which was greater than 2 was reduced to less than two .

Z

Significance test
• Basic network

• Adapted network Fading = 1

lo. Adapted network Fading =0.99
3 r-----------------------------------~--~--------~--~

2.5 -

2
1.5 -

1 .

0.5 ·

•
•

• . j.

O +---~~---r----~.~--r---~~--~----T_--~-----r-+~

-0.5 10 20
-1 _~I~a~~

-1.5 ..L-.. __ --.:::..-l

Figure 6-10

6.4 Additional Experiments

The results of the experiments conducted on Models 1, 2 and 3 (the basic model, the
adapted network with fading = 1 and the adapted network with fading = 0.99) were
reviewed with colleagues [May J 1999], [Swann A 1999]. This review showed that the

6-14

experiments had produced a satisfactory software inspection effectiveness model for
Project A.

The discussions following the review also suggested that further experiments would be of
assistance in investigating the affect of the training data set on the Bayesian learning
process. Particularly the reasons for the poor performance of the model with the outlying
cases, and to investigate what would be the size of data set that may be required to make a
big improvement in the model's performance.

To investigate the model's ability to learn I had the following train of thought:

The learning data set may not be representative of the control data set. This is considered
unlikely as the control data set was randomly selected from the same set of experimental
data as the calibration data set. A further experiment will be conducted to test the affect of
learning from the control data set and examining the results from a self-learning set. The
purpose of this experiment is only to examine the learning process, as the actual result from
self-learning in a predictive model would be self-fulfilling.

The model may be learning poorly from the calibration data. This problem has been
observed in the training of artificial neural networks [Taras senko L 1998]. The following
reasons may apply:

1. An incorrect choice of problem: This can occur when there is no relationship between
the input parameters and the model output.

This is not the case as the sensitivity analysis and the results from the un-calibrated
model show that there is a relationship between the input parameters and the software
inspection effectiveness.

2. The wrong set of features was selected: In this case although there is a relationship
between the input parameters and the output, the structure of the model is
fundamentally wrong, with the incorrect choice of conditional dependencies.

Again this is not the case as the conditional dependencies within the model were
selected for their logical association. This was confirmed by opinion survey results
(see Appendix A).

3. Stuck units: This occurs where the prior conditional probability assignments are so
far from their calibrated value that the calibration process fails to adjust the values
from their initial assignments.

Examination of the network files show that the adaptation program has adjusted all
the conditional probability tables where sufficient experience is available within the
calibration data set. Therefore stuck unit is not an issue.

4. Insufficient number of training patterns. This occurs when there are insufficient
combinations of calibration data for the training process to have affect.

This point may be an issue as it appears to be the case in the initial experiments, the
adaptation file shows that there are only a limited number of nodes where the

6-15

combination of data gives an experience value of 5 or greater. Five similar experience
cases are required before the data can be used for learning.

Additional experiments will attempt to address this issue by increasing the number of
possible combinations of data.

5. Over-fitting: This occurs when the complexity of the network is high resulting in
noise due to excessive hidden units.

This problem does not apply to Bayesian Belief Networks as all the nodes are
explicitly defined and no hidden nodes are present.

6. Over-training: This occurs when the noise in the training data set is built into model.

It is possible that this type of problem can occur in a BBN, however, the adaptation
program would likely detect over noisy data as conflicting data and retract it from the
learning process.

To investigate the affect of learning in the model I devised a series of further experiments
following the above train of thought. These experiments have used different sizes of
samples from the calibration data set and have been conducted to investigate the affect of
these types of learning errors.

6.4.1 Experiment descriptions

Four additional experiments have been conducted to investigate the learning properties of
Bayesian Belief Networks particularly in the context of the software inspection
effectiveness model. Three of these experiments address the size of the calibration set and
one to address any missing combinations of attributes states that may be missing from the
calibration data set. For all of these experiments the fading parameter in the adaptation
program was set to 1.0, which represents no fading of calibration data.

6.4.1.1 Size of calibration data set experiments

Three additional experiments have been conducted to address how the size of the
calibration data set affects the Bayesian learning process:

Model 4 for calculating software inspection effectiveness was generated from the
adaptation program using the first 300 data sets that were selected from the 700 possible
data sets in the complete calibration data set. This was to investigate if the adaptation
process was over-learning and therefore introducing noise into the adapted model.

Model 5 was generated from the adaptation program using all of the 700 data sets in the
calibration data set twice, giving 1400 data sets for the adaptation program to use. This
experiment was conducted to investigate the speed of the Bayesian learning process and to
determine how many data sets may be required to calibrate the software inspection
effectiveness model.

Model 6 was similar to Model 5 but was generated from the adaptation program using all
the calibration data five times, giving 3500 data sets for the adaptation program to use. The

6-16

model was generated to investigate rare combinations of states of attributes affecting the
learning process. The adaptation program only uses combinations of states of attribute data
when it experiences five instances of that particular combination in adjusting the
conditional probabilities for the affected nodes within the model. By selecting a data set
which was five times the size of the original calibration data set it will ensure that even a
single instance of a combination of attribute states will affect the learning program, and
that all data items in the calibration data set will be used by the adaptation program.

6.4.1.2 Missing combinations within the learning set

It is possible that combinations of attributes that occur within the control data set are not
present with the calibration data set. The model would not be learning correctly as would
occur when insufficient training patterns were available for learning. Model 7 was
generated from the adaptation program using the control data set to provide the training set
of data. This experiment is recognised as having limited practical value as the use of the
same data for both learning and for model prediction is of little value, as extensive
application of the same data will produce a self-fulfilling model. Hence the control data set
was only used once and rare combinations of attributes would not be included in the
adaptation program. If, however, relatively common combinations of states exist in the
control data set but not in the calibration data set then model 7 should exhibit better
performance for those combinations of states.

6-17

6.4.2 Sensitivity analysis

Additional sensitivity analysis tests were conducted as described in 6.1.2 above for each of
the models described in the preceding section. This analysis was conducted to see the affect
of the influence of the variables in the new models as compared with the basic model.

6.4.2.1 Models 4, 5 and 6 Sensitivity analysis

The results of the sensitivity analysis for models 4, 5 and 6 are shown in Figure 6-11 for
the best case results sensitivity and Figure 6-12 for the worst case results sensitivity. Note
that for all these models the fading parameter had been set to 1.0, which is off.

Best case sensitivity

0.16 ..,------------------------,

0.14

~ 0.12

~ 0.1
.~
CII 0.08
ell

~ 0.06

IX: 0.04 .

+
1+

+ :.

• Basic model

eModel4

+ Model 5

-Model 6

: - -... 0.02

O+-----+--~~~~~~~-~~~~~~~~ - -
o 5 10 15 20 25

Node number

Figure 6-11

Worst case sensitivity

0.09

0.08 ! • Basic model

0.07 eModel4

.~ 0.06 + Model 5
'.;:1 -Model 6
'iii 0.05 + c
~ 0.04 , .
en
:: 0.03 • IX: • e

0.02 +,. e - e
0,01 + -

-~tla··· 0 - - - - -.41& ... &&6 -
0 5 10 15 20 25

Node number ..
Figure 6-12

6-18

-- - ------------------------ ---

The results of the sensitivity analysis for the revised size of the calibration data sets are
described below. With the reduced size of calibration data set in Model 4 shows little
improvement over the basic model and is less sensitive than the adapted model using the
full calibration data set. With the increased size of the calibration data set in Model 5 the
sensitivity of a range of nodes (up to node 15) over the basic model and the adapted model
is improved, particularly with the best case sensitivity experiment results. The size of the
calibration data set was increased to ensure that even rare combinations of attributes were
included in the adaptation process in Model_6. The sensitivity analysis indicates that noise
is being introduced, particularly in the worst case result experiment where the sensitivity of
all the nodes have been reduced.

The sensitivity analysis results indicate that in this experiment the optimum learning data
set would require between 1400 and 3500 calibration data sets.

6-19

6.4.2.1 Models 7 Sensitivity analysis

0.08

0.07

~ 0.06

~ 0.05
'iii
c 0.04 GI
fII

(/) 0.03 ::5
a:

0.02

0.01

0
0

0.09

0.08

0.07
~ '> 0.06
:::I
'iii 0.05 c
~ 0.04
(/)

::5 0.03 a:
0.02

0.01 -

0
0

•
•

•
. ,
. 'I.

Best case sensitivity

I

• BasIc model 1

• Model 7

• • ••••••••••••••
5 10 15 20 25

Node number

Figure 6·13

Worst case sensitivity

• I. Basic modelj
• Model 7

•
•

,
• • • ,-

.·a.··· ••••••••
5 10 15 20 ' 25

Node number

Figure 6·14

The use of the control data set for calibration in model 7 indicates that there is some
improvement in the inspection quality process nodes 3 and 5 over the basic model. The
product nodes 2 and 4 show similar characteristics (enhanced sensitivity in the worst case
result experiment and reduced sensitivity in the best case result experiment) to Model 4
which had a learning data set of similar size. The sensitivity of the higher numbered nodes
(which are lower in the model structure) is very similar to that of the basic model.

6-20

6.4.3 Scoring

Additional scoring and significance tests were conducted as described in 6.2.1 above for
each of the models described in the preceding section.

6.4.3 .1 Models 4, 5 and 6 Scoring and significance test results

Log Score
• Basic network

:II: Model 4 Fading = 1·

6
• ModelS Fading = 1

+ Model 6 Fading = 1

5 • • • •
4

CIl + -o 3 • • ... • • .. 0 • .. • , !/) • - .* ~ .* •• 2 .. • • ..
• f .. + • .. .,. .. 1 ~ • ... - ... - •• "'" r........, tp • :a

0

0 10 20 30 40 50 60 70 80 90 100

Figure 6-15

• Basic network
Significance test :t: Adapted Model 4 Fading = 1

• Adapted Model S Fading = 1

3 + Adapted Model 6 Fading = 1

2.5 · * * lI' •
2

1.5 •
*

+
~ • 1 ·· • • :lIE lift

z .- • - :lIE
0.5 · if * •

0 + !.t
10if 20 3't;. 40 ~O 60. j 80 90 1 0 -0.5

-1 _- --.- -; ~.J t· ~ _ ~ ...
-1.5

Figure 6-16

6-21

The log score results for models 4, 5 and 6 do not show any major discrimination between
them and the basic model with the exception of the four outlying cases. The log score
results for models 5 and 6 show some minor improvement over model 4. The significance
results also show no major improvement over the adapted model.

These results reinforce the analysis made in 5.3 above in that the four outlying cases have
combinations of attributes that do not exist with the calibration data sets.

6.4.3.1 Model 7 Scoring and significance test results

Log Score
• Basic network

• Adapted network Fading = 1

6
e Model 7 Fading =1

5
I • • •

4 • • •
e

* ... • • • 0 3 • • u .. • .. • ,
I/) • ••

I'"
.... • • 2 .. •• • ..

• • ... • .. I':" e _
..

1 -- ".,,11 --. ..-:v- .:. • ---.
0

0 10 20 30 40 50 60 70 80 90 100

Figure 6-17

Significance test • Basic network

• Adapted network Fading = 1

3
• Model 7 Fading = 1

2.5 • a • •
2 • • •

1.5 · • I ... -1 • • • III
Z .. • .. •

0.5 • •• •
0 • .~

• ' .. ·~o -0.5 10 20 3i. 40 60· .IL 80 90 1 0

~ .. " ' " -- D. ...,.,...,-p
-1 •• pro . •• •

-1 .5

Figure 6-18

6-22

Model 7, which used the control data during the adaptation process, shows that this model
has better performance than basic and calibration sets models in outlying cases for both the
log score and significance test results. These results confirm that these outlying cases occur
where there could be combinations of states of model attributes that could not be found in
the calibration data set. The significance test results show that these cases, model 7,
produced results that are now significant for all of the control input data.

6.4.4 Results evaluation

The initial and subsequent results of the verification experiments are encouraging. All the
models produced results, which were statistically significant compared with the null
hypothesis, however with models 1 to 6 there were four outlying cases where the results of
the experiments indicated that the model was giving poor performance. Missing
combinations of states of the model attributes from the calibration data set were suspected
to be the cause of the poor performance in the outlying cases, and this was confirmed by
the improved performance of model 7 which included other combinations of states of
model attributes.

A summary of the cumulative results of the experiments for each model m=50 using the
control sample test cases is shown below:

Model l:SM Log Score l:Zm
Significance Test

Modell Basic model 76.58 -1.77
Model 2 Calibration Adapted F= 1 77.33 -1.76
Model 3 Calibration Adapted F= 0.99 75.93 -1.85
Model 4 0.5 * Calibration 75.74 -1.89
Model 5 2 * Calibration 75.8 -1.88
Model 6 5 * Calibration 75.6 -1.75
Model 7 Control adapted 75.89 -2.11

Table 6-1

The main conclusion to be drawn is that all the models except for Model 7 have produced
results that are statistically significant in modelling the effectiveness of software
inspections.

Model 5, which used the calibration data sets twice to give a calibration data set size of
1400 cases, gave the best overall performance in the sensitivity analysis. Model 6, which
used the calibration set five times with a size of 3500 cases,gave the best performance
scoring experiments for both log score and significance test.

The conclusions that can been drawn from the experiments are limited as they only cover
one type of inspection process on one major project. They could not be considered typical
for all projects or even for that organisation.

Examination of the control and calibration data shows that there is no variation in some
attributes of the model, with one limb of the model, the quality of inspection
methOd/procedure having no contribution in either the adaptation process or in the

6-23

performance scoring experiments. The inspection moderators marked the values of all the
quality of inspection method/procedure metrics as consistently good. This lack of variation
is a problem with the use of real data. It could have been possible to generate artificially an
inspection experiment where the quality of inspection method/procedure attributes varied
over the range of possible values. Such an artificial experiment, whilst allowing all the
nodes of the model to be exercised, would have produced results that would have not been
characteristic of the specific inspection process being characterised in the experiment. .

6.5 Comparison experiments

An alternative evaluation of the model was conducted by comparing the performance of the
Bayesian model of software inspection effectiveness with a regression model using the
same control data.

The results of this comparative experiment are shown below:

5

4 •
3

•
2

Z
1

• •
0

-1

-2
0 20

..
•

40

••
• • •

60 80

Figure 6-19

Logarithmic score

• Nominal Bayesian

• Logistic Regression

•

•
•

100

Identical methods were used to score the logistic regression model as in the Bayesian
model.
The results show that the logistic model scored similarly to the Bayesian model except in
those cases where a value was not produced. A notional score of 10 was recorded where
the logistic model failed to produce a value.

6-24

5
• Nominal Bayesian

• Logistic Regression

4 •
3

• .. •
2 - + • +-

z a • • •
* • ~ • • 1 • +1 • .--. • • • •

• 0 :. +.. . . •
.~¥;:IIIIII ~~~:"*1 -1 ~I ~.

-2

0 20 40 60 80

Figure 6-20

Significance test

100

N.B. Cases where the logistic model failed to produce a value have been excluded from
thi s test.

These results show that a greater number of results from the logistic regression model fall
outside of the Z<=121 criteria with 10 cases out of 100 rather than 3 cases in 100 for the
nominal Bayesian Belief Model.

6.6 Conclusions

6.6.1 Sensitivity Analysis

The results of the sensitivity analysis show that the stmcture of the basic model is sound.

The most sensitive nodes of the model correspond to the most important attributes found
during the elicitation of expert opinion (Appendix A) and the least sensitive correspond to
the least important attributes.

Furthermore the results from the sensitivity analysis show that the model attributes have
the same properties as those factors which Michael Fagan described in his work on
software inspections [Fagan M 1986] .

The sensitive analysis also shows the impact of the following differing factors on the
quality of softw are inspections.

The expe rience of the inspection team.
The experience of the inspection moderator
The adequacy of preparation time.

6-25

The Bayesian Belief model supports the mini hypothesis described in section 1.2.1, 1.2.2
and 1.2.3

6.6.2 Model Performance

The initial and subsequent results of the verification experiments are satisfactory. All the
models produced results that were statistically significant, compared with the null
hypothesis.

The results above show that the basic hypothesis in section 1.2 is true, i.e. I have developed
a model of software inspection effectiveness, which is an improvement over simple
statistical regression models. It is a model that has been designed and applied, with the
ability to use expert opinion, and to use past experience to learn from evidence to predict
the effectiveness of an inspection.

The results of these comparative evaluation experiments show that my Bayesian Belief
Model is a better predictor of software inspection effectiveness than an equivalent logistic
regression model.

6-26

Chapter 7 . Conclusions

Abstract

I conclude the main part of the thesis with a discussion of the project compared with software
inspection practice before this research and also a comparison with other Bayesian Belief
Network models of software quality. I discuss what this new work has contributed specifically
to software productivity and safety.

The new work in this project has provided:

A method of structuring a Bayesian Belief Network to model software inspection effectiveness;
A method to establish the associate prior belief;
Means of verifying the model;
An example of an industrial application for the work.

The application of the specific model of software inspections provides software developers with
a more efficient means of conducting inspections. concentrating on the higher value added
attributes of an inspection. It will also improve the efficacy of inspections. resulting in
improved quality products. The effective identification of defects close to their introduction in
the software Iifecycle reduces the amount of regression testing required rather than if defects
are found down-stream. and hence will increase productivity.

The evaluation tests of the model show. from the case studies data. that the model does provide
significant results. The sensitivity analysis of the model identified the key attributes of software
inspections that can be fed into a process improvement program to increase the quality of the
software.

I also cover the wider implications of the research. and the applications of the work both in
industrial terms and in computing research. in this chapter. and I suggest a research agenda for
this work.

The research has provided a means of predicting the effectiveness of software inspections. The
next stage, industrially, will be to characterise the model to improve the quality assurance
process for non-software applications, such as mechanical design reviews. To use the
knowledge of inspection effectiveness. to simplify the development process. For computing
research. more work is required in initialisation. adaptation. verification and evaluation of
Bayesian Belief Networks. and to consider other applications of the technology. such as
certification support. Further work is also required on software inspections. and the wider
design review arena. to study all the different approaches and to determine which combination
of techniques is best applied at various stages of the development process.

7-1

7.1 Software Inspections

Software inspections have been conducted widely and have been shown in many case
studies, e.g. [Gilb T and Graham D 1993] to be effective at reducing defects in software
projects. Current practice is only to use inspections at the code level, and not earlier in the
systems development process. Less rigorous processes such as design reviews, which have
other purposes, are often used. The delay in using inspections early in the development
process results in defects being found in code which were introduced during an earlier
stage of the development process, but only found in the code. If the software inspection
technique had been used earlier in development, i.e. specification and design then an
effective inspection would reduce the consequent rework costs [Cockram T and May J
1994]. By using my model, which uses expert opinion, and past experience to learn from
evidence to predict the effectiveness of an inspection, this work provides the solution to
gap in effective software inspection tools that can predict the outcome of a software
inspection as stated in the hypothesis (section 1.2)

Most of the tools available today to support software inspections are combinations of
product browsers and error-loggers e.g. [Macdonald F and Miller J 1997], [SyberNet Ltd
1998]. These tools, however, have not made any attempt to incorporate a measure of
effectiveness.

