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Artificial intelligence (AI) research in the intensive 
care unit (ICU) mainly focuses on developing models 
(from linear regression to deep learning) to predict out-
comes, such as mortality or sepsis [1, 2]. However, there 
is another important aspect of AI that is typically not 
framed as AI (although it may be more worthy of the 
name), which is the prediction of patient outcomes or 
events that would result from different actions, known 
as causal inference [3, 4]. This aspect of AI is crucial for 
decision-making in the ICU. To emphasize the impor-
tance of causal inference, we propose to refer to any data-
driven model used for causal inference tasks as ‘action-
able AI’, as opposed to ‘predictive AI’, and discuss how 
these models could provide meaningful decision support 
in the ICU.

Predictive versus actionable AI
Predictive AI should perform prediction tasks [3]. In the 
context of clinical practice, this involves generating fore-
casts of how likely patient outcomes are now, or in the 
future. As such, predictive AI can offer an early warning 
of possible adverse events, enabling ICU physicians to 
consider appropriate interventions pre-emptively. What 
it cannot do, is forecast how the probability of a patient’s 
outcome might change if a particular intervention is 

implemented, as it relies entirely on associations [5]. For 
instance, while palliative care consults and norepinephrine 
infusions are both highly indicative of patient mortality, 
it is not reasonable to conclude that discontinuing either 
treatment would decrease the patient’s probability of death 
[6]. In other words, predictive AI cannot guide ICU clini-
cians in what to do, as it solely offers an early warning.

For an AI to advise ICU physicians in treatment deci-
sions, i.e., ‘actionable AI’, cause and effect need to be 
taken into account. Actionable AI should perform causal 
inference tasks [3], which means that it predicts (future) 
patient outcomes or events that would result from alter-
native treatment decisions. By comparing these out-
comes, an actionable AI could advise on treatment 
options that lead to the best predicted outcome (i.e., the 
optimal treatment). In medicine, causal inference tasks 
are traditionally performed by conducting randomized 
controlled trials (RCTs). The randomization of the treat-
ment allows one to interpret the difference in outcome 
between treatment arms as a causal effect of the treat-
ment. Hence, one can simply compare outcomes and 
conclude that the one with the best observed outcome 
represents the optimal treatment. However, in observa-
tional studies, causal inference tasks are more complex, 
often compounded by bias stemming from common 
causes (confounding bias) and selection on common 
effects (selection bias). Thus, for an AI to ‘learn’ causal 
inference tasks from observational data, it needs to adjust 
for these biases. To do so, it is key to use an adjustment 
method that suits the type of treatment being considered.
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Intensive care medicine is about sequential 
decision‑making
If a treatment decision only occurs at baseline, e.g., the 
randomized ‘intention-to-treat’ in an RCT, it is called 
a ‘time-fixed’ (or ‘point’) treatment. In observational 
studies considering time-fixed treatments, the treat-
ment decision occurs only at baseline and, consequently, 
confounding occurs only at baseline as well. Here, con-
ventional bias adjustment methods (like regression or 
propensity matching) suffice. However, ICU treatments 
typically comprise sequences of treatment decisions. 
In sepsis, for instance, the decision whether or not to 
administer fluids and vasopressors needs to be made 
not only at sepsis onset, but at multiple time-points dur-
ing the ICU stay (Fig.  1). Hence, ICU patients are typi-
cally treated according to a certain regime—or policy, 
or strategy, or bundle—which represents a set of rules 
informing treatment decisions during follow-up, based 
on a patient’s response. For example, liberal and restric-
tive fluid therapy represent two different regimes that 
dictate administration of fluids and vasopressors during 
sepsis onset. When there are multiple decisions through 
time, patient characteristics that act as confounders may 
vary over time and even be affected by previous treat-
ment decisions, leading to the so-called ‘time-varying 
confounding’ [7]. To adjust for this appropriately, more 

sophisticated methods are required [8], some of which 
have been applied to ICU topics. We will discuss some 
examples and remaining challenges.

Actionable AI in the ICU: are we there yet?
Despite the predominant focus on predictive AI in ICU 
research, there is growing interest in developing actiona-
ble AI. For example, Shahn and colleagues [9] performed 
a ‘target trial emulation’ [10] to develop a marginal struc-
tural model that suggests sepsis outcomes could improve 
through more restricted fluid strategies. Similarly, 
Komorowski and colleagues [11] have presented a rein-
forcement learning model that predicts the optimal dos-
ing of fluids and vasopressors in sepsis. Both models aim 
to perform causal inference tasks, despite Shahn’s statisti-
cal approach and Komorowski’s machine learning (ML) 
approach. However, both studies rely on observational 
data, and therefore, neither statistical nor ML methods 
can guarantee successful causal inference. Causal infer-
ence using observational data is challenging, and clini-
cal domain knowledge is essential to understanding the 
causal relationships between treatment and outcome. 
Causal diagrams [12] can help visualize potential sources 
of bias, but it is crucial to note that bias can never be 
entirely ruled out using observational data. Moreover, 

Fig. 1 The two types of AI, with examples of applications in the intensive care unit



a significant challenge is the typically limited ‘effective 
sample size’, which refers number of patient histories 
for which the modeled and observed treatment regimes 
agree [13]. Surmounting these challenges is a prerequisite 
for successfully implementing actionable AI in clinical 
practice. In our recent systematic review, we offer rec-
ommendations for future causal inference research using 
observational data in the ICU [14].

While the use of observational data is promising, 
towards actionable AI at the bedside, usage of RCT data 
may currently be the safest route. This is because in 
RCTs, the task of inferring causation is already achieved 
through randomization. Although RCTs offer estimates 
of average treatment effects, one can utilize these data 
to create models that produce more individualized esti-
mates of treatment effects, i.e., ‘personalized’ or ‘preci-
sion’ medicine. However, even with enough RCT data 
available, the appropriate modeling approach is not 
straightforward, and still, various challenges remain [15].

Future perspective
Actionable AI models have the potential to guide ICU 
physicians in treatment choices, although challenges 
remain before these can safely be implemented. Rather 
than an omnipotent ‘general AI’ overtaking the control of 
the entirety of clinical decisions in the ICU, we envision 
that future actionable AI models will remain examples of 
‘narrow AI’, confined at advising specific treatment deci-
sions for specific patient groups and clinical scenarios.
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