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Abstract

Data-OrientedTranslation (DOT), which is basedon Data-OrientedParsing (DOP), comprisesan
experience-basedapproachto translation,where new translationsare derived with referenceto gram-
matical analysesof previous translations.Previous DOT experiments[Poutsma,1998, Poutsma,2000a,
Poutsma,2000b] weresmall in scalebecauseimportantadvancesin DOP technologywerenot incorpo-
ratedinto the translationmodel. Despitethis, relatedwork [Way, 1999, Way, 2003a, Way, 2003b] reports
thatDOT modelsareviable in thatsolutionsto ‘hard’ translationcasesarereadilyavailable. However, it
hasnot beenshown to datethat DOT modelsscaleto larger datasets.In this work, we describea novel
DOT system,inspiredby recentadvancesin DOPparsingtechnology. We testour systemon larger, more
complex corporathanhavebeenusedheretofore,andpresentbothautomaticandhumanevaluationswhich
show thathighquality translationscanbeachievedat reasonablespeeds.

1 Introduction

[Poutsma,1998, Poutsma,2000a,Poutsma,2000b]
presentsa statisticalapproachto machinetransla-
tion (MT) basedon Data-OrientedParsing (DOP:
[Bod, 1998, Bod,SchaandSima’an,2003]). DOT
modelsconstitutean experience-basedapproachto
translation, in that translationsof previously un-
seeninput are derived with referenceto a set of
linked � source,target� treefragmentsin thesystem’s
database.In section2, we presentsomecharacteris-
tics of theDOPapproachto parsing,andshow how
theDOPfragmentationoperationsof root andfron-
tier areportedto DOT. We alsoshow how theDOP
compositionoperationis adaptedto data-oriented
models of translation, and give equationswhich
demonstrateour probability model for DOT. We
also describethe innovative notion of ‘link depth’
which we considerto be a moremotivatedmethod
(comparedto themorearbitrarynotionof fragment
depth)of pruningtheexamplebasefrom whichsam-
plesaretaken(the ‘competitionset’) in orderto try
to derivenew translations.

We describePoutsma’s DOT modelsof transla-
tion in section 3. A DOT systemconsistsof a
DOPparserwhichhasbeenextendedto handlepairs
of fragmentsratherthan single fragments. There-
fore,parsingtechnologyformsthebackboneof any
DOT systemand all of the challengesof develop-
ing a DOP parsermust also be met when imple-
mentingDOT. Advancesin high-performancepars-
ing technologyareessentialto any DOT systemif
large-scaletranslationexperimentson complex lin-
guistic data are to be carried out. We describe
our implementationof a DOT systemincorporat-
ing optimisations—inspiredby thosedevelopedfor
DOP—insection4. Ourtranslationmodelfacilitates
increasedef£ciency in termsof fragmentextraction,
thebuilding of acompactrepresentationof thetrans-
lation spaceandthe selectionof the mostprobable
translation.

In section5, wedescribeasetof experimentscar-
ried out on a large subsetof the HomeCentrecor-
pusto testour DOT system.TheHomeCentrecor-
pus contains810 alignedEnglish-Frenchsentence
pairs from Xerox documentationparsedinto LFG
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c(onstituent)-andf(unctional)-structurerepresenta-
tions.Thisbilingual treebankprovidesuswith a lin-
guisticallycomplex fragmentbaseon which to per-
form experimentson a larger scalethan thosecar-
riedout to date.[Frank,1999]observesthatthecor-
puscontainsmany ‘hard’ translationexamples,in-
cludingcasesof nominalisations,relation-changing,
passivisation,headswitching,complex coordination,
and combinationsthereof. Accordingly, the cor-
puswould appearto presenta challengeto any MT
system,but given that thesecasesare widespread
in real data, any MT system will ultimately be
judged—onthe level of quality, at least—onhow
it copeswith suchphenomena.We presentthe re-
sultsof theseexperimentsin termsof an automatic
and a humanevaluationof the output translations.
Notably, our systemachieves high quality transla-
tions in reasonabletime. We contrastour results
with previous data-orientedmodelsof translation,
and commenton someof the commonerrors that
we suggestcould easily be £xed by a more lin-
guistically sophisticatedsystemsuchasLFG-DOT
[Way, 1999, Way, 2003a,Way, 2003b]. Finally, we
concludeandprovide someavenuesfor further re-
search.