7.1.1 Comparison with other models of software inspection effectiveness
There are examples of models of inspection effectiveness in the literature that have been
developed, for example [Christenson DA and Huang ST 1988], [Christenson DA, Huang
ST et a1. 1990], [Porter AA, Siy H et al. 1988].

To make a direct comparison between these models and my research is difficult as the
others were developed for different purposes. Porter's model [Porter AA, Siy H et a1. 1988]
was developed as a retrospective model in an attempt to understand the variation in
software inspections. His model uses a generalised linear model GLM to produce a model,
which is a Poisson distribution with linear exponents to characterise the number of errors
found in a software inspection. His initial model generated from the use of cause and effect
diagrams used variables of team size, sessions, repair, phase, author, functionality and log
(size). The modelling process reduced this to a model containing just functionality and log
(size).

His model could be classified as a retrospective static probabilistic model, whereas the
approach I have used with Bayesian Belief Networks makes my model predictive and
dynamic, which are improvements over Porter's model. My approach to characterising
software inspection effectiveness using Bayesian Belief Network is new and does not
appear anywhere in my search of the current literature. There are some more general
example of models of software development processes using Bayesian Belief Networks,
including my own contribution to the FASGEP project and the DATUM and SERENE
projects.

The modelling method by Porter makes questionabTe assumptions about the nature of
software inspections and the way in which errors are distributed (See Chapter 2). He
assumes that the density of errors is proportional to the density of problem reports raised.
That assumption is unreasonable, as the absence of errors detected does not indicate

7-2

freedom from errors, only that the process has failed to find them. Counting or modelling
the numbers of errors identified in an inspection is not sufficient. The important metric in
any model of inspection effectiveness is how good is the process at finding all the errors
present. The number of errors found could be only a fraction of the total number of errors.
He also assumes that the process of making errors in the code is a random process. This
implies that the error density over different projects is constant. This could be possible if it
is assumed that there are many different sources of error. A similar mechanism occurs in
mechanical reliability, however, as the causes of errors are eliminated and defects repaired
as in the case of a software development process, non random distributions become
important.

This assumption also implies that there is some static relationship or law that relates the
input variables to the effectiveness of a software inspection. A quantitative analysis of
software faults and failures by Fenton and Ohlsson [Fenton NE and Ohlsson N 2000],
how~ver, has found that there are no software laws on which to base such models as such
and that those models using fault density measures are misleading. They justify the use of
Bayesian Belief Networks to model software quality rather than traditional statistical
methods, which they state are patently inappropriate for defect prediction.

I have used a modelling approach that only makes use of these assumptions in establishing
the prior belief within the model. The subsequent updating and learning with the model
gives it a dynamic behaviour, which overcomes this assumption.

Porter's model used the statistical process to optimise the number of variables from the
initial set of variables identified by the cause and effect diagrams, but he makes no attempt
to describe the relationship between the variables other that the statistical relationship. The
model also combines data from disparate sources in an uncontrolled way, without
considering the dependencies between the sources of information. There is a well-know
relationship between functionality and size as in Boehm [Boehm B 1981] CoCoMo model.
In my research I have developed a systematic approach to characterise the relationship
between variables, and by use of measurement theory established conditional independence
between the variables (see Chapter 3). The sensitive analysis of my model (See Chapter 6)
shows that the variables I have chosen to use in my model are compatible with the
attributes proposed by Fagan [Fagan M 1986].

Many examples e.g.[Gilb T and Graham 0 1993] make it clear that the experience of the
inspectors is an important attribute in the effectiveness of an inspection. Porter's model
attempts to eliminate the affect of inspectors learning from the inspection process. This
assists with conducting clean experiments although it does not reflect reality. Inspections
are effective because of the lessons learned, so any model of effectiveness should include
the inspector's experience as part of the model. The systematic' approach I have used in
producing my model ensured that human factors were included in the model rather than
factored out. My model has shown the importance of factors such as the experience of
inspectors and moderators as set out in section 1.2.1 and 1.2.2.

7-3

7.2 What this new work contributes to the understanding of software
inspections and their contribution software productivity and safety

In this section I describe the areas of research, which are new and contribute to our
knowledge of software productivity and safety through improved modelling of software
inspection effectiveness.

7.2.1 Model structure

My research takes a new approach to structuring the Bayesian model. I have shown that I
have built in a systematic manner a model of software inspection effectiveness, which I
have developed using the process described in figure 4-8 above. The use of knowledge
engineering techniques to form the Bayesian network provides a means of getting our ideas
in order by imposing formality and structure. This approach provides a means of capturing
the experience of engineers' experience within the model rather than using a random model
structure that is present in artificial neural networks or in the learning structured Bayesian
models proposed by Ramoni and Sebastiani [Ramoni M and Sebastiani P 1999].

The models of software inspection effectiveness were derived using knowledge
engineering methods to form the structure of the network. By producing a type of semantic
network, the model components and their relationship were defined. This method was
shown to be effective as it produced a simple model, with meaningful and measurable
nodes and provided formality by getting the ideas of the contributing attributes in order.

The structure of the Bayesian Belief Network remains as the knowledge representation,
with the nodes of the network representing the network attributes, either as input variables
(evidence) or calculated inferences (outputs). The arcs of the network represent the
dependencies between the attributes, which are defined by the state tables for the network,
however the sense of direction of the arcs is reversed to represent the causal or definitional
link rather than the influence. The conditional dependencies between nodes were defined
using an improved method of assigning the prior belief, which was developed by this
research task.

7.2.2 Prior Belief Elicitation

My method involves conducting a survey of expert opinion and uses the data used to
characterise the dependencies between variables as prior belief. This new systematic means
of determining prior belief is an improvement over previous methods, for example, Good
[Good IJ 1965] and Winkler [Winkler R 1967] who have described techniques for
elicitation of prior belief for a Bayesian Belief network. Their techniques, however are time
consuming for large Bayesian networks and can be rather intimidating for the experts from
whom the belief is being elicited. Druzdzel and van der Gang [Druzdzel MJ and van der
Gaag LC 1995] suggests methods that require less invasive techniques for less complete
information, e.g. determining ranges of an attribute or describing qualitative influences
between pairs of variables. I have developed a new approach. I showed in Chapter 4 how a
survey of practitioner opinion to provided an initial view together with a more limited brain
storming session provides an efficient, less invasive and less time consuming method than
used in the FASGEP project and the other published methods.

7-4

7.2.3 Verification techniques

I described in Chapter 5 analysis techniques for verification that provide a practical means
of assessing the sensitivity and performance of Bayesian Belief networks.

I have used simple techniques to exercise the extremes of the variables within the model
and developed a means of characterising their sensitivity. The Serene tool provides users
with a button to test the sensitivity of nodes within the network, however, it provides the
user only with raw data and graphic presentation for each node tested, it does not provide a
quantitative analysis as conducted in this thesis.

For measuring the performance of a Bayesian Belief Network [Cowell RO, Dawid AP et al.
1993] describe a method using a simple binary prediction (success or failure). I have
extended their method where the result is a range of possible values and the prediction is a
distribution of probabilities as in the case of the software inspection effectiveness model.
To make this extension, however, I have needed for each test case to assume that the model
is deterministic. That is I am only interested in the model value that corresponds to the
actual result and that all the other values in the distribution are failure cases.

7.2.4 Model Performance

The evaluation tests of the model show, from the case studies data, that the model does
provide significant results. The sensitivity analysis of the model identified the key
attributes of software inspections that can be fed into a process improvement program to
increase the quality of the software.

Data from 1260 software inspections was collected to provide evidence to calibrate and test
the model of software inspection effectiveness. Additional fault data was also collected
from the project up to the point of delivery so that the remaining faults in the product found
before delivery were known and from this the actual inspection effectiveness could be
determined. Training data was kept separately from a control sample of data so that
objective comparisons between models that had been calibrated with different parameters
could be compared with a basic model based only on the prior belief.

The model (initialised just with the prior belieO gave results using the control data sets that
were shown to be a statistically significant improvement over the null hypothesis after the
cumulative evidence of 50 test cases. Further analysis on the sensitivity of the model
confirms that the model has the same properties about the factors that influence software
inspections as the findings of Fagan seminal work [Fagan M 1976] on inspections. That is
that people and the inspection process is more important in conducting effective
inspections than the material being inspected. This finding confirms that it is a viable
model.

The results from the sensitivity analysis of the Bayesian Belief Model used in this research
suggests that the best results from conducting software inspections can be gained by:

1. Using experienced people to conduct inspections;
2. Allowing adequate preparation time prior to the error logging meeting;
3. Dividing the work into small chunks of inspection;
4. Managing complexity of product.

7-5

These results are not unexpected, however, the results of the sensitivity analysis allows the
user of the model to make trade-offs between one attribute and another objectively.

I have refined methods for sensitivity analysis and statistical verification of Bayesian Belief
Networks that have been used to make a quantitative measurement of the quality of the
software inspection effectiveness model as well as a qualitative judgement. .

I found the affect of the Bayesian learning to optimise the model for specific processes and
projects was slow, and the results of the experiments indicate that between 1400 and 3500
sets of data would be required to achieve a calibrated model. This finding is consistent with
other research, e.g [Thiesson B 1995]. Fading was found to have a small affect on the
performance of the entire model and reduced the contribution from some attributes. The
most important feature of the learning process was the affect of missing data sets on
improving the performance of the model in rare combinations of the states of the model
attributes. These were identified by the four outlying test cases in the experimental data.
Unless the rare combinations of attributes had been included in the learning data set the
performance of the model did not improve in these rare cases.

I have also investigated alternative modelling methods. Multinominal Logistic Regression
has the potential to provide an alternative means of estimating software inspection
effectiveness. The results from my experiment appear to show that the model is very
sensitive to any contrary data, and it does not take account of any prior experience. The
results obtained from a multinominallogistic regression model generated from the same set
of calibration data gave worse significance scores but in the case of the logarithmic scores
the logistic model results were complete broadly comparable. These results show t~at the
Bayesian model approach is statistically better and is more robust.

The performance results showed that my Bayesian Belief Model is a better predictor of
software inspection effectiveness than an equivalent logistic regression model, and with
Bayesian learning has the potential to be much better if rare data combinations are included
in the calibration data set.

I have shown that a Bayesian Belief Network model of software inspection effectiveness is
feasible. I have successfully demonstrated a measured software inspection process, in the
form of a model to estimate the effectiveness of a particular software inspection using a
Bayesian Belief Network.

7.2.5 Applications of this research

By applying my model of software inspection effectiveness before the inspection takes
place, project managers will be able to make better use of the inspection resource available.
Applying the model using data collected during the inspection will help in estimation of
residual errors in a product. Decisions can then be made if further investigations are
required to identify errors close to point of introduction before these are carried into later
stages of development and test. The research can "therefore be said to have made a
contribution to software productivity.

7-6

The data obtained from Project A was made available to the project manager who used the
data to improve the planing of subsequent software inspections of a new build of software
requirements after a change of user . requirements. For this the project manager used the
model to determine the effect of using less experienced inspection personnel as shown in
the example figures 7-1 and 7-2 below.

(Cll)
• Det1ned scope of Inspection (C12)

Experience at Inspection role (C23)

• Experience at Inspection preparation (C13)
• Formal actions (e9)
CD Inspection effectiveness (el)

~
I 2.98 0 < 20%
I 8.28 20% < 40%
I 9.94 40% < 60%

14.62 60% < 80%
64.19 80% < 100%

o Quality of Error IO(loln(l (C5) r a 12.20 poor

t 17.72 fair
7008 (lood

o Quality of Inspection methodlprocedure (C7)
o Quality of Inspection process (C3)
f- I 13.21 poor

t • 19.82 fair
66.97 good

o Quality of Inspection team (C8)
8 Quality of Inspection team members (e18)
a Quality of moderator (e17)
o Quality of preparation (C6)
• Size of Hem/subject being Inspected (C2)

Team size

Figure 7·1

Model result for an experienced inspection team

7-7

Experience at Inspection preparation (C13)
• Formal actions (C9)

Inspoetlon effectiveness (C 1)

~
' 4.18 0<20'4
• 12.05 20'4 < 40'4
• 13.93 40¥. < 60'4
• 17.39 50¥. < BO\lo
_ 52.45 80\10 < 100¥.
Quality of Error logging (C5)

t• 21 .72 poor

• 25.21 fair
_ 53.07 good

Quality of Inspoetlon methodlprocedta'e (C7)

Quality of inspection process (0)

t • 22.90 poor
27 .96 fair

_ 49.15 good

Quality of inspection learn (C8)
Quality at inspection learn members (C18)
Quality at moderator (C17)
Quality at preparation (C6)
Size of HemlsubJec1 being Inspected (C2)

Formal acllons

Team size (C22)

TralnlngJExperlence at Inspe:ct:lo:n~(C2:0)~ ,~~~~~~~~~fi~ii~~~!Q~~~

Figure 7-2

Less experienced inspection team

Software inspection techniques can be applied to inspect safety properties within software,
using the methods described within this thesis. In this case the inspection techniques are
focused on the achievement of safety requirements to address the hazards identified. They
can also be applied by independent safety auditors for programmable electronic devices and
software working as required by Defence Standard 00-55 [Ministry of Defence Directorate
of Standardization 1995] and Defence Standard 00-56 [Ministry of Defence Directorate of
Standardization 1996]. I have applied this approach in assessing the effectiveness of
Independent Safety Audits. The use of the model of software inspection effectiveness was
tailored to suit the process used and then used to estimate effectiveness of the audit giving
an indication of uncertainty in the process and potentially the number of residual errors in
the part of the project subjected to audit. This data is then used by the project manager to
provide a measure against the whole project by scaling the figures for the portion of the
project ubject to audit. The data is also used by the independent auditor to provide input to
a process improvement activity to improve the effectiveness of independent audits by using
the model as a "What If?" tool.

Thi application of the research is more fully described in my paper on "Where inspections
and audits fit into the safety process and how can we have confidence in their
effectivenes " [Cockram TJ 2000] . The research can therefore be said to have made a
contribution to software safety.

7-8

The use of the techniques for systematically developing the structure of the Bayesian Belief
Network and the new techniques developed as part of this research for establishing the
prior belief I applied in a study for the Defence Research Establishment. This study was to
evaluate the use of Bayesian Belief Networks in formulating requirements for Synthetic
Environments for the Defence Research Agency [DERA 2000].

7.2.6 Comparison with other BBN models oC software quality

The use of Bayesian Belief networks for modelling software quality and the potential for
software errors was pioneered by the DTI FASGEP project [Cottam M, May Jet al. 1994].
My participation in the FASGEP project, latterly as project manager inspired my initial
ideas for the work in this thesis. The FASGEP project attempted to model each stage of a
software development process using Bayesian Belief models to predict the failure potential
for each atomic development process. The F ASGEP tool combined these potentials to
reflect the software process model to give a running total failure potential for the software
product being developed as the project progressed. My personal contribution was in the
modelling of inspections in the development process so that the affect of defects identified
by inspection can be first identified and then removed by modifying the software. This
process, however, is not error free so the model had to include the potential for new errors
being introduced but the modification process. The FASGEP approach suffered from a
complexity and computation explosion [Neil M and Salter J 1994] with any realistic
software development project requiring more resources, time and data than were available.
The project did, however, demonstrate the principle of using Bayesian Belief Networks to
model software quality. These ideas were also taken up in the Datum project [Neil M,
Littlewood B et al. 1996].

The methods I developed for this thesis were significantly different from the FASGEP
project:

1. The means of establishing the expert opinion for the network. In the FASGEP project
[Cockram TJ and Parker RL 1993] we obtained the prior belief by brain storming
sessions with small groups with the aim of populating the complete data space. In this.
research I have used practitioner surveys as the initial data gathering approach together
with brain storming to complete the prior belief tables. A verification exercise was then
conducted to compare the results of the brain storming with the expert opinion
graphically (See Appendix A & B).

2. The process for generating the Bayesian Belief Network. The approach I used is a
refinement of the approach used by FASGEP. A more systematic approach was taken.
(See Chapter 4) ,

3. The structure of the network and the metrics used. The structure of the Bayesian Belief
Model was new, as the FASGEP project was aimed at an all-embracing model of
software development. My network was specifically aimed at modelling software
inspections. I did make use of the questionnaire which was piloted by the F ASGEP
project to record some of the data required and as a result I had the use of the verified
questionnaire, it was adapted to suit the specific requirements of this research. The
ranges for data were systematically stated with a clear distinction made between
objective and subjective data.

7-9

4. The verification methods used. The FASGEP project had no time to investigate
verification methods. In practice only simple comparison between model predictions
and actual data were made. In this research I have developed an approach to determine
by the sensitivity of variables within the network. I have also extended the ideas of
Cowell [Cowell RO, Dawid AP et al. 1993] to measure both the accuracy of a
prediction and the significance of the results. .

Further work has been published using Bayesian Belief Networks to model software
quality [Neil M and Fenton N 1996], [Neil M, Fenton N et al. 1999]. These models look at
aspects of the software design process using combinations of product, process and people
metrics to perform an overall evaluation of a particular software development. The model
can then be used as part of a software management tool to predict development time,
product quality etc.

My work described above differs from Neil and Fenton in that I have developed a model of
the software inspection process to estimate the effectiveness of the software quality process
rather than that of the development process itself. The software inspection effectiveness
model can be used in a similar way as an overall evaluation of the software inspection
process or to fine tune a particular inspection or series of inspections to make optimum use
of the time and inspection resources _~vailable.

7.3 Further Research Agenda

The research conducted did not investigate the effect of variation of inspection process.
The published experimental evidence [Porter AA, Siy H et al. 1988; Johnson P 1994;
Porter AA and Johnson PM 1997] on the variation of techniques is not conclusive, and in
fact shows variability in effectiveness of inspections using the same detailed approach.
Further work could be done evaluating the model of software inspection effectiveness
when applied to differing types of inspection such as phased inspections, no meeting
inspections and n-fold inspections. To investigate further a large-scale of all the different
approaches to software inspections would be required. It would be particularly difficult to
conduct this study using the results from engineering projects conducting experiments
within practical constraints found in real projects. I would estimate that this research would
require something on the scale of a European Collaborative research project as a mixture of
both academic expertise and a range of industrial experience and data would be required.

Further experiments could be conducted using additional case studies. The variations
between teams could then be studied and comparisons made. Using real data from software
inspections has its limitations in that the data may not cover all the possible combinations
of states of the attributes or even a complete range of values for the model attributes, e.g. a
project is unlikely to admit to poor inspection processes. It is possible that experiments
could be conducted to simulate missing values. Caution would be required in applying the
results of the experiments using simulated data as these would not be representative of
actual experience. An experienced individual researcher -eould undertake this work.

A human factors study on the motivation of inspectors and their experience base provides
an interesting research area, which has only superficially been addressed in the literature.
This topic could form the basis of a PhD research proposal.

7-10

Further work could also be conducted on the Model learning process. This work could
address the sensitivity of the model learning processes to the prior conditional probability
assignments. Another area of research could be investigating the sensitivity of the model
learning process to the structure of the belief network. All the research on Bayesian
learning process in this thesis had been done using the same network structure. This topic
would also make a good PhD research proposal.

