10,892 research outputs found

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science

    Exploiting Causal Independence in Bayesian Network Inference

    Full text link
    A new method is proposed for exploiting causal independencies in exact Bayesian network inference. A Bayesian network can be viewed as representing a factorization of a joint probability into the multiplication of a set of conditional probabilities. We present a notion of causal independence that enables one to further factorize the conditional probabilities into a combination of even smaller factors and consequently obtain a finer-grain factorization of the joint probability. The new formulation of causal independence lets us specify the conditional probability of a variable given its parents in terms of an associative and commutative operator, such as ``or'', ``sum'' or ``max'', on the contribution of each parent. We start with a simple algorithm VE for Bayesian network inference that, given evidence and a query variable, uses the factorization to find the posterior distribution of the query. We show how this algorithm can be extended to exploit causal independence. Empirical studies, based on the CPCS networks for medical diagnosis, show that this method is more efficient than previous methods and allows for inference in larger networks than previous algorithms.Comment: See http://www.jair.org/ for any accompanying file

    Learning the structure of Bayesian Networks: A quantitative assessment of the effect of different algorithmic schemes

    Full text link
    One of the most challenging tasks when adopting Bayesian Networks (BNs) is the one of learning their structure from data. This task is complicated by the huge search space of possible solutions, and by the fact that the problem is NP-hard. Hence, full enumeration of all the possible solutions is not always feasible and approximations are often required. However, to the best of our knowledge, a quantitative analysis of the performance and characteristics of the different heuristics to solve this problem has never been done before. For this reason, in this work, we provide a detailed comparison of many different state-of-the-arts methods for structural learning on simulated data considering both BNs with discrete and continuous variables, and with different rates of noise in the data. In particular, we investigate the performance of different widespread scores and algorithmic approaches proposed for the inference and the statistical pitfalls within them
    • …
    corecore