53,756 research outputs found

    The future of artificial intelligence in intensive care: moving from predictive to actionable AI

    Get PDF
    Artificial intelligence (AI) research in the intensive care unit (ICU) mainly focuses on developing models (from linear regression to deep learning) to predict outcomes, such as mortality or sepsis [1, 2]. However, there is another important aspect of AI that is typically not framed as AI (although it may be more worthy of the name), which is the prediction of patient outcomes or events that would result from different actions, known as causal inference [3, 4]. This aspect of AI is crucial for decision-making in the ICU. To emphasize the importance of causal inference, we propose to refer to any data-driven model used for causal inference tasks as ‘actionable AI’, as opposed to ‘predictive AI’, and discuss how these models could provide meaningful decision support in the ICU

    Ancestral Causal Inference

    Get PDF
    Constraint-based causal discovery from limited data is a notoriously difficult challenge due to the many borderline independence test decisions. Several approaches to improve the reliability of the predictions by exploiting redundancy in the independence information have been proposed recently. Though promising, existing approaches can still be greatly improved in terms of accuracy and scalability. We present a novel method that reduces the combinatorial explosion of the search space by using a more coarse-grained representation of causal information, drastically reducing computation time. Additionally, we propose a method to score causal predictions based on their confidence. Crucially, our implementation also allows one to easily combine observational and interventional data and to incorporate various types of available background knowledge. We prove soundness and asymptotic consistency of our method and demonstrate that it can outperform the state-of-the-art on synthetic data, achieving a speedup of several orders of magnitude. We illustrate its practical feasibility by applying it on a challenging protein data set.Comment: In Proceedings of Advances in Neural Information Processing Systems 29 (NIPS 2016

    Justifying Information-Geometric Causal Inference

    Full text link
    Information Geometric Causal Inference (IGCI) is a new approach to distinguish between cause and effect for two variables. It is based on an independence assumption between input distribution and causal mechanism that can be phrased in terms of orthogonality in information space. We describe two intuitive reinterpretations of this approach that makes IGCI more accessible to a broader audience. Moreover, we show that the described independence is related to the hypothesis that unsupervised learning and semi-supervised learning only works for predicting the cause from the effect and not vice versa.Comment: 3 Figure
    • …
    corecore