From an industrial sense applying this research to a wider application is an important
objective. There are many other types of inspection or review process that would benefit
from knowing how effective the process was. It would be possible to modify the model to
use it for other inspection types, e.g. system design reviews, hardware reviews, document
inspections.

There is a superficial similarity of structure between Bayesian Belief Networks and safety
cases using goal-structured notation. It would appear to be possible to replace a node
within the safety case by a BBN, which would allow the quantification of the uncertainty in
a safety argument. Some work has been done in this area particularly as part of the SHIP
project [Delic KA, Mazzanti F et al. 1995].

The use of the methods described in this research could also be applied to develop models
to support wider process assurance. The model has the capability of modelling a wider
range of software processes. This is achieved by making minor c;hanges to the definition of
the nodes within the Bayesian Network. These changes are to characterise the particular
process. For example, if the testing process is selected then the quality of inspection
preparation sub-tree is replaced by a quality of test plan sub-tree. By using the semantic
model each sub-tree is considered and modified as necessary. Expert opinion is then
elicited to initialise the model. The model could then be used to predict the quality of a
software testing process.

7-11

7.4 Summary

This thesis has adequately answered the hypothesis set out in section 1.2. I have developed
a model of software inspection effectiveness, which is an improvement over simple
statistical regression models. It is a model that has been designed and applied with the
ability to use expert opinion and past experience to learn from evidence to predict the
effectiveness of an inspection.

I have conducted a survey of expert opinion on the importance of factors that effect
software inspections and incorporated these into a Bayesian Belief Model.

I have obtained data from a large safety related software developed project and used this
data to calibrate and test the model.

I have conducted experiments on the sensitivity and the learning process of Bayesian
Networks.

I have conducted a comparative experiment with a Logistic Regression model and shown
that my model is an improvement.

I have applied my model in industry resulting in an improved inspection process.

7-12

.. --.-.:~

Chapter 8 - References

References

Abrahamsen P (1992) Hugin API 1.2 Extensions Hugin Expert NS Version 1.2 Revision
1.0

Ackerman AF, Buchwald LS, et aI. (1989). "Software inspections: an effective verification
process." IEEE Software May 1989: 31-36.

Adams EN (1984). "Optimizing preventative service of software products." IBM Journal
28(1): 2-14.

ami consortium Metrics Users' Handbook, 'ami' Applications of metrics in industry.
Anderson SK, Olesen KG, et al. (1989). HUGIN a shell for building Bayesian Belief

Universes for Expert Systems. 11 th International Joint Conference on Artificial
Intelligence, Detroit.

Andreassen S, M., W., et al. (1987). MUNIN - A causal probabilistic network for
interpretation of electromyography. 8th International Joint Conference on Artificial
Intelligence, Milan.

ANSIlIEEE (1983) IEEE Standard Glossary of software engineering terminology
ANSIlIEEE Std 729: 1983

Ayton P (1994). On the Competence and Incompetence of Experts. Expertise and Decision
Support. Wright G and Bolger F, Plenum Press: 77-105

Ayton P (1998). How bad is human judgment? Forecasting with Judgment. Wright G and
Goodwin P. Chichester, Wiley

Basili V and Rombach liD (1987). "Tailoring the software process to project goaIs and
environments." Proceedings of the ACM: 345-357.

Bender EA (1978). An introduction to mathematical modelling. New York, John Wiley.
Bias R (1991). "Walkthroughs: effecient collaborative testing." IEEE Software 8(5): 94-95.
Bisant DB and Lyle JR (1989). "A two-person inspection method to improve programming

productivity." IEEE Trans Soft Eng SE-15(10): 1294-1304.
Boehm B (1981). Software Engineering Economics. Englewood Cliffs, Prentice Hall.
Bourgeois KV (1996). "Process insights from a large-scale software inspection data

analysis." CrossTalk Oct 1996.
Brier OW (1950). "Verification of Forecasts expressed in terms of probability." Monthly

Weather Review 78: 1-3. .
Britcher RN (1988). "Using inspections to investigate program correctness." IEEE

Computer 21(11): 38-44.
Brykczynski B and Wheeler DA (1993). "An annotated bibliography on software

inspections." ACM Sigsoft Software Engineering Notes 18(1): 81-88.
Buckley FJ and Poston R (1984). "Software Quality Assurance." IEEE Trans Software

Engineering 10(1): 36-41.
Bush M (1990). Improving software quality; the use of formal inspections at the Jet

Propulsion Laboratory. 12th International Conference on Software Engineering,
Nice France.

Candlin R (1996) Improving inspections. http://www.pp.ph.ed.ac.uklExp/rc/moose/inspect/
Checkland PB (1981). Systems Thinking, Systems Practice, John Wiley.
Christenson DA and Huang ST (1988). Code inspection model for software quality

management and prediction. IEEE global telecommunications conference, IEEE
Computer Soc Press.

8-1

Christenson DA, Huang ST, et al. (1990). "Statistical quality control applied to code
inspections." IEEE Journal on selected areas in communication 8(2): 196-200.

Coallier F (1994). "How IS 0900 1 fits into the software world." IEEE Software Jan 1994:
98-100.

Cockram T and May J (1994). Estimating faults introduced by software maintenance. CSR
conference on Software Evolution: Models and Metrics, Dublin.

Cockram T, Tiley D, et al. (1997). System Requirements Process Improvement and
Automation for Embedded, Safety Related Applications: An Industrial Case Study.
ESAIINCOSE conference on Better Systems Faster, Noordwijk Netherlands,
European Space Agency.

Cockram TJ (2000). Where inspections and audits fit into the safety process and how can
we have confidence in their effectiveness. Safety Critical Systems Symposium
2000, Southampton, Springer.

Cockram TJ and Parker RL (1993) Conditional Probability Assignments for FASGEP
Causal Network Initialisation. DTI Safe IT Document Distribution Centre
RR08R02A

Conte SD, Dunsmore HE, et al. (1986). Software Engineering metrics and models. Menlo
Park, California, Benjamin/Cummings.

Converse JM and Presser S (1986). Survey Questions - Handcrafting the standardised
questionnaire. Beverly Hills, Sage Publications.

Cooper J and Kinch B (1996) FASGEP Data Collection Workshop. CSC Computer
Sciences Ltd. LE06N05E

Cottam M, May J, et al. (1994). Fault Analysis of the Software Generation Process­
FASGEP project. Risk Management and Critical Protective Systems: Proceedings
of the Safety and Reliability Society Conference, Cheshire. Cox RF. Manchester,
SARS Ltd

Cowell RG, Dawid AP, et al. (1993). "Sequential model criticism in probabilistic expert
systems." IEEE Trans Pattern Analysis and Machine Intelligence 15(3): 209-19.

Cozman FG (1998) JavaBayes Version 0.341 Bayesian Networks in Java
http://www.cs.cmu.eduJ-javabayes/Home/

Curtis B, Kellner M, et al. (1992). "Process Modelling." Comms of the ACM 35(9): 75-90.
Czachur KJ 1995 FASGEP model calibration. Investigation of alternative learning

techniques: artificial neural network learning models available from Department of
Trade and Industry SafeIT Distribution Centre 35 Benbrook Way, Macclesfield,
Cheshire, UK, SKII 9RT'LRI6ROIB'

Delic KA, Mazzanti F, et al. (1995) Formalising a Software Safety Case via Belief
Networks SHIP - Assessment of the Safety of Hazardous Industrial Processes in the
Presence of Design Faults SHIPIT046 v 1.9

DeMarco T and Lister T (1987). Peopleware:productive projects and teams, Dorest House.
Demming W E (1986). Out of the crisis. Cambridge Mass., MIT.
Dempster AP, Laird NM, et al. (1977). "Maximum Likelihood from Incomplete Data via

the EM Algorithm." Journal of the Royal Statistical Society 39: 1-38.
DERA (2000) An evaluation of the use of Bayesian Belief Networks in formulating

requirements for Synthetic Environments. Contract CUOI4-0000011764
DISC (1998). The TickIT Guide, DISC British Standards Institution.
Doolan EP (1992). "Experience with Fagan's inspectioIfmodel." Software Practice and

Experience 22(2): 173-182.
Druzdzel M (1998) GeNIe http://www2.sis.pitt.edu/-genie

8-2

Druzdzel MJ and van der Gaag LC (1995). Elicitation of Probabilities for Belief Networks:
Combining Qualitative and Quantitative Information. 11 th Conference on
Uncertainty in Artificial Intelligence, San Francisco, Morgan Kaufmann.

Dyer M (1992). Verification based inspections. Hawaii international conference on system
sciences, Hawaii.

Edwards E and Havranek T (1987). "A fast model selection procedure fo~ large families of
models." Journal of American Statistical Association 82: 205-213.

Evangelist WM (1988). "Complete solution to the software measurement problem." IEEE
Software Jan 1988: 83-84.

Fagan M (1976). "Design and code inspections to reduce errors in program development."
IBM Systems Journal 15(3): 182-211.

Fagan M (1986). "Advances in software inspections." IEEE Trans Soft Eng SE-12(7): 744-
751.

Fagan M and Knight JC (1991). Testing is not the best means of defect detection and
removal. Acheiving quality software a national debate, San Diego, California,
Society for software quality.

Feiler P and Humphrey W (1992) Software process development and enactment: concepts
and definitions Carnegie Mellon University, Software Engineering Institute
CMU/SEI-92-TR-004

Fenton N (1999) Serene Method. http://www.csr.city.ac.uklpeople/norman.fenton
Fenton N, Littlewood B, et al. (1998). "Assessing dependability of safety critical systems

using diverse evidence." IEE Proceedings Software 145(1): 35-39.
Fenton NE (1991). Software Metrics - A rigorous approach. London, Chapman and Hall.
Fenton NE and Ohlsson N (2000). "Quantitative Analysis of Faults and Failures in a

Complex Software System." IEEE Transactions on Software Engineering 26(8):
797-814.

Freeman P (1975). Towards review of software designs. National computer conference.
French S, Cooke RM, et al. (1991). "The use of expert judgment in risk assessment."

Bulletin of the Institute of Mathematics and its Applications 27: 36-40.
Freund JE and Walpole RE (1987). Mathematical Statistics. Englewood Cliffs, Prentice­

Hall.
Gardiner S (1999). Testing Safety-Related Software - A practical handbook. London,

Springer: 155-170 .
General Accounting Office (1979) Contracting for computer software development

General Accounting Office. FGMSD-80-4
Gilb T and Graham D (1993). Software Inspections, Addison-Wesley.
Gilks WR, Thomas A, et al. (1994). "A language and program for complex Bayesian

modelling." The Statistician 43(1): 169-177.
Good IJ (1965). The Estimation of Probabilities, An essay on Modem Bayesian Methods.

Cambridge Mass., MIT Press.
Gordon J and Shortliffe EH (1985). "A method for managing evidential reasoning in a

hierarchical hypothesis space." Artificial Intelligence 26: 323-357.
Grady R (1993). "Practical results from measuring software quality." Comms of the ACM

36(11): 62-67.
Grady RB and Caswell DL (1987). Software Metrics: Establishing a company-wide

program. Englewood Cliffs, Prentice Hall.
Graham DR (1992). "Testing and quality assurance - the future." Information and Software

Technology 34(10): 694-697.
Hall T and Fenton N (1996). "Software quality programmes: a snapshot of theory versus

reality." Software Quality Journal 5: 235-242.

8-3

Hall T and Wilson D (1997). "Views on software quality: A field report." lEE Proceedings
on software engineering 144(2): 111-118.

Hart J (1982). The effectiveness of design and code Walkthroughs. COMPSAC '82
computer software and applications. Chicago. IEEE Comp Soc Press.

Hastings W (1970). "Monte Carlo Sampling using Markov chains and their application:·
Biometrika 57(1): 97-109.

Hennel MA and Hedley DD (1989). The role of static analysis in the validation of safety·
critical software. Software Tools'89.

Herskovits EH and Dagher AP 1997 Application of Bayesiari Networks to Health Care.
Noetic Systems Incorporated NSI-TR-1997-02

Hodgson JPE (1991). Knowledge Representation and Language in AI. Chichester. Ellis
Horwood.

Hollocker CP (1990). A review process mix. System and Software Requirement
Engineering. Thayer R and Dorfman M. IEEE Computer Society Press Tutorial:
485-491

Hollocker CP (1990). Software reviews and audits handbook. New York. John Wiley.
Horvitz E. Breese J. et a1. (1998). The Lumeriere Project: Bayesian User Modeling for

Inferring the Goals and Needs of Software Users. 14th Conference on Uncertainty
in Artificial Intelligence. Madison WI. Morgan Kaufmann.

Hugin (1999) SERENE. http://www.hugin.dklserene
Hugin Expert NS (1998) Hugin Prqfessional version 5.2 http://www.hugin.dk
Humphries WS (1989). Managing the Software process. Addison-Wesley.
IEEE (1988) IEEE Standard for software reviews and audits. Institution of Electrical and

Electronic Engineers. IEEE Std 1028-1988
Iisakka J and Tervonen I (1998). "Painless improvements to the review process:· Software

Quality Journal 7: 11-20.
Iniesta JB (1994). A tool and a set of metrics to support technical reviews. Software quality

management. 2: 579-594.2
International Organization for Standardization (1994). ISO 9004-1: 1994 Quality

management and quality assurance standards. Guidelines.
International Organization for Standardization (1997). ISO 9000-3:1997 Guidelines for the

application of ISO 9001: 1997 to the development. supply. installation and
maintenance of computer software.

International Organization for Standardization (1997). ISO 9001:1997: Quality systems.
Model for quality assurance in design. development. production installation and
servicing.

International Organization for Standardization and International Electrotechnical
Commission (1991). ISOIIEC 9126:1991 Information technology - Software
product evaluation - Quality characteristics and guidelines for their use.

International Organization for Standardization and International Electrotechnical
Commission (1995). ISOIIEC 12207:1995 Information technology. Software life
cycle process.

Ishikawa K (1982). Guide to Quality Control. Tokyo. Asian Productivity Organization.
Jensen F (1998). Hugin API reference manual version 4.0, Hugin Expert NS.
Jensen FV (1995) Cautious propagation in Bayesian Networks Aalborg Unversity R-95-

2004
Jensen FV (1996). An introduction to Bayesian networks. London, UCL Press.
Jensen FV. Chamberlain B. et al. (1991). "Analysis in Hugin of Data Conflict:·

Uncertainty in Artificial Intelligence 6: 519-528.

8-4

Jensen FV, Lauritzen SL, et al. (1990). "Bayesian updating in causal networks by local
computations." Computational Statistics Quarterly 4: 269-282.

Johnson P (1994). An instrumented approach to improving software quality through formal
technical review. 16th International conference on software engineering.

Jones CL (1985). "A process-integrated approach to defect prevention." IBM Systems
Journal 24(2): 150-167. .

Juran JM, Gryna FM, et al. (1974). Quality Control Handbook. New York, McGraw-Hill.
Kelly JC, Sherif JS, et al. (1992). "An analysis of defect densities found during software

inspections." Journal of systems software 17(2): 111-117.
Kim LPW, Sauer C, et aI. (1995). A framework of software development technical

reviews. Software quality and productivity: theory, practice, education and training.
Lee M, Chapman and Hall: 294-299

Kitchenham BA, Kitchenham A, et al. (1986). "The effect of inspections on software
quality and productivity." ICL Technical Journal May 1986: 112-122.

Knight JC and Meyers EA (1991). "Phased inspections and their implementation." ACM
Sigsoft Software Engineering Notes 16(3): 29-35.

Knight JC and Myers EA (1993). "An improved inspection technique." Comms of the ACM
11(11): 51-61.

Krause PJ (1998). "Learning Probabilistic Networks." The Knowledge Engineering
Review 13(4): 321-351.

Lauritzen SL and Spiegel halter DJ (1988). "Local computations with Probabilities on
Graphic Structures and their application to Expert systems:' J.Royal Statistical
Society 50(2): 157-224. .

Lutz R (1993). Analyzing Software Requirements Errors in Safety-Critical Embedded
Systems. IEEE international symposium on requirements engineering, San Diego,
IEEE Comp Soc Press.

Macdonald F and Miller J (1997) A comparison of tool-based and paper-based software
inspection. University of Strathclyde EFoCS-25-97

Macdonald F and Miller J (1999). "ASSIST - a tool to support software inspection."
Information and Software Technology 41(15): 1045-1057.

Madhavji NH (1991). "The process cycle." Software Engineering Journal Sep 1991: 234-
242.

Marshall KT and Oliver RM (1995). Decision Making and Forecasting. New York, Mc­
Graw-Hill.

Martin J and Tsai WT (1990). "N-fold Inspections: a requirement analysis technique."
Comms ACM 33(2): 225-232.

May J (1999). Private Correspondence.
May J, Hall P, et al. (1993). Fault Prediction for Software development processes.

Mathematics of Dependable Systems. C. Mitchell. and V Stavridou. Oxford, Oxford
University Press

Mays RG, Jones CL, et al. (1990). "Experiences in defect prevention." IBM Systems
Journal 29(1): 4-32.

McCabe TJ (1976). "A Complexity Measure." IEEE Trans Soft Eng SE-2(4): 308-320.
McGraw KL and Harbison-Briggs K (1989). Knowledge Acquisition: Principles and

Guidelines. Englewood Cliffs, Prentice Hall.
Ministry of Defence Directorate of Standardization (1995). Defence Standard 00-55: The

procurement of safety critical software in defence systems.
Ministry of Defence Directorate of Standardization (1996). Defence Standard 00-56 Safety

Management Requirements for Defence Systems.

8-5

Morgan MG and Henrion M (1998). Analytica: A software tool for uncertainty analysis and
model communication. Uncertainty: A guide to dealing with uncertainty in
quantitative risk and policy analysis. New York, Cambridge University Press

Murphy AH and Winkler RL (1984). "Probability forecasting in Meteorology." Journal of
the American Statistical Association 79(387): 489-500.

Myers GJ (1978). "A controlled experiment in testing and code walkthrough/inspection.".
Communications of the ACM 21(9): 760-768.

Myers GJ (1979). The art of software testing. New York, John Wiley.
NASA (1993) Software Formal Inspection Standard NASA Office of safety and mission

assurance. NASA-STD-2202-93 http://satc/gsfc.nasa.gov/fI/stdlfistdtxt.txt
NASA (1993) Software Formal Inspections Guidebook NASA Office of safety and mission

assurance. NASA-GB-A302
Neil M and Fenton N (1996). Predicting Software Quality using Bayesian Belief Networks.

21st Annual Software Engineering Workshop, NASA/Goddard Space Flight Centre
December 4-5.

Neil M, Fenton N, et al. (1999). "Building Large-Scale Bayesian Networks." submitted to
Knowledge Engineering Review, July 1999.

