125,316 research outputs found

    Towards Comparative Web Content Mining using Object Oriented Model

    Get PDF
    Web content data are heterogeneous in nature; usually composed of different types of contents and data structure. Thus, extraction and mining of web content data is a challenging branch of data mining. Traditional web content extraction and mining techniques are classified into three categories: programming language based wrappers, wrapper (data extraction program) induction techniques, and automatic wrapper generation techniques. First category constructs data extraction system by providing some specialized pattern specification languages, second category is a supervised learning, which learns data extraction rules and third category is automatic extraction process. All these data extraction techniques rely on web document presentation structures, which need complicated matching and tree alignment algorithms, routine maintenance, hard to unify for vast variety of websites and fail to catch heterogeneous data together. To catch more diversity of web documents, a feasible implementation of an automatic data extraction technique based on object oriented data model technique, 00Web, had been proposed in Annoni and Ezeife (2009). This thesis implements, materializes and extends the structured automatic data extraction technique. We developed a system (called WebOMiner) for extraction and mining of structured web contents based on object-oriented data model. Thesis extends the extraction algorithms proposed by Annoni and Ezeife (2009) and develops an automata based automatic wrapper generation algorithm for extraction and mining of structured web content data. Our algorithm identifies data blocks from flat array data structure and generates Non-Deterministic Finite Automata (NFA) pattern for different types of content data for extraction. Objective of this thesis is to extract and mine heterogeneous web content and relieve the hard effort of matching, tree alignment and routine maintenance. Experimental results show that our system is highly effective and it performs the mining task with 100% precision and 96.22% recall value

    Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

    Get PDF
    Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging DOTA dataset, outperforming all published methods by a large margin (+6% and +12% absolute improvement, respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.Comment: ACCV 201

    Unsupervised Discovery of Phonological Categories through Supervised Learning of Morphological Rules

    Full text link
    We describe a case study in the application of {\em symbolic machine learning} techniques for the discovery of linguistic rules and categories. A supervised rule induction algorithm is used to learn to predict the correct diminutive suffix given the phonological representation of Dutch nouns. The system produces rules which are comparable to rules proposed by linguists. Furthermore, in the process of learning this morphological task, the phonemes used are grouped into phonologically relevant categories. We discuss the relevance of our method for linguistics and language technology

    Seeing the wood for the trees: data-oriented translation

    Get PDF
    Data-Oriented Translation (DOT), which is based on Data-Oriented Parsing (DOP), comprises an experience-based approach to translation, where new translations are derived with reference to grammatical analyses of previous translations. Previous DOT experiments [Poutsma, 1998, Poutsma, 2000a, Poutsma, 2000b] were small in scale because important advances in DOP technology were not incorporated into the translation model. Despite this, related work [Way, 1999, Way, 2003a, Way, 2003b] reports that DOT models are viable in that solutions to ‘hard’ translation cases are readily available. However, it has not been shown to date that DOT models scale to larger datasets. In this work, we describe a novel DOT system, inspired by recent advances in DOP parsing technology. We test our system on larger, more complex corpora than have been used heretofore, and present both automatic and human evaluations which show that high quality translations can be achieved at reasonable speeds
    corecore