Neil M, Littlewood B, et al. (1996). Applying Bayesian Belief Networks to System
Dependability Assessment. Safety-critical systems: The convergence of High Tech
and Human Factors. F Redmill and T Anderson. London, Springer: 71-94

Neil M and Salter J (1994) Comparsion of software integrity models and recommendations
for improvements to the FASGEP method. Lloyds Register of Shipping FASGEP
report LR13R02C

O'Hagan A (1994). Kendall's Advanced Theory of Statistics. London, Edward Arnold.
Olesen KG, Lauritzen SL, et al. (1992). aHUGIN: A system creating adaptive causal

probabilistic networks. Eighth Conference on Uncertainty in Artificial Intelligence,
Stanford, California, Morgan Kaufmann, San Mateo, California.

O'Neill D (1997) Software Inspections http://www.sei.cmu.edulstr/descriptions/inspections
Pam as DL and Clements PC (1986). "A rational design process: how and why to fake it."

IEEE Trans Software Engineering SE-12(2): 251-257.
Pam as DL and Weiss DM (1987). "Active design reviews: Principles and practices."

Journal of Systems and Software 7: 259-265.
Paulk M, Curtis B, et al. 1991 Capability maturity modelfor software. Carnegie Mellon

University, Software Engineering Institute CMU/SEI-91-TR-24
Pearl J (1988). Distribution revision of belief commitment on composite explanation.

Uncertainty in Artificial Intelligence 2. Lemmer JF and Kanal LN, Elsevier: p291-
315

Pearl J (1988). Probabilistic reasoning in intelligent systems: Networks of plausible
inference, Morgan Kaufmann.

Phillips RT (1986). An approach to software causal analysis. IEEE Gobal
Communications, IEEE Comp Soc Press.

Porter AA and Johnson PM (1997). "Assessing software review meetings: Results of
comparative analysis of two experimental studies." IEEE Trans Software
Engineering 23(3): 129-145.

Porter AA, Siy H, et al. (1988). "Understanding the source of variations in software
inspections." ACM Trans on Software Engineering and Methodology 7(1): 41-79.

Porter AA and Votta LG (1994). An experiment to assess different defect detection
methods for software requirements inspections. 16th International conference on
software engineering.

8-6

Porter AA. Votta LG. et al. (1995). "Comparing detection methods for software
requirement inspections: A replicated experiment." IEEE Trans Software
Engineering 21(6}: 563-575 ..

Ramoni M and Sebastiani P (1999). Learning conditional probabilities from incomplete
data: an experimental comparison. Proceeding of the Seventh International
Workshop on Artificial Intelligence and Statistics. San Mateo CA; Morgan
Kaufman.

Redmill FJ, Johnson EA, et al. (1988). "Document Quality-Inspection." British Telecom
Engineering 6(Jan 1988): 250-256.

Reed DA (1993). "Treatment of uncertainty in structural damage assessment." Reliability
Engineering & System Safety 39: 55-64.

Reeve JT (1991). "Applying the Fagan inspection technique." Quality Forum 17(1}: 40-47.
Reiter R (1987). "Nonmonotonic reasoning." Annual Review of computer science 2: 147-

86.
Remus H and Zilles S (1979). Prediction and management of program quality. 4th National

conference on software engineering, IEEE Comp Soc Press.
- Richardson Jed. (1992) Usability Evaluation Race project deliverable, ISSUE programme

Robert CP (1994). The Bayesian Choice. London, Springer.
Royce WW (1970). Managing the development of large systems: concepts and techniques.

WESTCON.
Russel OW (1991). "Experiences with inspections in ultra large scale developments." IEEE

Software Jan 1991: 25-31.
Schein E (1970). Organizational Psychology. Englewood Cliffs, Prentice-Hall.
Schneider GM, Martin J, et al. (1992). "An experimental study of fault detection in user

requirements documents." ACM Trans Software Engineering and Methodology
1(2): 188-204.

Schuman H and Presser S (1977). "Question wording as an independent variable in survey
analysis." Sociological Methods and Research 6(2}: 151-170.

Shafer G (1985). "Conditional Probability." International Statistical Review 53: 261-277.
Shaw M (1991). "Use of Bayes' Theorem and Beta Distribution for reliability estimation

purposes." Reliability Engineering and Systems Safety 31: 145-153.
Shepperd MJ (1988). "A critique of cyc10matic complexity as a software metric." Systems

Engineering Journal 3(2): 30-36.
Sherif YS and Kelly JC (1992). "Improving software quality through formal inspections."

Microelectronics and reliability 32(3}: 423-431.
Shull F. Rus I. et al. (2000). "How perspective-based reading can improve requirements

inspections." IEEE Computer July 2000: 73-79.
Shumate K and Keller M (1992). Software Specification and design a disciplined approach

for real-time systems. New York, John Wiley. .
Sommerville I (1992). Software Engineering. Wokingham. Addison-Wesley.
Spiegelhalter DJ and Cowell RG (1992). Learning in probabilistic expert systems. Bayesian

Statistics 4. JM Bernado. JO Berger, AP Dawid and AFM Smith. Oxford. Oxford
University Press: 447-465

Spiegelhalter DJ, Dawid AP, et al. 1993 Bayesian Analysis in Expert Systems BAlES
Report BR-27

Spiegelhalter DJ and Lauritzen SL (1990). "Sequential Updating of Conditional
Probabilities on directed graphical structures." Networks 20: 579-605.

Srinivas S and Breese J (1990). IDEAL: A software package for analysis of influence
diagrams. Sixth Uncertainty Conference, Cambridge MA.

Strauss SH and Ebenau RG (1994). Software Inspection Process. New York, McGraw-Hill.

8-7

Swann A (1999). Private Correspondence.
SyberNet Ltd (1998) C/C++ CheckMate, http://www.sybernetie
Tarassenko L (1998). A guide to Neural Computing Applications. London. Arnold.
Thiesson B (1995). Accelerated Quantification of Bayesian Networks with Incomplete

Data. 1st International conference on Knowledge discovery and data mining, AAAI
Press.

Tornlison C, Cockram T. et al. (1997) Productivity, Integrity and Capability Enhancement
for Software "PRICES" Code of Practice Department of Trade and Industry SafeIT
Distribution Centre LR8EROIE

Trevonen I (1996). "Consistent support for software designers and inspectors." Software
Quality JournalS: 221-229.

Trevonen I (1996). "Support for quality based design and inspection." IEEE Software Jan
1996: 44-54.

Tripp LL, Struck WF, et al. (1991). Application of multiple team inspections on a safety­
critical software standard. 4th Soft Eng Standards Application Workshop.

Votta LO (1993). Does every inspection need a meeting? ACM Sigsoft'93 symposium on
foundations of software engineering, ACM.

Weinberg OM and Freedman DP (1984). "Reviews, Walkthroughs and Inspections." IEEE
Trans on Software Engineering SE-1O(1): 68-72.

Weiss AR and Kimbrough K (1995) Motorola's Formal Inspection Process
http://www.ics.hawaii.edul-johnsonlFfRl

Weller EF (1993). "Lessons from three years of inspection data." IEEE Software 10(3): 38-
45.

Winkler R (1967). "The Assessment of prior distributions in Bayesian Analysis." American
Statistical Association Journal 62: 776-800.

Wright S (1921). "Correlation and causation." Journal of agricultural research 20(7): 557-
585.

Wright S (1934). "A method of path coefficients." Annals of Mathematical Statistics 5:
161-215.

Yourdon E (1979). Structured Walkthroughs. Englewood Cliffs. Prentice-Hall.
Zadeh LA (1983). "The role of fuzzy logic in the management of uncertainty." Fuzzy Sets
and Systems 11: 199-227.

8-8

Appendix A - Expert Opinion Survey

Al Introduction

A survey was conducted using the questionnaire below to record responses where the
interviewee was asked to determine the relative importance of each attribute's contribution
to the dependant attribute within a section by marking a box that matched their view. The
relative importance between the attributes within a section was also determined by marking
the ranking box, 1 indicating the most important. It was possible to give attributes equal
ranking.

The survey obtained from group A and B, 21 responses from each group who were
. engineers and managers experienced in conducting inspections. A good return was

obtained either directly, as E-Mail or as hardcopy with two cases where the person was
unable or unwilling to complete the questionnaire. The returns were examined and
responses recorded. In a few cases incomplete data was provided and in that case the data
was discarded on a question by question selection.

The results obtained from the survey were recorded separately for each group in Excel
tables. The correlation coefficient for the two sets of data was then calculated.

At

A2 Survey Questionnaire

What is the relative importance of the following attributes? Mark the box that matches Y9ur
view, if your opinion lies between two boxes then mark both boxes. Then mark the relative
importance between the attributes within a section by marking the ranking box, 1
indicating the most important. You may give attributes equal ranking.

Inspection Effectiveness

1. Quality of the inspection process

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
2. Size of the item/subject being inspected

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
3. The complexity of the item/subject being inspected

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
Quality of the Inspection Process:

1. Quality of the error logging

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
2. Quality of the preparation

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D

A2

Quality of the Error Logging

1. Quality of the inspection method

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
2. Quality of the inspection team

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
Quality of Inspection Method! Procedure:

1. Formal Actions

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D· D
2. Adequate inspection rate

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
3. Defined exit criteria

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
4. Defined scope of the inspection

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D

A3

Quality of the inspection team

1. Quality of the Moderator

Most Important Neutral Not Irrelevant Ranking
important important

0 0 0 0 0 0
2. Quality of the inspection team members

Most Important Neutral Not Irrelevant Ranking
important important

0 0 0 0 0 0
Quality of l'tlodcrator:

1. Communication skills

Most Important Neutral Not Irrelevant Ranking
important important

0 0 0 0 0 0
2. Experience as a moderator

Most Important Neutral Not Irrelevant Ranking
important important

0 0 D D D D
3. Adequate domain knowledge

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D

A4

Quality of Inspection Team Members:

1. Team size

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
2. Experience in inspection role

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
3. Adequate application experience

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
Quality of inspection preparation:

I. Experience at inspection preparation

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D 0
2. Adequate preparation time

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D
3. Adequate inspection checklist

Most Important Neutral Not Irrelevant Ranking
important important

D D D D D D

AS

This page is intentionally blank

A6

A3 Group A data
Inspection
Effectiveness

Quality of Inspection
process

Size of the item being
Inspected

Complexity of item
being Inspected

Most Important
Important

9 9

3 15

4 14

- -_ .-

16 r-~~~~~~~~~~~~~~~~~

14

12

10

8

6

4

2

o
Most Important Neutral Not Irrelevant

Important Important

Neutral Not
Important

3 0

3 0

3 0

C Quality of inspection process

• Size of the item being
inspected

[J Complexity of item being
inspected

Ranking

Irrelevant 1

0 Quality of Inspection 14
process

0 Size of the item being 3
Inspected

0 Complexity of item 4
being Inspected

16T---------~----~~------_,

14

12

10

8

6

4

2

o
2 3

A7

2 3

2 5

5 13

13 4

--- -- -

C Quality of inspection
process

• Size of the item being
inspected

C Complexity of item
being inspected

Quality of Inspection process

Most Important
Important

QUality of the Error 7 13
Logging

Quality of the 10 8
inspection preparation

- -

14 I. '. :, •. :'t':~!' ;~ :~''',::,_~.: . ..I:'",~,";, .. ''~,<:..,.;;..,..:.,:.,/:. ,';:-" ... 1

12

10

8

6

4

2

o
Most Important Neutral Not Irrelevant

Important Important

Neutral Not
Important

1 0

3 0

C Quality of the Error-logging
meeting

.Quality of inspection
preparation

Irrelevant

0

0

Quality of the Error
Logging

Quality of the
inspection preparation

18) .. ,~. _ ~ .. _~._.~

16

14

12

10

8

6

4

2

o! , H"_

A8

2

Ranking

1

7

17

2

14

4

CQ.Jdify ci1he Erra­
Icgjrg rreetirg

.Q.Jdify ci insp:dicn
p-ep:rdicn

Quality of Error Logging

Most Important
Important

Quality of the 4 14
Inspection
method/procedure
Quality of the 12 8
Inspection team

16 _, ..

14

12

10

8

6

4

2

o
Most Important Neutral Not Irrelevant

Important Important

Neutral Not
Important

3 0

1 0

13 Quality of the inspection
method/procedure

Irrelevant

0

0

Quality of the inspection team

Ranking

1

Quality of the 5
Inspection
method/procedure
Quality of the 17
Inspection team

18 , _________ '"_ .,' _ ... '_.

16

14

12

8

6

4

2

o I .,--

2

A9

2

16

4

C Quality of the
inspection
method/procedure

III Quality of the
inspection team

Quality of Inspection method/procedure Ranking

Most hnportant Neutral Not Irrelevant 1 2 3 4
hnportant hnportant

Formal Actions 6 13 2 0 0 Formal Actions 4 4 10 3

Adequate 9 12 0 0 0 Adequate 7 7 3 4
inspection rate inspection rate

Defined Exit 6 9 5 0 0 Defmed Exit 6 7 5 2
criteria criteria

Defined scope of 1 14 4 1 0 Defmed scope of 5 3 3 10
the Inspection the Inspection
---- ---- - --

16 . ~." __ _ 2 ._ ... 1' £» .. , ,5

14
C Fonnal Actions

Ie Fonnal Actions'

12
• Adequate inspection rate

10
8

• Adequate inspection
rate

[] Defined exit criteria

[] Defined exit criteria
8 6 [] Defined scope

6
[] Defined scope

4

4

2 2

o I - 0
Most Important Neutral Not Irrelevant 2 3 4

Important Important L
AlO

Quality of Inspection
team

Quality of the
Moderator

Quality of the
Inspection team
members

Most Important
Important

9 10

6 14

- -----

16 r---~~==~~~~~~~--~~~~~~

14

12

10

8

6

4

2

o
Mbst rrportant Neutrru

h-portant
Not

rrportant

Irrelevant

Neutral Not
Important

2 0

1 0

o Quality of the rroderator

Quality of the inspection
team rrerrbers

Ranking

Irrelevant 1

0 Quality of the 9
Moderator

0 Quality of the 12
Inspection team
members

14 ,,' .. __ ,..... ~ . _ _. _", _. , i

12

10

8

6

4

2

o I " -·F

2

All

2

12

9

o Quality of the
rroderator

• Quality of the
inspection team
rrerrbers

Quality of Moderator

Most Important Neutral Not Irrelevant
Important Important

Communication skills 6 13 2 0 0

Experience as a 2 11 8 0 0
I

Moderator

Adequate domain 2 9 2 1 0
knowledge

14 ... G . . _. L)C -d I.. • •. • 1

12

10

8

6

4

2

o
Most

Important
Important Neutral Not

Important

• Experience/training as
moderator

[J Adequate domain knowtedge

Irrelevant

A12

Ranking

1

Communication skills 12

Experience as a 3
Moderator

Adequate domain 6
knowledge

14

12

10

8

6

4

2

o
2 3

2 3

5 4

9 9

5 10

C Communication skills

• Experience/training as
moderator

[] Adequate domain
knowtedge

Quality of Inspection team
members

Most Important Neutral Not
Important Important

Team size 4 11 6 0

Experience in 2 14 5 0
Inspection role

Adequate application 11 10 0 0
expenence

16~~~----~--------------~ __ ~~~----__ --~

14

12

10

8

6

4

2

o
Mlst Irrportant

ITportant

o Adequate application
experience

Neutral Not Irrportant helevant

Ranking

Irrelevant 1

0 Team size 3

0 Experience in 3
Inspection role

0 Adequate application 16
experience

18 ':VJI!nL....,_" 10 ·""lOt'''!$'it' '~<I" ;,~., _ .'0 "'. ,]

16

14

12

10

8

6

4

2

o
2 3

A13

2

5

11

4

c Teamsize

• Experience in
inspection role

3

13

7

1

o Adequate application
experience

Quality of inspection preparation

Most Important Neutral Not
Important

Experience at 6
inspection
Adequate preparation 9
time

Adequate Inspection
checklist

16

14

12

10

8

6

4

2

0

!\.
t:-'lt<::' ~ ~o o~'lt

,,-'~ ,~q
~o<,j

5

--- - - ----

:-.. ~'lt ~
~0 o~'lt

,~q
~~

-

!\.
;:..'It<::'

~0
~"

13

11

14

Important
2 0

1 0

4 0

C Experience at inspection
preparation

.Adequate preparation time

C Adequate checklist

Irrelevant

0 Experience at
inspection

0 Adequate preparation
time

0 Adequate Inspection
checklist

12

10

8

6

4

2

o
2

A14

Ranking

1

9

8

7

3

2

5

10

3

C Experience at
inspection preparation

• Adequate preparation
time

[] Adequate checklist

3

7

3

11

I

A4 Group B Data

Inspection
Effectiveness

Quality of Inspection
process

Size of the item being
Inspected

Complexity of item
being Inspected

Most
Important

10

2

4

Important Neutral Not
Important

10 2 0

11 6 4

15 3 0

---- --- ---

16r-~~~------~~~~~~~~~--,

14

12

10

8

6

4

2

o
Most Important Neutral Not Irrelevant

Important Important

C Quality of inspection process

• Size of the item being
inspected

o Complexity of item being
inspected

Ranking

Irrelevant 1

0 Quality of Inspection 14
process

1 Size of the item being 3
Inspected

2 Complexity of item 4
being Inspected

16 I. <. ___ •• __ _

14

12

10

8

6

4

2

o
2

A15

3

2 3

5 2

3 15

14 3

- - - -----

C Quality of inspection
process d. Size of the item being
inspected

o Complexity of item
being inspected

Quality of Inspection process

Most Important Neutral Not
Important Important

QUality of the Error 3 14 5 0
Logging

QUality of the 9 8 6 0
inspection preparation

-- ----- ----

16~--------~------__ ~ __ ~ __ ~~~~ ______ ~
14

12

10

B

6

4

2

o
M:>st

ITportant
ITportant Neutral Not

ITportant

C Quality of the Error-logging
meeting

• Quality of inspection
preparation

rrelevant

Ranking

Irrelevant 1 2

0 Quality of the Error 11 8
Logging ,

0 Quality of the 8 11
inspection preparation

12 "'-'iiJ";;~ .. _! ."""'.'.ft, .. !-....,..,Ls:t:~'! .. J.~~ J : ,.,J!-. ·, ... 1

10

B

6

4

2

O~

A16

2

C Quality of the Error­
logging meeting

• Quality of inspection
preparation

Quality of Error Logging

Most Important
Important

Quality of the 3 14
Inspection
method/procedure
Quality of the 13 9
Inspection team

16 c ••. "" "' ._. • I

14

12

10

8

6

4

2

o
Mlst h"portant Neutral

h"portant
Not

h"portant

k-relevant

Neutral Not
Important

6 0

1 0

o Quality of the inspection
rrethodlprocedure

• Quality of the inspection
team

Ranking

Irrelevant 1

0

0

Quality of the 3
Inspection
method/procedure
Quality of the 18
Inspection team

20 I ·.oi-t."."""".. .'<.' ~ ""''''''''' .. 0 .,,~..- _. """'''''' •• >"".~c'I;;.' . oj .".- ~ '?: ~~:lI~,,':t-.:"~""'Q~ "\t~"I ,o(":t', ~-r ~-.,,;; ~....... ~

18

16

14

12

10

8

6

4

2

o I " .. --

Al7

2

2

17

2

o Quality of the
inspection
rrethodlprocedure

• Quality of the
inspection team

Quality of Inspection method/procedure

Most Important Neutral Not Irrelevant
Important Important

Formal Actions 4 13 4 2 0

Adequate 7 12 4 0 0
inspection rate

Defined Exit 11 8 4 1 0
criteria

Defined scope of 5 13 4 2 0
the Inspection

---_ .. _--

14 ,~, .. ;....," ~ ~:.~.:.::;.:.,.~.:... j(II:....,~,. ' .. : .. ~,~,' ",'.~/7:.-..... ~-'~"'!;;"~" ",<, e"p.o _ _

12
C Forrral Actions

10
• Adequate inspection rate

8

6

4

2

o
M:lst h"portant Neutral

h"portant
Not

irT1>ortant

o Defined ed criteria

o Defined scope

r-relevant

Ranking

1 2 3 4

Formal Actions 6 3 4 8

Adequate 8 4 6 3

I inspection rate

Defined Exit 5 10 2 4 I

criteria

Defined scope of 4 5 9 3

I the Inspection

12 I .;::;;U~,;

ForrraJ Actions
10

8

o Defined exit criteria

6

4

2

o
2 3 4

Al8

Quality of Inspection
team

Quality of the
Inspection Moderator

Quality of the
Inspection team
members

Most Important
Important

2 17

15 9

18 ", .,.......... ... '--..1'"" ... __ . .;.

16

14

12

10

8

6

4

2

o
tv\:)st ITportant Neutral

n-portant
Not

rrportant

helevant

Neutral Not
Important

4 0

1 0

[J Quality of the rroderator

• Quality of the inspection team
rrerrbers

Irrelevant

1

0

Ranking

1

Quality of the 6
Inspection Moderator

Quality of the 16
Inspection team
members

18d

16

14

12

10

8

6

4

2

o I w ··-r.

2

A19

2

14

4

[J Quality of the
rroderator

• Quality of the
inspection team
rrerrbers

Quality of Moderator

Most Important
Important

Communication skills 7 13

Experience as a 5 9
Moderator
Adequate domain 1 12
knowledge

14 ... t .''''"

12

10

8

6

4

2

o
Mlst Irrportant Neutral t-bt Irrelevant

h"portant h"portant

Neutral Not
Important

4 0

7 2

10 1

C CollTTlJnication skills

• Experience/training as
rroderator

o Adequate dormn know ledge

Irrelevant

0

0

0

A20

Ranking

1

Communication skills 7

Experience as a 9
Moderator

Adequate domain 3
knowledge

2 3

9 2

3 6

6 9

C Communication skills

• Experience/training as
moderator

C Adequate domain
knowledge

I

Quality of Inspection team
members

Most Important Neutral Not
Important Important

Team size 1 9 8

Experience in 3 13 6
Inspection role

Adequate application 13 9 1
expenence

14 ~i'--------~~~~~~--------~~~~~-'

12

10

8

6

4

2

o
M:>st

n-portant
hlJortant Neutral Not

n-portant

o Adequate application
experience

Irrelevant

2

2

0

Ranking

Irrelevant 1 2 3

1 Team size 0 6 13

0 Experience in 4 10 5
Inspection role

0 Adequate application 16 3 0
experience

- -- -----_ . -

18

16

14

12

10

a j ~.\t '" "." tlf ' '"~$. lilr IO;d,q,,,, app'oafun '\". :' :,,:r4 :~l.~ ~~~: ~,' ..
L ••. _~ •• ~<,--.~.. ~1~,"1 i ,,-". '. experience
;~rr i;l..~' H,~. ~_ - :0.~;;[. t,~!:,,;~:

6

4

2

0
2 3

A21

Quality of inspection preparation

Most Important Neutral Not
Important Important

Experience at 4 10 7 1
inspection preparation

Adequate preparation 9 11 2 1
time

Adequate Inspection 9 9 5 1
checklist

- --- -

12 . ,"", __ ,:_ ~ - ~.,~} ~ .. _ #,;-.*t .. _ .. t ... ·· .•. _-~.-.· .• 4~"·_4 . . -l

10

8

6

4

2

o
M:lst ITportant Neutral Not Irrelevant

Irrportant ITportant

C Experience at inspection
preparation

• Adequate preparation tine

o Adequate checklist

Irrelevant

• 0 ,

0

0

A22

Experience at
inspection preparation

Adequate preparation
time

Adequate Inspection
checklist

10 , __ , •.

9

8

7

6

5

4

3

2

o

Ranking

1

3

9

9

2 3

2 3

8 9

8 3

5 6

IJ Experience at
inspection preparation

• Adequate preparation
time

o Adequate checklist

I
:

AS Allalysis of Groups A alld B data

A correlation analysis between the two sets of data produces the following results:

CORRELATION COEFFICIENTS BETWEEN Groups A and B DATA

Full Set of Data Not Including Not hnportant' Full Set of Data
And 'Irrelevant'

Pa,b Order of Array Pa,b Order of Array Pa,b Order of
Array

Inspection 0.9336 5*3 0.9198 3*3 Ranking 0.9448 3*3
Effectiveness
Quality of Inspection 0.9009 5*2 0.7659 3*2 Ranking -0.9578 2*2
process

Quality of Error 0.9818 5*2 0.9662 3*2 Ranking 0.9999 2*2
Logging
Quality of Inspection 0.9187 5*4 0.8522 3*4 Ranking -0.1340 4*4
method/procedure
Quality of Inspection 0.6866 5*2 0.4540 3*2 Ranking 0.9806 2*2
team

Quality of Inspection 0.8598 ' 5*3 0.7309 3*3 Ranking 0.0728 3*3
Moderator

Quality of Inspection 0.9519 . 5*3 0.9255 3*3 Ranking 0.9728 3*3.
team members
Quality of inspection 0.8825 5*3 0.7490 3*3 Ranking 0.2611 3*3
preparation

- -

A23

A6 ACCUMULATED DATA
Inspection
Effectiveness

Most
Important

Quality of Inspection 19
process
Size of the item being 5
Inspected

Complexity of item 8
being Inspected

35 j •••

30

25

20

15

10

5

o

Important Neutral

19 5

26 9

29 6

Most rrportant Neutral Not k'relevant
rrportant kTportant

Not Irrelevant
Important

0 0

4 1

0 2

C Quality of inspection process

• Size of the item being
inspected

o Corrplexity of item beng
inspected

A24

Ranking

1 2 3

Quality of Inspection 28 7 7
process
Size of the item being 6 8 28
Inspected

Complexity of item 8 27 7
being Inspected

30 "':'). '!.. __ ' _. 0 ~ ! ~_.~_ ... ,.'i'_._ "'A __ ,j .,. •. ~.",_'A i

25

20

15

10

5

o
2 3

process

• Size of the item being
ilspected

o Col1l>lexity of item
being inspected

Quality of Inspection process

Most Important
Important

Quality of the Error 10 27
Logging

Quality of the 19 16
inspection preparation

30 .•.. 0 ••••••• ,

25

20

15

10

5

o
West kTportant Neutral Not Irrelevant

kTportant h-portant

Neutral Not
Important

6 0

9 0

(J Quality of the Error·logging
meeting

• Quality of inspection
preparation

Ranking

Irrelevant 1 2

0 Quality of the Error 18 22
Logging

0 Quality of the 25 15
inspection preparation

30 •• _ ~..._ .. ___ '.' • , .. ,., ~.o_

25

20

15

10

5

o r I ","""""";:

A25

2

(J Quality of the Error­
logging meeting

• Quality of inspection
preparation

Quality of Error Logging

Most Important
Important

Quality of the 7 28
Inspection
method/procedure
Quality of the 25 17
Inspection team

30 -,"'~~ ~'~~:I ;Y:··~;'i.:'~~:~:·4;\~:~..e;..;~:~~".t~t~~J;:~ !;;;r!!~~ ~4

25

20

15

10

5

o
Mlst n-portant Neutral

n-portant
Not

n-portant

Irrelevant

Neutral Not
Important

9 0

2 0

C Quality of the inspection
method/procedure

• Quality of the inspection
team

Irrelevant

0 QUality of the
Inspection
method/procedure

0

i

Quality of the
Inspection team

4O.....,..~~~

35

30

25

20

15

10

5

o +1--'---

A26

2

Ranking

1 2

8 33

35 6

C Quality of the
ilspection
method/procedure

• Quality of the
ilspection team

:

!

Quality of Inspection method/procedure

Most Important Neutral Not Irrelevant
Important

Formal Actions 10 26 6

Adequate 16 24 4
inspection rate

Defined Exit 17 17 9
criteria

Defined scope of 6 27 8
the Inspection

30 ~--~----~~~~~~~~~~~~

25

20

15

10

5

o I -
MJst

ITportant
ITportant Neutral Not

ITportant
Irrelevant

Important

2 0

0 0

1 0

3 0

o Formal Actions

• Adequate inspection rate

o Defined exit criteria

o Defiled scope

Ranking

1 2

Formal Actions 10 7

Adequate 15 11
inspection rate

Defined Exit 11 17
criteria

Defined scope of 9 8
the Inspection

18 _.~.'~~":":-_'" .~\ l' k'~~ .¥· ~~;~~~~.;~_,l'~2.t .. l

16

14

12

10

8

6

4

2

o
2 3 4

A27

3

14

9

7

12

o Formal Actions

• Adequate inspection
rate

o Defined exit criteria

o Defined scope

4

11

7

6

13

Quality of Inspection team

Most Important
Important

Quality of the 11 27
Moderator

Quality of the 21 23
Inspection team
members

30 i u.

25

20

15

10

5

o
M:!st h"portant Neutral Not Irrelevant

h"portant lrTportant

Neutral Not
Important

6 0

2 0

C Quality of the rroderator

• Quality of the inspection team
mermers

Irrelevant i

1 Quality of the
Moderator

0 Quality of the
Inspection team
members

30 I -.;:;s ~'h'_
::~:4;;,"=J-~"i1'.~~~

25

20

15

10

5

o I ,. _ .••.

A28

2

Ranking

1

15

28

2

26

13

a Quality of the
rroderator

• Quality of the
inspection team
mermers

Quality of Moderator

Most
Important

Communication skills 13

Experience as a 7
Moderator

Adequate domain 3
knowledge

30

25

20

15

10

5

o
Wost h"portant Neutral

h"portant

Important

26

20

21

- --

Neutral Not
Important

6 0

15 2

12 2

o Corrrrunication skiDs

• Experience/training as
moderator

o Adequate domain Iq)ow ledge

t-bt Irrelevant
rrportant

Irrelevant

0

0

0

A29

Ranking

I

Communication skills 19

Experience as a 12
Moderator

Adequate domain 9
knowledge

20 .. ~ ...•. ~"

18

16

14

12

10

8

6

4

2

o
2 3

2 3

14 6

12 15

11 19

• Experience/training as
moderator

o Adequate domain
knowledge

Quality of Inspection team
members

Most
Important

Team size 5

Experience in 5
Inspection role
Adequate application 24
experience

----- ---- ------ - ---- - ~

Important Neutral Not
Important

20 14 2

27 11 2

19 1 0

30 , .. ,. :.' '.'-.. ~ ,. :;t~~ ';-;~<~;.'~{-__ ~ ',;;~ .. ~~:-:.!:!l$:.,t:;~~:~~!"f.;:~1l·~/L:..:.:.;~:·~{;.;;:.; .. ~.]

25

20

15

10

5

o
M:>st ITportant

irrportant
Neutral

o Adequate application
experience

Not Irrelevant

ITportant

Ranking

Irrelevant 1 2 3

1 Team size 3 11 26
I

0 Experience in 7 21 12
Inspection role

0 Adequate application 32 7 1
experience

35

30

25

20 o Adequate application

15

10

5

o
2 3

A30

Quality of inspection preparation

I Most Important Neutral Not
Important Important

Experience at 10 23 9 1
inspection

Adequate preparation 18 22 3 1
time

Adequate Inspection 14 23 9 1
checklist

25 h 1 ,, __ ,_,"- ~ i

20

15

10

5

o
M:lst

h'portant
irrportant Neutral Not

h'portant

o Experience at inspection
preparation

• Adequate preparation tire

o Adequate checklist

helevant

Irrelevant

0

0

0

A31

Ranking

1

Experience at 12
inspection

Adequate preparation 17
time

Adequate Inspection 16
checklist

20 _._ _ _ .. _.

18

16

14

12

10

8

6

4

2

o
2 3

2 3

13 16

18 6

8 17

Experience at
inspection preparat

Adequate preparation
tirre

o Adequate checklist

I

~
.0 ('I

~ >.
c;l
I::
0

.;:1

.§
I::
V)
~
~
0..
V)

~

A7 CONCLUSION

The correlation between the Groups A and B data with the full set of data is, in general,
very close, however, there are a few attributes where this is not the case so a further
explanation of the results is required.

In the case of the "Quality of the Inspection process" the correlation for the ranking of
attributes indicates an opposite preference between Groups A and B. however, this is not
borne out by the importance evaluation in the Group B data giving a contradictory
indication. The correlation of the importance data, particularly without the "not important"
and "irrelevant" options available, shows that there is a difference in opinion between
Groups A and B. This may be as a result of more inspections being held at short notice by
GroupB.

• For the "Quality of Inspection method/procedure" there is less of a correlation between the
ranking, however, the importance evaluation indicates a closer correlation. Looking at the
raw ranking data it appears that "Adequate Inspection Rate" and "Defined Exit Criteria"
have a higher preference than the other two attributes, but there is little to choose between
them.

The opposite is the case with "Quality of the Inspection team" where the ranking is closely
matched compared with the importance.

The low ranking correlation in "Quality of Moderator" may be due to the lack a clear
second preference, with "Communication skills" being clearly ranked 1.

A33

Appendix B Model Initialisation Data

This appendix describes the initialisation of the Inspection Effective Bayesian Belief
Network. For each node within the network the initial belief must be established as a
probability potential (conditional probability table). The results of t.he brain-storming
activity following the expert opinion survey are described in Appendix A and have been
recorded in Excel tables. Each prior probability distribution has been plotted.

Quality of inspection team members

Poor Fair Good Application Inspection
Experience Experience

0.85 0.1 0.05 0 0
0.7 0.2 0.1 0 0

0.45 0.35 0.2 0 I
0.1 0.3 0.6 0 1
0.3 0.3 0.4 1 0
0.1 0.3 0.6 I 0
0.2 0.3 0.5 1 I

0.05 0.1 0.85 1 1

0.9
0.8 -
0.7 -
0.6 -
0.5

0.4 -
0.3

0.2
0.1

0 -

2 3 4 5 6 7 B

Bl

Team
Size

0
1
0
1
0
1
0
1

Poor

• Fair

o Good

Quality of moderator

Poor Fair Good Domain Inspection Communication
Experience Experience/ Skills

Training
0.85 0.1 0.05 0 o Poor

0.5 0.3 0.2 0 o Fair
0.2 0.3 0.5 0 o Good
0.6 0.3 0.1 0 1 Poor
0.2 0.6 0.2 0 1 Fair
0.1 0.1 0.8 0 1 Good
0.7 0.25 0.05 1 o Poor

0.25 0.5 0.25 1 o Fair
0.1 0.3 0.6 1 o Good
0.5 0.3 0.2 1 1 Poor

0.15 0.35 0.5 1 1 Fair
0.05 0.1 0.85 1 1 Good

0.9

0.8

0.7

0.6

0.5
F\:)or

• Fair
0.4 o Good
0.3

0.2

0.1

0

Quality of inspection team

Poor Fair Good Team Moderator
I Quality Quality

0.85 0.1 0.05 Poor Poor
0.5 0.3 0.2 Poor Fair
0.1 0.4 0.5 Poor Good
0.4 0.4 0.2 Fair Poor
0.2 0.6 0.2 Fair Fair
0.2 0.3 0.5 Fair Good
0.2 0.5 0.3 Good Poor
0.2 0.3 0.5 Good Fair

0.05 0.1 0.85 Good Good

B2

0.8

cPoor

• Fair
0.4 - o Good

0.2

0 -

Quality of inspection method/procedure

Poor Fair Good Defined Exit Adequate Formal
Scope Criteria Inspection Actions

Rate
0.8 0.15 0.05 0 0 0 0
0.6 0.3 0.1 0 0 0 1
0.3 0.5 0.2 0 0 1 0

0.25 0.35 0.4 0 0 1 1
0.7 0.25 0.05 0 1 0 0

0.25 0.5 0.25 0 1 0 1
0.2 0.5 0.3 0 1 1 0
0.1 0.3 0.6 0 1 1 1
0.8 0.15 0.05 1 0 0 0

0.25 0.5 0.25 1 0 0 1
0.2 0.3 0.5 1 0 1 0
0.1 0.2 0.7 1 0 1 1
0.7 0.2 0.1 1 1 0 0
0.2 0.4 0.4 1 1 0 1
0.1 0.3 0.6 1 1 1 0

0.05 0.1 0.85 1 1 1 1

B3

0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

o

'J' ",-•.
i

,J"

~
I~
[~

.p.
r.

..

,
j ~

II

r.-

1 l-
h

.~ .
.." "

;!
l~

-
:""'"

l- I--

R ~ n ~

.?

';

l-

ffi
-

n

I-

1-

t-

t-

GI

[] Poor

• Fair

o Good

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Quality of preparation

poor fair good Checklist Preparation Inspection
Time Preparation

EXRerience
0.85 0.1 0.05 0 0
0.2 0.3 0.5 0 0
0.2 0.5 0.3 0 1

0.05 0.35 0.6 0 1
0.2 0.3 0.5 1 0
0.1 0.4 0.5 1 0

0.05 0.35 0.6 1 1
0.05 0.1 0.85 1 1

0.8

0.6
o poor -

0.4 , . f alr

o good
0.2 ·

0

B4

0
1
0
1
0
1
0
1

Quality of error logging

[poor fair [good Team Method
0.85 0.1 0.05 Poor Poor
0.4 0.3 0.3 Poor Fair
0.3 0.3 0.4 Poor Good
0.5 0.3 0.2 Fair Poor

0.25 0.5 0.25 Fair Fair
0.2 0.3 0.5 Fair Good
0.4 0.3 0.3 Good Poor
0.1 0.3 0.6 Good Fair

0.05 0.1 0.85 Good Good

0.6
[J poor

0.4
.falr

0.2 0900d

0

B5

Quality of the inspection process

poor

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

o

fair

0.85
0.5
0.2
0.6

0.25
0.1
0.5
0.1

0.05

"

'----

r; ...

0.1
0.3
0.3
0.3
0.5
0.3
0.3
0.4
0.1

"
," .. t."

I ~ 'I

good Preparation Error
Quality Logging

Quality
0.05 Poor Poor

0.2 Poor Fair
0.5 Poor Good
0.1 Fair Poor

0.25 Fair Fair
0.6 Fair Good
0.2 Good Poor
0.5 Good Fair

0.85 Good Good

I'" -,;, ''''1:;1'> ~, .-
.. , ~"'" ·,r,. .•• j', ;'.. " ::it . ~ i

, ", 'i

,'~

,. .. ~ -
- --.;

~

IT" r-- I-- I-

h r- ir- a r- -dl··

B6

poor

.fair

Cl good

Inspection effectiveness

0-20% 20-40% 40-60% 60-80% 80-100% Product Quality of Product
Complexity Inspection Size

Iprocess
0.85 0.09 0.03 0.02 0.01 High Poor Large

0.8 0.14 0.03 0.02 0.01 High Poor Medium
0.6 0.32 0.05 0.02 0.01 High Poor Small
0.4 0.25 0.2 0.1 0.05 High Fair Large
0.3 0.3 0.25 0.1 0.05 High Fair Medium

0.15 0.25 0.35 0.15 0.1 High Fair Small
0.1 0.15 0.2 0.3 0.25 High Good Large

0.05 0.1 0.25 0.3 0.3 High Good Medium
0.05 0.1 0.2 0.3 0.35 High Good Small
0.78 0.14 0.03 0.02 0.01 Medium Poor Large

0.6 0.32 0.05 0.02 0.01 Medium Poor Medium
0.4 0.3 0.15 0.1 0.05 Medium Poor Small
0.3 0.3 0.25 0.3 0.2 Medium Fair Large

0.15 0.2 0.3 0.2 0.15 Medium Fair Medium
0.1 0.15 0.25 0.3 0.2 Medium Fair Small

0.05 0.25 0.3 0.25 0.15 Medium Good Large
0.05 0.05 0.2 0.4 0.3 Medium Good Medium
0.01 0.02 0.05 0.32 0.6 Medium Good Small
0.35 0.3 0.2 0.1 0.05 Large Poor Large
0.25 0.3 0.25 0.15 0.05 Large Poor Medium

0.1 0.3 0.3 0.2 0.1 Large Poor Small
0.3 0.3 0.25 0.1 0.05 Large Fair Large
0.1 0.15 0.25 0.3 0.2 Large Fair Medium

0.05 0.15 0.2 0.3 0.3 Large Fair Small
0.01 0.02 0.05 0.32 0.6 Large Good Large
0.01 0.02 0.03 0.14 0.8 Large Good Medium
0.01 0.02 0.03 0.09 0.85 Large Good Small

B7

0.9

0.8

0.7

0.6

E]0-20%

0.5 .20-40%

040-60%

0.4 060-80%

.80-100%

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

The a priori conditional probability tables are entered into the Bayesian Belief Network as
potentials. For evidence variables the potentials have been set equal, i.e. no prior
estimation. as data will be entered and propagated in the network for these nodes. Where
data is not known then it is assumed that the evidence for each possible state is equally
likely.

The resulting network file (insnetl a.net) is produced:

net
{

node_size = (200 54) ;
HR_Groups_GroupColors = " ";
HR_Groups_GroupNarnes = "" ;
HR_Groups_UserGroupsNo = "0";
HR_Color_Decision = "17" ;
HR_Color_Utility = "36" ;
HR_Color_ContinuosChance = "48" ;
HR_Color_DiscreteChance = "16 ";
HR_Monitor_ In i tSD = "2" ;
HR_Monitor_ InitStates = "5";
HR_Monitor_ OpenGraph = "0";
HR_Monitor_GraphPrecision = "100 " ;
HR_Monitor_Au toUpdGraph = "0" ;
HR_ Cornpile_ApproxEpsilon = "0 . 00001";
HR_Cornpile_Approxirnate = "0";
HR_Cornpile_Cornpre ss = "0";
HR_Cornpile_TriangMethod = "0";
HR_ Propagate_AutoNorrnal = "1" ;
HR_ Propagate_AutoSurn = "1";
HR_ Propagate_Auto = "0";
HR_ Font_ Ita lic = "0";
HR_Font_Weight = "400";
HR_Font_ Size = "-12";

B8

}

HR_Font_Name = "Arial";
HR_Grid_GridShow = "0";
HR_Grid_GridSnap = "1";
HR_Grid_Y = "10";
HR_Grid_X = "10";

node C24
{

}

label = "Adequate application experience";
position = (980 40);
states = ("<= 2 years" "> 2 years");

node C23
{

}

label = "Experience at Inspection role";
position = (780 0);
states = ("<=3 years" ">3 years");

node C22
{

}

label = "Team size";
position = (660 60);
states = ("Adequate" "inadequate");

node C21
{

}

label = "Adequate domain knowledge";
position = (540 10);
states = ("No" "Yes");

node C20
{

}

label = "Training/Experience at inspection";
position = (330 20);
states = ("<= 3 years" "> 3 years");

node C19
{

}

label = "Communication skills";
position = (200 80)i
states = ("poor" "fair" "good");

node C1S
{

}

label = "Quality of Inspection team members";
position = (750 120);
states = ("poor" "fair" "good");

node C17
{

}

label = "Quality of moderator";
position = (490 150);
states = ("poor" "fair" "good");

node C1S
{

label = "Adequate inspection checklist";
position = (1150 200);
states = ("no· ·yes");

B9

}

node C14
{

label = "Adequate preparation time";
position = (950 160);
states = ("no" "yes");

}

node C13
{

label = "Experience at inspection preparation";
position = (790 210);
states = ("no" "yes");

}

node C12
{

label = "Defined scope of Inspection";
position = (400 210);
states = ("no" "yes");

}

node C11
{

label = "Defined exit criteria";
position = (260 160);
states = ("no" "yes·);

}

node CI0
{

label = "Adequate Inspection rate";
position = (50 150);
states = ("no" "yes");

}

node C9
{

label = "Formal actions";
position = (0 230);
states = ("no" "yes");

node C8
{

label = "Quality of Inspection team";
position = (560 280);
states = ("poor" "fair" "good");

node C7
{

}

label = "Quality of Inspection method/procedure";
position = (330 290);
states = ("poor" "fair" "good");

node C6
{

label = "Quality of preparation";
position = (820 310);
states = ("poor" "fair" "good");

node CS
{

label = "Quality of Error logging";

BID

position = (460 360);
states = ("poor" "fair" "good");

}

node C4
{

label = "Complexity of item/subject being inspected";
position = (850 410);
states = ("high· "medium" "low");

}

node C3
{

}

label = "Quality of Inspection process";
position = (630 420);
states = ("poor" "fair" "good");

node C2
{

}

label = "Size of item/subject being inspected";
position = (370 450);
states = ("large" "medium" "small");

node C1
{

label = "Inspection effectiveness";
position = (630 540);
states = ("0 < 20%" "20% < 40%" "40% < 60%" "60% < 80%" "80% <

100%");
}

potential (C24)
{
data = (0.5 0.5);

}

potential (C23)
{

data = (0.5 0.5);
}

potential (C22)
{
data = (0.5 0.5);

}

potential (C21)
{

data = (0.5 0.5);
}

potential (C20)
{
data = (0.5 0.5);

}

potential (C19)
{

data = (0.333333 0.333333 0.333333);
}

potential (C18 I C24 C23 C22)
{
data = «« 0.7 0.2 0.1)

(0.85 0.1 0.05 »
« 0.1 0.3 0.6)

%
%
%

<= 2 years
<= 2 years
<= 2 years

Bll

<=3 years Adequate
<=3 years inadequate
>3 years Adequate

(0.45 0.35 0.2 ») %
(((0.1 0.3 0.6) %

(0.3 0.3 0.4 » %
((0.05 0.1 0.B5) %

(0.2 0.3 0.5 » » ; %
}

potential (C17 I C21 C20 C19)
{
data = «« 0.85 0.1 0.05 %

(0.5 0.3 0.2) %
(0.2 0.3 0.5 » %

« 0.6 0.3 0.1) %
(0.2 0.6 0.2) %
(0.1 0.1 O.B ») %

«(0.7 0.25 0.05) %
(0.25 0.5 0.25) %
(0.1 0.3 0.6 » %

« 0.5 0.3 0.2) %
(0.15 0.35 0.5) %
(0.05 0.1 O.BS) ») ;

}

potential (C1S)
{
data = (0.5 0.5) ;

}

potential (C14)
{
data = (0.5 0.5) ;

}

potential (C13)
(
data = (0.5 0.5) ;

}

potential (C12)
{
data = (O.S O.S) ;

}

potential (C1l)
{
data = (0.5 0.5) ;

}

potential (C10)
{
data = (0.5 0.5) ;

}

potential (C9)
{

data = (0.5 0.5) ;
}

potential (C8 I C18 C17)
{
data = (((0.85 0.1 0.05 %

(0.5 0.3 0.2) % poor
(0.1 0.4 0.5 » %

((0.4 0.4 0.2) % fair
(0.2 0.6 0.2) % fair
(0.2 0.3 0.5 » %

« 0.2 0.5 0.3) % good
(0.2 0.3 0.5) % good

<= 2 years >3 years inadequate
> 2 years <=3 years Adequate
> 2 years <=3 years inadequate
> 2 years. >3 years Adequate
> 2 years >3 years

No
No
No
No
No
No

<= 3 years poor
<= 3 years . fair
<= 3 years good
> 3 years poor
> 3 years fair
> 3 years good

Yes
Yes
Yes
Yes
Yes

%

poor
fair
poor
poor
fair
fair
poor
fair

BI2

<= 3 years poor
<= 3 years fair
<= 3 years good
> 3 years poor
> 3 years fair

Yes > 3 years

poor ...

good

good

inadequate

good

.

0.05 0.1 0.85) » ; %
}

potential (C7 I C12 Cll C10 C9)
{
data = « « (0.8 0.15 0.05 %

(0.6 0.3 0.1 » %
((0.3 0.5 0.2) %

(0.25 0.35 0.4 ») %
(((0.7 0.25 0.05) %

(0.25 0.5 0.25 » %
((0.2 0.5 0.3) %

(0.1 0.3 0.6 »» %
((((0.8 0.15 0.05) %

(0.25 0.5 0.25 » %
((0.2 0.3 0.5) %

(0.1 0.3 0.6 ») %
(((0.7 0.2 0.1) %

(0.2 0.4 0.4)) %
« 0.1 0.3 0.6) %

(0.05 0.1 0.S5 »»);
}

potential (C6 I C15 C14 C13)
{
data = ((((0.S5 0.1 0.05) %

(0.2 0.3 0.5 » %
((0.2 0.5 0.3) %

(0.05 0.35 0.6 ») %
(((0.2 0.3 0.5) %

(0.1 0.4 0.5 » %
((0.05 0.35 0.6) %

(0.05 0.1 0.S5 » » ;
}

potential (C5 I CS C7)
{
data = (((0.85 0.1 0.05 %

(0.4 0.3 0.3)
(0.3 0.3 0.4 »

((0.5 0.3 0.2)
(0.25 0.5 0.25
(0.2 0.3

((0.4 0.3
(0.1 0.3
(0.05 0.1

}

potential (C4)
{

0.5 »
0.3)
0.6)

0.S5

% poor
%

% fair
) %

%
% good
% good
»); %

good good

no no no no
no no no yes
no no yes no
no no yes yes
no yes no no
no . yes no yes
no yes yes no
no yes yes yes
yes no no no
yes no no yes
yes no yes no
yes no yes yes
yes yes no no,
yes yes no yes
yes yes yes no

% yes yes yes

no no no
no no yes
no yes no
no yes yes
yes no no
yes no yes
yes yes no

% yes yes yes

poor poor
fair
poor good
poor
fair fair
fair good
poor
fair
good good

data = (0.333333 0.333333 0.333334);
}

potential (C3 I C6 C5)
{

data = (((0.S5 0.1 0.05 % poor poor
(0.5 0.3 0.2) % poor fair
(0.2 0.3 0.5 » % poor good

((0.6 0.3 0.1) % fair poor
(0.25 0.5 0.25) % fair fair
(0.1 0.3 0.6 » % fair good

((0.5 0.3 0.2) % good poor
(0.1 0.4 0.5) % good fair
(0.05 0.1 0.85 ») ; % good good

}

potential (C2)
{

B13

yes

data = (0.333333 0.333333 0.333333);
}

potential (C1 I C4 C3 C2)
{

}

data = «« 0.85 0.09 0.03 0.02 0.01 % high poor large
(0.8 0.14 0.03 0.02 0.01) % high poor medium
(0.6 0.32 0.05 0.02 0.01 » % high poor small

« 0.4 0.25 0.2 0.1 0.05) % high fair large
(0.3 0.3 0.25 0.1 0.05) % high fair medium
(0.15 0.25 0.35 0.15 0.1 » % high fair small

« 0.1 0.15 0.2 0.3 0.25) % high good large
(0.05 0.1 0.25 0.3 0.3) % high good medium
(0.05 0.1 0.2 0.3.0.35 ») % high good small

«(0.78 0.14 0.03 0.02 0.01) % medium poor large
(0.6 0.32 0.05 0.02 0.01) % medium poor medium
(0.4 0.3 0.15 0.1 0.05 » % medium poor small

« 0.3 0.3 0.25 0.1 0.05) % medium fair large
(0.15 0.2 0.3 0.2 0.15) % medium fair medium
(0.1 0.15 0.25 0.3 0.2 » % medium fair small

« 0.05 0.25 0.3 0.25 0.15) % medium good large
(0.05 0.05 0.2 0.4 0.3) % medium good medium
(0.01 0.02 0.05 0.32 0.6 ») % medium good small

«(0.35 0.3 0.2 0.1 0.05) % low poor large
(0.25 0.3 0.25 0.15 0.05) % low poor medium
(0.1 0.3 0.3 0.2 0.1» % low poor small

« 0.3 0.3 0.25 0.1 0.05) % low fair large
(0.1 0.15 0.25 0.3"0.2) % low fair medium
(0.05 0.15 0.2 0.3 0.3 » % low fair small

« 0.01 0.02 0.05 0.32 0.6) % low good large
(0.01 0.02 0.03 0.14 0.8) % low good medium
(0.01 0.02 0.03 0.09 0.85 »»; % low good small

B14

Quality of Inspection proces

Quality of Inspection team

Formal actions

Adequate inspection checklis

Communication skills

B15

Appendix C Case Studies Checklists, Questionnaires and Data
Recorded

C.IIntroduction

This appendix consists of a floppy disk, which provides all the data from the case studies,
consisting of the inspection checklists used, and the supporting project standards and
guidelines. The definition of any automated inspection criteria and its evaluation is
provided.

The disk also contains examples of the questionnaire used to collect metrics and examples
of the record sheets used. The disk also contains the raw metric data for each of the case
studies.

C.2 Software Inspection checklist

The following is a list of questions, which were used for the Software Inspection Checklist

1. Has the code passed the code conformance checks in Testbed?

2. Has the code passed the code analysis checks in Testbed?

3. Is the presentation of code clear and legible?

4. Are there serious spelling or grammatical errors, which would make the comments ambiguous?

5. Are all comments meaningful?

6. Do the comments add explanation rather than just repeat what is in the code?

7. Have any category C features being used?

7. Is the use of category B features justified?

8. Does the control flow follow the design?

9. Can the control flow easily be improved?

1 O. Would the code be more understandable if split into more than one unit or'merged into another/other
unites)?

11. Have ty~es been used well to provide defensive programming?

12. Have variables been used well to provide defensive programming?

13. Have any implementation dependent features of Ada been used? Is their use well justified by comment?

14. Has the use of Ada Machine Code been justified (if applicable)?

16. If interface to assembler code has been defined,
a) Has the reason for its use been justified?
b) Has the assembler code been reviewed according to the Assembler Code Checklist?

Cl

17. Can the maintainability of the code be easily improved?

18. Can the testability of the code be easily improved?

19. Do any subroutines have more than one entry andlor exit point?

20. Are loop termination conditions static?

21. Are loop control variables only changed as required for normal operation of the loop?

22. Is the effect of ajump out of a loop safe?

23. Is the use of pointers in the code justified?

24. Is the use of implicit declarations justified?

25. Is the use of implicit initialization justified?

26. Is the use of overlaid objects (constants and variables) justified?

27. Is the use of variable length record objects justified?

28. Is the use of called unit parameters containing functions or expressions justified?

29. Is the use of concurrency or some interrupt mechanism justified?

30. Have all data-flow anomalies identified by Testbed been resolved?

31. Has code been checked and found to be free of all Ada structures affected by the known compiler
errors?

32. Has all the functionality of the Detailed Design been coded?

NOTE: If appropriate a "not applicable" answer may be acceptable.

C2

C 2.1 Assembler Code checklist

The following is a list of questions for assembler, which may be used for Software Inspections.

1. Is register usage (modified, read only & unused) clearly defined?

2. Does the definition of all registers used and not used compare exactly with the used and not used
registers defined in the Ada pragmas?

3. Is the presentation of code clear and legible?

4. Are there serious spelling or grammatical errors, which would make the comments ambiguous?

5. Are all comments meaningful?

6. Do comments add explanation rather than just repeat what is in the code?

7. Does the control flow follow the design?

8. Can the control flow be improved?

9. Would the code be more understandable if split into more than one unit or merged into another/other
unites)?

10. Have variables and registers been used well to provide defensive programming?

11. Could the maintainability of the code be improved?

12. Do any subroutines have more than one entry and exit point?

13. Are loop termination conditions static and are loop control variables or registers only changed as
required for normal operation of the loop?

14. Is the effect of any jump out of a loop safe?

15. Has a value been assigned to a variable or a register, which is not subsequently used?

16. Has all the Detailed Design been coded?

17. Have information flow dependencies been commented? (Risk Class 1 only)

NOTE: If appropriate a "not applicable" answer may be acceptable.

C3

C.3 Ada Conventions

This appendix specifies conventions for Ada programming (Ada source code) applicable to
all Ada source code developed as part of the PROJECT 1 software.

Package specifications and bodies for all TLCSCs and LLCSCs are produced during the
software detailed design phase and shall conform to the Ada conventions specified in this
appendix. The design of the software must be programmable within these Ada
conventions.

Therefore the Ada conventions shall be applicable to the Software Detailed Design activity
and Code and Unit Testing activities.

If a Software Programmers Manual (SPM) has been produced which includes or covers the
areas in this section, the SPM then takes precedence over this standard.

C3.1 Naming Conventions for Ada

All Ada items shall be named in accordance with the project software naming conventions.

C4

C3.2 Ada Language Subsets

Each identified language feature is given a classification of A, B or C for each software
class. Each language feature shall only be used within the constraints identified by the
classification given in the table.

In the event of ambiguity or conflict between entries in the table, the entry which is most
specific to a feature (by Ada Language Reference Manual (LRM) section number) shall
take precedence.

A: There are no constraints on the use of the language feature.

B : The language feature may be used but its use shall be justified. This may be recorded at
the Code and Unit Test Review or recorded by Project Management justifying reduction to
an 'information only' status prior to the review.

For example a study of the generated assembler code demonstrating the safety of the
construct could be presented as evidence that there is no risk involved in the use of the
construct in that particular instance. The use of a category B feature shall be explicitly
identified in a comment within the same scope, preferably as an adjacent comment.

C: The language feature shall not be used.

Project 1 Ada Subset

No Feature Notes LRM Category
reference

1 Anonymous 3.3.1 A
Types

2 Derived Types 3.4 A
3 Discriminants No default expressions 3.7.1 A

allowed
4 Discriminant a) for Constants 3.7.2 A

Constraints b) for Variables B
5 Variant Parts 3.7.3 B
6 Access types a) Normal case 3.8 C
7 Access types b) May need if defined in 14 B

predefined packages to App.C
utilise the package

8 Attributes 4.1.4, App A
A

9 Address attribute A
Overlapping Addresses B

10 Catenation (&) 4.5.3
as a constant A
dynamic usage Declaring a constant string B

11 Allocators See Access types 4.8 B

C5

12 Labels May also be beneficial for 5.1 A
testing

13 Block statement 5.6 A
14 Exit statement 5.7 B
15 Goto 5.9 C
16 Default a) Are not generally 6.4.2 B

parameters permitted. B
b) Exception when in

predefined packages
17 Use clause

.
8.4 A

18 Renaming Its restricted use is desired 8.5 B
declaration over the Use clause

19 Tasks Includes all tasking & delay 9 B
statements and package
Calendar

20 Program Structure conforming to 10 A
structure 40.3

21 Exceptions User defined 11 B
Predefined A

22 Check 11.7 A
Suppression

23 Generic Units 12 B
24 Representation Includes implementation- 13 A

Clause dependant features
25 Package System Will need when use of 13.7. App. B

implementation specific F
features

26 Input-Output 14 B
27 Pragmas AppB A
28 Predefined Lang. Predefined Numeric types AppC B

Environment Others A
29 Implementation AppF B

Dependent
characteristics

30 All Others Any language feature not B*
covered by the above

• For guidance only; the Ada language is too large to permit an overall 'all others' classification.
This is to be determined by Project Management.

C6

C.3.3 Program Structure

Ada source files shall contain a single compilation unit and conform to the program
structure rules. The following structure rules are designed to facilitate testable and
maintainable code with a minimum of recompilation following modifications.

C.3.3.l Main Program Procedure

An Ada program is built from a parameterless library procedure often referred to as the
main program procedure. The main program procedure should be the only library
procedure in an Ada program. The only other library items in an Ada program shall be
packages.

C3.3.2 Packages

Packages are the only library items other than the main program procedure, which shall be
permitted within this standard. Packages, which do not contain sequential code, shall
consist of a specification only. Packages should not be declared within packages. All
packages should be declared as library items.

C3.3.3 Separate Units

Separate units shall only be declared in package bodies. Separate units shall not be
declared from other separate units.

C.3.4 Layout and Style of Ada Source Code

Conformance to a common standard of layout and style will simplify code review and
enhance the maintainability of the Ada source code. The richness of the Ada language
makes it impractical to specify rules for all circumstances. The programmer should use the
layout and style rules given here as a guide and interpret the rules for application to other'
circumstances.

Note that the applicable Ada subset will also place constraints on programming style.

C7

C.3.4.1 Commenting of Ada Source Code

The commenting of Ada code shall be of sufficient detail such that the code could be
maintained from the source without reference to documentation.
Note that this is not the maintenance procedure, maintenance shall be conducted in a top
down manner through the documentation to the code. The above statement merely
specifies the level of comment required in the code.
Another general guideline is that code for units should have a high comment density.
Package specifications and bodies will usually have a much higher proportion of comments
to source statements, i.e there should be more comments than semi-colons in the unit Ada
source.

Comments should not be used to repeat the code in a Program Design Language (PDL).
PDL comments shall be excluded from the above metric. Blank lines shall be used in
preference to empty line comments to layout the code. Empty line comments shall be
excluded from the above metric.

Comment text may be formal or informal in style. Comments shall be used to add
explanation to the code about:

• Algorithms
• Purpose
• Design decisions
• Programming decisions
• Cross references
• Requirements
• Structure
• Language subset usage
• Risks
• Hazards
• System safety
• Portability
• Potential re -use
• Any other relevant information

C.3.4.1.1 Header Comments

A macro or a command procedure may be used to add header comments to Ada source files
to produce a standard format.

The appropriate configuration control tool governs the format for PROJECT 1 headers
A few blank lines shall follow header comments to separate the header from the rest of the
code.

C8

C.3,4.1.2 Line Comments

A line comment is a single line containing comment text with no code on the same line. A
line comment should be located immediately before the code it refers to, with the" - - "
indented to the same level as the code. Line comments should be preceded by at least one
blank line.

C.3,4.1.3 Block Comments

A block comment is a line comment spanning more than a single line. A block comment
should be located immediately before the code it refers to, with the" - - " indented to the
same level as the code. Block comments should be preceded by at least one blank line.

C.3,4.1,4 End of Line Comments

An end -of -line comment (or adjacent comment) is a comment at the end of a line
containing an Ada statement. An end - of - line comment shall be separated from the
preceding statement by at least two spaces. Within a block of code end-of-line comments
shall be vertically aligned.

C3,4.2 Style

C3,4.2.1 Upper and Lower Case

Ada reserved words shall be in lower case. All other code should be in upper case (project
specific). Comments may use both upper and lower case except where stated in the data
naming convention.

C3,4.2.2 Horizontal Spacing

Blocks of code shall be indented 3-4 spaces relative to the enclosing statements (CSCI
specified). When an Ada statement spans more than one line the second and following
lines should be indented at least two spaces relative to the first line.

There shall be a maximum of one Ada statement per line of source.

The TAB character shall not be used in Ada source files. Additional spaces within a line
may be used to aid legibility and provide tabulation.

C9

C3.4.2.3 Vertical Spacing

Header, block and line comments should be separated from Ada statements by at least one
blank line.

Statements, which enclose blocks, shall be preceded and followed by at least one blank
line.

C 3.5 Example

The following Ada like text provides an example of the layout of Ada code with a selection
of Ada statements.

It is impractical to specify fully and give examples for each individual type of Ada
statement. The programmer should use the example as a guide and interpret the example
for layout of other statements.

ClO

Example Ada Code Layout

-- Configuration header comment if applicable, not defined
here.

Block comment providing an introduction to the unit
spanning several lines
and preceded and followed by blank lines.

with PACKAGENAME; - - End of line comment.

separate (PARENT NAME)
procedure NAME

in A-TYPE; (FIRST-PARAMETER
SECOND-PARAMETER out ANOTHER_TYPE) is

- - Line comment introducing a group of declarations.
DECLARATION -- end-of-line comment:.

begin

- - Block comment introducing some code.
if CONDITION then
CODE; -- end-oi-line comment:
else

CODE; -- end-oi-line comment end if

- - Introducing the next block
LOOPNAME: for CONDITION loop

INNER-LOOP: while CONDITION loop
comment

CODE; end-oi-line comment:
CODE; end-oi-line comment:

end loop INNER-LOOP;
end loop LOOPNAME ;

case ITEM is -- Comment

-- end-oi-line

when AN-ITEM => CODE; -- end-of-line comment.
when NEXT-ITEM => CODE; --end-oi-line comment.

end case ;

Block comment introducing an exception handler
exception -- NOTE: Risk Class 1 does not allow Exception

Handlers.
when AN-EXCEPTION => CODE i -- end-of-line comment

end NAME ;

ell

C.3.6 Use of Ada Libraries

Compilation of Ada code and linking of executable Ada programs requires the use of Ada
libraries. An Ada library is a directory used by the Ada compilation system to hold
infonnation on Ada software, including the compiled object code and dependencies
between units.

Ada libraries can be built into structures of libraries and sub-libraries to facilitate the
organisation of software development. This facility shall be used during Project 1 software
development to control the configuration of Ada code under development.

Configuration control shall maintain Ada libraries for both the target and if applicable host
compilers. Users shall develop software in sub-libraries of the configuration controlled
Ada libraries and build executable test software from the user sub-libraries.

There may be some circumstances in which the desired combination of approved and
unapproved software is not accessible from the users sub -library (for example where old
versions of some units are required). The solution is that the user should start with a sub -
library of the approved configured library. and progress to the required set of units by:

Entering units from the unapproved configured sub - library to the users sub -
library
Extracting units from configuration and compiling to the users sub -library

NOTE: Delivered software shall not be built from this library structure. To build
software for delivery a command file shall be used to create an Ada library,
compile all required units (of the required versions). create target and map
definitions, and link the executable software.

All delivered software shall be compiled from approved configured source files. The
delivered image shall be placed under configuration control.

C12

C3.7 Ada Testbed Penalties

The following is the current list of the approved Ada penalties, which assists In the
processes of: Coding, Static analysis , Dynamic analysis.

Ada Penalty Values for use with Testbed version v4.9.4

Pen Penalty Limit Penalty Text Comment

No Value Value

I I Identical name in scope

2 0 Identi cal name in another scope

3 0 Label with identi cal name This penalty is currently inactive

4 5 Use of goto statement

5 5 Ju mp out of procedure

6 I 100 Procedure or function body exceeds limit of ***
7 I 100 Task body exceeds li mi t o f **-
8 I 200 Package body exceeds limit of -**
9 I 10 Too many parameters. Max ***
10 I Declaration of generi c package

II I 15 McCabes measure exceeds ** *
12 I Control flow graph not reducible by In tervals

13 I Contai ns Essenti al Knots

14 3 Package SYSTEM

15 I Use of Pragma

16 I Use of Task

17 I Use o f Discriminant

18 0 Mult iple labels on statement

19 I UNCHECKED generic packages

20 0 USE clause

21 3 Abort statement

22 3 M ac hine Code Insertion

23 I PRAGMA INTERFACE

24 I Address clause

25 0 Based rea l literal

26 0 S park reserved word

27 I Number declarati on

28 3 Incomplete type declaration

29 0 subtype is fl ot constrained

30 I Derived type definiti on

31 1 Non stntic range

32 0 Only one li teral in enumeration

33 I C harac ter enumerat ion litera l
,

34 I Fixed poin t type

35 I Array component is not a type mark

36 1 Index constraint is not a type mark

37 3 Variant Part

38 I Null componen t li st

39 3 Default Ex press ion in record

40 I Record component is not a type mark

41 3 Access type definition

42 3 Selector . all

43 0 Labelled statement

44 3 Renames exception

C13

Pcn Penalty Limit Penalty Text Comment

No Value Value

45 0 Exception declaration

46 3 Raise statement

47 3 Delay statement

48 0 Block statement

49 3 Acc~ statement

50 3 Select statement

51 3 Default parameter

52 5 Packl!&.e name missi'!8.

53 5 Subprogram name missi"K

54 1 ReQlacement character

55 3 Allocator

56 I Renames ol>ject

57 1 Renames package

58 1 Renames sub~~gtam

59 3 Anonymous type

60 0 Representation clause

61 0 Package S1 ANDARD

62 3 1-0 package

63 I Cantenation oQCrator

64 0 PAGRAM SUPPRESS

6S 3 Handler fOrQredefined exception

66 0 Slice

67 I Exit statement

68 0 Handler for when others

69 1 'ADDRESS attribute

70 0 Predefined la~uagc environment name

71 t More than one unit in source file

72 I . Sequential code in package body

73 0 Ubrary unit

74 0 No declaration for unit

75 t 60 Comment density too small (code> ***%)

76 I Named used twice i'lQarameter list

77 0 Not a named association

78 I 11 (>***) operations for modified subcondilions

79 0 Is separate

80 3 Unused procedure...£!lrameter

81 3 Function does not return a value on all paths

82 3 Actual parameter is global to procedure

83 I Variables were declared but never used

84 I UR data now anomalies found

85 5 Recursion in...E!"ocedurc calls found

86 I DU data now anomalies found

87 I DO data now anomalies found

88 I Defined parameters has possible clear path

89 0 G10bals used inside procedures

90 0 Parameters do not match e~cted actions Not applicable

91 I Referenced parameters has possible clear path

92 3 Global accessed iDjlTocedure matches local parameter .
93 3 Alte.tnpt to change porameteTjlassed by value Not applicable

94 I Unused procedure..Q0rameter

95 I Local variables contribute nothin2 to result

96 3 Procedure contains infinite lo~

97 3 Procedure is not structured

C14

Pcn Penalty Limit Penalty Text Comment

No Value Value

98 5 Procedure has more than one entry point

99 3 Procedure has more than one ex.it point

Penalty values 0 = fully allowed, 1 = for information, 3 = needs justification, 5 = not allowed

CIS

C4 Questionnaire for inspection team members to complete
What was your (main) role in the development of the item under inspection?

o Manager 0 Designer 0 Reviewerllnspector 0 Programmer

o Tester 0 Other/please specify ... -

How many years experience do you possess in this role? [Integer]

How many full years experience do you possess with the following:

Development Language .. [Integer]

Software Development for Condition Monitoring Systems [Integer]

Development (Host) Hardware & Operating System [Integer]

Target Production Hardware & Operating System [Integer]

Application Area e.g. Gas Turbine Monitoring .

.................................. [Application Area] [Integer]

What is your (main) role in the software inspection?

o Author 0 Coordinator 0 Inspector 0 Userrrester

How many years experience do you possess in this role?

...................................... [Integer]

In your view has sufficient time been available for preparation.? How long? ?

DYes 0 No 0 Don't Know

Do you feel that attendees can contribute equally to the decision making?

DYes 0 No o Don't Know

How much confidence in the inspection process do you have?

o Little 0 Some 0 High 0 Don't Know

How many errors do you think the inspection process should find?

o None 0 I to 3 04 to 7 07 to 10 o Greater than 10

o Don't Know

C16

CS Questions for the moderator to complete.
This set of questions is about you as a moderator

Do you feel that you have sufficient knowledge of the system, development
language, and operating system or of the hardware to moderate this inspection?

DYes o No

Have you had any training as a moderator?

DYes 0 No

Do you have any confidence in yourself as a moderator?

DYes 0 No

Do you consider yourself a good communicator?

DYes 0 No

Do you make most of the decisions?

DYes 0 No

Can all attendees contribute equally to the decision making?

DYes 0 No

C17

These questions are concerned with the inspection process

Are the criteria, which exit the inspection, defined?

[] Yes [] No

Is there a mandated list of attendees at project reviews?

[] Yes [] No

What is the inspection team size including the Moderator?

........................ [Integer]

Are all actions formally recorded?

[] Yes [] No

Is the inspection D Formal (eg. Peer, panel, independent) D Informal

Is the inspection rate adequate

DYes .. D No

Is there an adequate checklist?

[] Yes [] No

Has the scope of the inspection been defined?

[] Yes [] No

How long was the inspection hours ?

CI8

These question concern the item being inspected.

What is the size of the product? Select the most appropriate measure

Document ... [No. of words]

Non Commented Source Code ... : ... [No. of lines]

Executable Code ... [No. of bytes]

The final questions are for calculating the complexity of the product under inspection
(please answer as many questions as possible)

How many algorithms are implemented in the product?

.................................... [Integer]

How many outputs are there from each section of prod~ct?

.................................... [Integer]

How many inputs into
each section of the product?

.................................... [Integer]

Or What is the cyc10matic
complexity of the finished code?
(McCabes)

... [Integer]

This section is only applicable to package specifications, package instantiations and the
main program

Is the product structured in a modular form? e.g document sections, functions,
packages

DYes D . No

What is the maximum depth of
module nesting?

................................... [Integer]

How many modular sections constitute
the product?

... [Integer]

What is the average (mean) no. of lines in a modular section, package or subunit?

.................................... [Integer]

C19

Appendix D

Dl Adaption program

Bayesian node adaption was conducted using the Hugin adaption method described in the
Hugin API version 1.2 Extensions manual [Abrahamsen P 1992]. The adaption program
"Reviewit.exe" was built in a Microsoft Visual C++ environment from a C source code file
TCl.C and run using a console window setting.

The C source code file TCl.C:

/* Bayesian node adaption program using Hugin include library
Version 1.0 T Cockram August 1999 based on information supplied by Lars
Neilson*/

include Whugin.h w
include <malloc.h>

void main ()
{

h_domain_t domain = h_load_domain (Wlnsnet1a.hkbW);
FILE *file = fopen (WCALW, WrW);
h_batch_reference batch;
int node_count, ki
h_node_t *batch_nodes;

h_select_domain (domain);
batch = h_batch_open (file, wCALw, O)i
node_count = h_batch_nurnber_of_nodes (batch);
batch_nodes = malloc (sizeof (~node_t) * node_count);

/* find the nodes and save them for later use (just an
optimization): */

for (k = Oi k < node_count; k++)
batch_nodes[kJ
= h_domain_get_node_by_name (domain, h_batc~node_name (batch, k»i

/* enable adaptation: */
for (k = 0; k < node_count; k++)

h_adapt_examine_experience (batch_nodes[kJ);

/* examine fading table: */
for (k = 0; k < node_count; k++)
{ -

h_table_reference table = h_adapt_examine_fading (batch_nodes[k});

/* set fading table value: */
h_table_set_all (table, 1.0000000000);

}

/* process cases: */
while (h_batch_search (batch) > 0)
{

/* insert evidence: */
for (k= Oi k < node_counti k++)
{

Dl

if (finding != NULL)
h_enter_finding (batch_nodes[k], finding);

else
h_node_retract_findings (batch_nodes[k]);

}
/* propagate evidence: */
h_domain-propagate (domain, h_equilibriu~sum, h_mode~ormal);
/* retrieve experience: */
h_adapt_retrieve ();
/* disseminate experience: */
h_adapt_disseminate ();

}

h_batch_close (batch);
fclose (file);

/* save the revised domain: */
h_domain_save (domain, "Insnet2a-new.hkb", h_endian_big);
file = fopen ("Insnet2a.adapt", "w·);
h_adapt_save (file);
fclose (f ile) ;

}

The build log for this program is shown below:

D2.1 Build Log

--------------------Configuration: Reviewit - Win32 Debug-------------------­
Command Lines

Creating temporary file ·C:\WINDOWS\TEMP\RSP40Bl.TMP" with contents
[
/nologo /MLd /W3 /Gm /GX /ZI /Od /0 ·WIN32" /0 "_DEBUG" /0 "_WINDOWS" /D
"_MBCS" /D "_C:\Program Files\Hugin\Hugin Professional\Include"
/Fp"Oebug/Reviewit.pch" /YX /Fo"Oebug/" /Fd"Oebug/" /FO /GZ /c
·C:\Program Files\Hugin\INspect\Reviewit\Tcl.c"
]
Creating command line ·cl.exe @C:\WINOOWS\TEMP\RSP40Bl.TMP"
Creating temporary file ·C:\WINDOWS\TEMP\RSP40B2.TMp· with contents
[
kerne132.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shel132.1ib ole32.lib oleaut32.lib uuid.lib odbc32.1ib odbccp32.lib
huginapi.lib /nologo /subsystem:console /profile /debug /machine:I386
/out:"Oebug/Reviewit.exe"
".\Oebug\Tcl.obj"
".\huginapi.lib"
]
Creating command line "link.exe @C:\WINDOWS\TEMP\RSP40B2.TMP"

Output 'Vindow
Compiling ...
Tc1.c
Linking ...
LINK: warning LNK4098: defaultlib "LIBC" conflicts with use of other
libs; use /NOOEFAULTLIB:library

Results

Reviewit.exe - 0 error(s), 1 warning(s)

D2

D2 Results files

1. The raw data collected from Project and the data sets can be found in CONTROL1.xIs
2. The calibration data set can be found in calibration.xIs
3. The sensitivity results can be found in file Sens I a.xls
4. The results from the tests of the Bayesian Belief network can be found in file

Results I.xIs

D3

Appendix E

El Logistic Regression

SPSS for windows version 10 was used to generate the mUltiple logistic'regression.
The output log from the tool is reproduced below.

The dependent variable was set to Cl and the other variables in the spreadsheet being the
dependent factors.

Output log:

Nominal Regression
Warnings

Unexpected singularities in the
Hessian matrix are encountered.
There may be a quasi-complete
separation in the data. Some
parameter estimates will tend to
infinity.

The NOM REG procedure continues
despite the above warning(s).
Subsequent results shown are
based on the last iteration. Validity of
the model fit is uncertain.

El

Case Processing Summary

N
Node C 1 Inspection 0<20% 47
effectiveness 20 < 40% 10

40 < 60% 64
60 < 80% 46
80 < 100% 432

Node C2 Size of large 22
Itemedium medium 55

small 522
NodeC4 high 27
Comediumplowexity of low 514
Itemedium medium 58
<= 2 yearsde C9 Formal Yes 599
<= 2 yearsde C1 0 Yes 599
<= 2 yearsde C11 Yes 599
<= 2 yearsde C12 Yes 599
Node C13 Experience at no 110
Inspection preparation yes 489
Node C14 Adequate no 229
preparation time yes 370
<= 2 yearsde C15 Yes 599
Node C19 fair 246
Communications skills good 353
Node C20 Training! <= 3 years 51
Experience at inspection > 3 years 548
Node C21 Adequate No 307
domain kNowledge Yes 292
<= 2 yearsde C22 Team Yes 599
Node C23 Experience at <= 3 years 110
Inspection role > 3 years 489
Node C24 Adequate <= 2 years 344
application experience >2 years 255
Valid 599
Missing 0
Total 599

Model Fitting Information

-2 Log
Model Likelihood Chi-Square df Siq.
Intercept Only 492.519
Final 376.128 116.391 40 .000

Pseudo R-Square

Cox and Snell .177

Nagelkerke .208

McFadden .103

, E2

Likelihood Ratio Tests

-2 Log
Likelihood of

Reduced
Effect Model Chi-Square df Sig.
Intercept 376.128a .000 0
NODE_C2 392.2678 16.139 8 .040
NODE_C4 399.7928 23.664 8 .003
V4 376.1288 .000 0 ·
VS 376.1288 .000 0
V6 376.1288 .000 0 ·
V7 376.1288 .000 0 ·
NODE_C13 376.1288 .000 a ·
NODE_C14 384.0068 7.878 4 .096
V10 376.1288 .000 a
NODE_C19 377.8278 1.700 4 ~791

NODE_C20 382.9008 6.773 4 .148
NODE_C21 393.0798 16.952 4 .002
V14 376.1288 .000 0
NODE_C23 376.1288 .000 0 ..
NODE_C24 380.1178 3.990 4 .407

The chi-square statistic is the difference in -2 log-likelihoods between
the final model and a reduced model. The reduced model Is formed
by omitting an effect from the final model. The null hypothesis Is that
all parameters of that effect are O.

a. Unexpected singularities In the Hessian matrix are
encountered. There may be a quasi-complete separation in
the data. Some parameter estimates will tend to infinity.

E3

10c 10%

nllfCept

INOOU:20I"00)
INOOE,..C2.mocl.m)
INOOE,..C20.m.")
INOOE,..C .. hlgll)
INODE_C"lew)
INOOE_C .. mocIuml
tv .. V,,)
IV50V,,)
tve-V,,)
m·v,,)
INOOE,..C'30no)
INOOE..C'''yoo)
INOOE,..C'''no)
INODE,..CU.y ..)
tv,OoV ..)
INODE,..C'h' ••)
INOOE_C'hgoodJ
INOO~C20-<. :J y .. ra)
INOOE..C20 .. , yut.)
INOOE,..C2'.No)
(MJOE_C21.VHl
tvl"V,,)
lNOOILC2:"ca :I y •• ra)
INOOE,..C230. 3 y..,.)
INOO~C24a __ I y""1
INOOE_C24-:.1 y • .,. 1
lnttrclpt

INOOE_C2aI.roo I
INOOE_C2>omedlum)
INOOE,..C2>o.m.")
INOOE,..C"hlgh)
INOOE,..C .. low I
)NOOE,..C"mocIum)
IV"Vu)
[VSoVul
IVe-V,,)
1V7·VHI
INODE,..C I" no)
INODE_cn.y ..)
INOOE,..C'''no)
INODE,..C'''y'')
IV, OoV,,)
INOOE,..C'hl.,,)
INOOE_ClhgoodJ
INOOE_CN-co' y)
INODE_C2Oo> 3 y)
INOOE,..C21. No)
INODE_C2 ' .V,,)
tvl"V ..)
(NOOLC23.c. 3 y .. ,.)

INODE_C23 •• 3 y)
(NOOE_CI .. c- 2 Y •• " I
(NOOE_C2 ... >2 yta ... I
Int.,ctpt

INOOE,..C2>olaroo I
INODE_C2>o ",ocIum)
INODE_C • • ma" I
(NODE_C"hlgh)
INODE_C"'ow J
INOOE,..C .. medlulT\)
IV40V"J
IV60V ..)
tvSoVoo)
rn.v"1
INODE_CI30no)
(NODE_CllaY" 1
(NODE_C I .. n.)
(NODE,..C'40YHI
IV lOoVOI)
(NODE_C,hl.,,)
INODE_CIt.fOOd(
INOOE_C2OIoc. 3 Y"")
(NOOe..C2Q.Jo :I yt.,.)
INODE,..C21.No)
INODE,..C2 ',VH)
IV,,,V,,)
INOOE_C23.<. 3 y.ar.)
INOOE-C23n , y •• ,.)
\NOOE_C2".c. a y.a,.)
INOOE_ca :.2 y •• ,. I
Int.,ctpt
INODE,..C20I.,1JO I
INOOE,..C2.modiuml
INODE_C2>o.m.1I)
(NODE_C .. hlgh)
INOOE,..C40low)
INODE_C ... medium)
tv··Voo)
[VSoV"J
(V5.V,,)

1V7·V"J
INODE_C,30.o)
INODE_C'30y"J
INODE,..C14.no)
(NODE_C14.y")

(V,OoVH)
INODE_Clhl';,)
INOOE_Clhgoo<l)
INOOE_C20- •• 1 Y .. III
. __ - . .. ,._. f '"

(NOOE_C2 1. No)
(NODE_e21.V"'
(V' V .. r
INOOE_C2)'c. :I y.,,.1

'-'amtler E,Umat ..

Sid, error
-2.217 .U22

1.57' 0
,8115 .6 '"

0"
· 2,"E·02 1.268

.338 .03'
0"
0"
0" ..
0"

-.134 .51. ..
·.613 .357
.162 .8n ..

,,71' .'51 ..
-,350 .an

· £-02 .325 ..
-11.711 .808

1.671 1.216
1.'es ,835 ..
.211 1,12.

·1.633 ,125

0"
1.353 .ISS ..
-.7 .. , .760

17."01 .122 ..
· "1.121 1307.321

0"
11,151 .000

0"
'.7 .. 7

0"
.342

1.221
. IOS

0"
1.106

• 7
0"
0"

,.371

0"
·.170
,.3'"

0"

" ' .07"
0"

'1 ,170

0"
0"
0"
0"

·,621
0"

· 1,311
1.7&8
. ..,. ..

1.650
-.3"0

0" ..
0"
0" ..

'. ;51
0"

U6,E..,2
0"
0"

' .12'
0"

.15"

. " 32~ 1

.702

.11'

.524

.fla4

.4'1

.....

.30$

.451

5.33 5

.6ot

.28.

.7"

.870

.03'

.772

,17:1

.3"7

.535

6 .710

1,07.

1.'05

.00'

.281

.0611

2

.050

.501

.2ea

.0"0

" 73.531
1.662
U45

.087
3

2.000

.174

...... 100

.000

1.133

.30<1

3. 'U
.0"0

a.6'"
1.174

.174

4.117

.685

.000

'''.use

3.1."

3.157
U53
.17 •

• . 573
.41'

1..115

.01'

.065

cI

E4

116% Conf~~ 1",ltVal '0'
SI.. EJo>IBJ Lo_ Bound lJpj> .. Bound

.01.

.0'" " .131 1.3" " ,0

.:06 1.885 .817 5.731

,tI, .171 ' .2I3E·02 11.372

.6" 1.3" .0404 • .• 52

.102 .661 .2n 1.1 2"

.123 1.1.... .30$ " .3.5

.45' 7.6I3E·02 3. U,

.aM .704 .117 2,155

.1"2 .837 .• N 1.m

.000

.213 ' .137 .'05 67.737

.01' 7.13' 1.300 38.150

.7ge 1.337 . UI 12.10"

.083 .2' 1 • . 282E..02 1.0eo

.161 3.118 .'N 25.121

.32. . .. 77 .110 2.071

.000 3.IE+07 7237212.111 111732700.'

.198 " .825E.00 .000 .b

2.1£+01 201&0001.11 20H000t.11

.2.7 ."7"

.610

.074 3.311

.,. , 1.111

.111 3.021

.023 .31'

...... ,.to

.030 .512

.452 .709

.HI 1 14E·0.

.000 .13'

.078 .60"

.078

.00' 5

... , 1 1.551

.032 6.201

.611 .7 '2

. ' 58 .381

.toO 1.0

."6 .112

.532 1..24

.120

,au
.301

.778

.172

.2"

.278

.289

.000

5" "'E·02

.33'

1.673

•••
1."'8

.254

,103

.62'

.307

.2'"

..... E.O: I

1.175

12.131
3 .101

11.711
.177

1.'01

.838

1.73'

.'
.378

t ,OS8

21.720

".418

23.842
1.198

1 .•• 8

2.061

2.531

14.U5I

.036

Nominal Regression
Warnings

Unexpected singularities in the
Hessian matrix are encountered.
There may be a quasi-complete
separation in the data. Some
parameter estimates will tend to
Infinity.

The NOM REG procedure continues
despite the above wamlng(s).
Subsequent results shown are
based on the last iteration. Validity of
the model fit Is uncertain.

Case Processing Summary

Node C1 Inspection 0<20%
effectiveness 20 <40%

40 <60%

60 < 80%

80 < 100%

Node C19 fair
Communications skills good

Node C20 Training! <= 3 years
Experience at inspection > 3 years

Node C21 Adequate No
domain kNowledge Yes

Node C23 Experience at <= 3 years
Inspection role > 3 years

Node C24 Adequate <= 2 years
application experience >2 years

Node C 14 Adequate no
preparation time yes

Node C13 Experience at no
Inspection preparation yes
Node C4 high
Comediumplowexity of low
itemedium medium
Node C2 Size of large
itemedium medium

small
Valid

Missing

Total

N
47

10

64

46

432

246

353

51

548

307

292

110
489

344

255

229

370

110
489

27

514

58

22

55

522

599

0

599

Model Fitting Information

-2 Log
Model Likelihood Chi-Square df
Intercept Only 492.519
Final 376.128 116.391

E5

Sig.

40 .000

Pseudo R-Square

Cox and Snell .177
Nagelkerke .208

McFadden .103

Likelihood Ratio Tests

-2 Log
Likelihood of

Reduced
Effect Model Chi-Square df Sig.
Intercept 376.12Sa .000 0
NODE_C19 377.827- 1.700 4 .791
NODE_C20 382.900- 6.773 4 .148
NODE_C21 393.079a 16.952 4 .002
NODE_C23 376.1281 .000 0
NODE_C24 380.117a 3.990 4 .407
NODE_C14 384.0061 7.878 4 .096
NODE_C13 376.128- .000 0 .
NODE_C4 399.792- 23.664 8 .003
NODE_C2 392.2678 16.139 8 .040

The chi-square statistic is the difference in -2 log-likelihoods between
the final model and a reduced model. The reduced model is formed
by omitting an effect from the final model. The null hypothesis is that
all parameters of that effect are O.

a. Unexpected Singularities in the Hessian matrix are
encountered. There may be a quasi-complete separation in
the data. Some parameter estimates will tend to infinity.

E6

Node C 1 In'pfICtion
et1ec1iven ...
o e 20%

20 c 40%

40 e 60%

60 <. 80%

SId. Error
ntetcep'

INODE_C'9alait l
INODE_CI • • goodl
INODE_C2()..e. 3 ye.,,1
(NODE_C2Oa> 3 ye.,. J
INODE_C2bNo)

' 2.217 .922
.152 .877

0'
·. 716

0'
· .350

INODE_C21wV ..) 0-

INODE_C23ae. 3 y .. ,.) -. 134
(NODE-C2la> l yea,. I 0-

(NODE_C2obe. 2 year.) ·e .48E·02

INOOLC2 >2 year.) 0-
(NOOE_CI","no) •. 583

INODE_C I4sye.) 0-

INODE_C I3.no) 0'
)NODE_CI3.y ••) 0'
[NOOE_C4a hlgh I · 2.D9E -02

(NODE_e4a IOW I .336
(NODE_C4-medium) 0-

(NODE_C2a 1arOI) 1.578

INOOE_C2a medlum l .685
(NODE_ C2a amall J oa

.DS I

.en

.564

.325

.357

1.258

.034

.640

.54 1

5.780

.050

.587

.2158

.056

.040

2.1515 fi1

.001

.281

8.078

1.1S05

Inlercep.

(NODE_CI !hol.i,)

)NODE_C I • • good)

-111.718

17.404

0'

.~ 473.5315

.122 U8.100

INOOE_C2o.o 3 yeara) · 1S1. 129 1307.321
INODE_C20a> 3 yUrt] 0-
INOOE_C2h:No) HI .8SI .000

(NODE_C2 IaV") 0-
(NODE_C23_<_ 3 ye.r.1
(NODE_C23.), 3 y •• r.)

INODE_C24.<. 2 Y"")
(NODE_C24a >2 y.a,s)

(NODE_C I4ano J
(NODE_C1 4aye. J

(NODE_CI3_no)

(NODE_CI3ey.sl
INODE_Ch n;gn)
(NODE_C4. low)

(NODE_e ... medium)

Ir--.QDE_C2a large)
(NOOE_C2. m6diuml

(NODE_C2a .m·1I 1

1.353
0'

· .747
0'

·.741
0"

0'
O·

.29 '
· 1.533

0'
1.576

l.D65

O·

.D55

.702

.150

1.1 24
.825

1.265
.835

Int6fcapt .3-42 .BUt
lNODE_C I9.:fair) ·. 344 .458

(NODE_C I!hogood] 0"

INOOE_C20-e. 3 yeall) -18.074 51133.845
(NODE_C20a> J year. J 0-

INODE_C21aNO I · 1.970 .6OD

INODE_C21>YH I 0'
Ir--.QOE_C2Ja<:II 3 yur.)

(NOOE_ C23a> 3 year. I
INODE_C24_<. 2 y .. ,.)
{NODE_C24a> 2 yea,s}

INOOE_C14. no I
INOOE_CI4aya. }

INODE_C I3:11no)
INODE_C13..-yesJ
INODE_C4a high)
INODE_Chk»w)

INODE_Chmedlum)
(NODE_C2:11 larg' l
INOOE_C2.: medium)

(NODE C2a .mall 1
Intercep'
INODE_C ISalair l
(NODE_C l lI_good]

·. 371

O·

-.52 1
O·

-. 870
0'
0'
0'

1.105
-.11-47

0'
1.221

.105

0"

·1.388
· .126

o·
Ir--.QOE_C20ua 3 yur.) .654
(NODE_C20a> 3 year. I ~

INODCC21 aNo I ·1.322
(NODE_e2 1. V'.1 0-

{NODE_C23:11 o 3 y."rsl '. 95 1
(NODE_C23_> 3 year. I o·
(NODE_C24=- <. . 2 year.) -. 133

INODE_C24:u2 year.) 0-'
INODE_CI4ano) 4.351E-02
INODE_Ct4ayll) 0-
lOODE_Cl3ano) o.
INOOE_CI3: yes' 0-

(NODE_C4. high J 1.650
INODE_C4. low) ·.340

INOOE_Cbmedium) oa
INODE_C2alargl) 1.7615

INOOE_C2z medium) .439
(NODE C2 •• mall) oa

.481l

.2114

.301l

.81l4

.-41 6

.683

.524

.78 1

.638

1.046

.583

.1573

.340

.347

.772

.5215

.1570

.534

.000

2.000

1.133

.874

.087
3.440

1.552
6.5-45

.300

.585

.000

14.fiI88

.57-4

3.144

4.6D7

2.541
5. 174

3. 1 1l-4

,040

3.157

.055

.3111

5.142

1.895

.153

.016

4.573

.418

8.953

.878

a. ThiS parameter IS .. t to zero because it '1 redundant .

.. 81 .

.016

.82S

.451

.1S05

.812

.842

.102

.081

,5D6

.014

.205

.000

EXP(B)

t . ,.4

.4111

.704

.175

.837

.558

,n,
1.3gg

" .838
1.1185

85% Conlidenc:e Interv" lor
E B

.3ot 4.385

7.613E-02

.117

.210

.4"

.2n

8.213E-02

.404

1.311

.'17

3. 1411

2.042

1.12'

11 .372

4 . .,2

11.144

5 .731

.000 3_6E+o7 72372112.321 111732803.2

.fiI1I 8 4.fiI25E.OD .000 . b

2.' E+07 2oe&OOO7." 20160007.1'

.158

.217

.324

.7"

.003

.213

.0111

.580

:'-1611

.474

.4n

1.337

.2111

4.837

7.1 3'

.452 .70g

.Dlla 1.4'4E·08

,000 _131»

.44'

.078

.030

.111

.023

.074

.841

.078

.815

.532

.023

. 151

.• Stt'

.000

.032

.518

.008

.4'1

."0

.5114

.812

3.021

.38'

3.3111

1.111

.882

1.024

.287

.388

.'75

1.0.4

5.2011

.712

5 .848
1,551

.S"

.120

.110

. 14.
''.282E-02

. .as
' .31M)

.000

5.U 5E·02

.205

.334

.27!l

.ne

.112

.11It

.3111

.307

.2:4'

.103

.4'"

.52'

1.148

.25"

1.573
.545

25.121

1.'75

2.07'

12.10 •
1.011

57.737

31.&50

1.731

.'
.371

1.'01

1.06f

.'3'

11.711
.177

12,031

3.101

14.'51

.13'

1.448

1.708

2.06 1

23.642

1.'"
21.720

4.41 '

b. Floaling poinl overflow occurred while compuling this stali5lie. It. value i, Iherelor •• et 10 .y.tem mia.lng.

E7

E2 Evaluation Test results files

1. The control data set can be found in CONTROL1.xIs
2. The calibration data set can be found in calibration.xIs
3. The evaluation test results can be found in Results2.xls

E8