2 Theoretical Background

2.1 Data-Oriented Parsing

Data-orientedmodelsof language,e.g. [Bod, 1998,
Bod,SchaandSima’an,2003], arebasedon theas-
sumption that humansperceive and producelan-
guage by availing of previous languageexperi-
encesrather than abstractgrammarrules. Tree-
DOP modelsexploit treebankscomprisingphrase-
structuretreesrepresentingpreviously occurringut-
terances. Analyses of previously unseeninput
sentencesare producedby combining thesefrag-
mentsandthemostprobableanalysisis determined
via their relative frequencies. LFG-DOP models
[Bod andKaplan,1998]extendDOPby incorporat-
ing therepresentationsof Lexical FunctionalGram-
mar(LFG) whichcancaptureandrepresentlinguis-
tic phenomenaotherthanthoseoccurringat surface
level.

Drawbacksof the DOP approachcentrearound
issuesof ef£ciency. Recentadvancesin parsing

have sought—withsomesuccess—toaddressthese
issues.As thesetof fragmentsextractedfrom atree-
bankof reasonablesizeis generallybothextremely
large and extremely redundant,pruning strategies
have beendevelopedin an attemptto constrainthe
numberof fragmentswithout reducingparseaccu-
racy [Bod, 2001].Thiswork hasledto theformation
of theDOPhypothesis,whichstatesthatparseaccu-
racy increaseswith increasingfragmentsize. Opti-
misedalgorithmsto computethe parsespaceof an
input sentenceover large fragmentbaseshave also
beendeveloped [Goodman,1996, Sima’an,1999].
Extractionof themostprobableparseconstitutesan
NP-completeproblem[Sima’an,1999] asmany dif-
ferentderivationscanresult in the sameparseand,
therefore,the mostprobablederivation (MPD) and
the mostprobableparse(MPP) arenot necessarily
thesame.Monte-Carlosamplinginvolvessearching
over a reducedrandomsampleof the searchspace.
It hasbeenproposedasamethodfor calculatingthe
MPPin DOP[Bod, 1998]andtheapproachhasbeen
furtherre£nedby [ChappelierandRajman,2003].

2.2 Data-Oriented Translation

Data-OrientedTranslationexploits bilingual tree-
bankscomprisinglinguisticrepresentationsof previ-
ouslyseentranslationpairs,aswell asexplicit links
which map the translationalequivalencespresent
within thesepairsat sub-sententiallevel. Analyses
andtranslationsof theinputareproducedsimultane-
ouslyby combiningsourceandtargetlanguagefrag-
mentpairs from the treebank. That is, thereis no
distinctionbetweentheseparatephasesof analysis,
transferandgenerationasin transfer-basedMT, for
instance.In thissense,aDOT systemcanbeviewed
asa DOPparserwhich hasbeenadaptedto process
fragmentswhich consistof pairsof subtreesrather
thansinglesubtrees.

The tree fragmentpairs used in Tree-DOT are
calledsubtreepairs. The two decompositionoper-
ators,which aresimilar to thoseusedin Tree-DOP
but arere£nedto take thetranslationallinks into ac-
count,areasfollows:

� the root operator which takes any pair of linked
nodesin a treepair to betherootsof a subtreepair
anddeletesall nodesexceptthesenew rootsandall
nodesdominatedby them;



� the frontier operator which selects a (possibly
empty) set of linked nodepairs in the newly cre-
atedsubtreepairs,excluding the roots,anddeletes
all subtreepairsdominatedby thesenodes.

TheDOT compositionoperatoris de£nedasfol-
lows. The compositionof tree pairs � s� ,t ��� and� s	 ,t	
� ( � s� ,t ���
��� s	 ,t	�� ) is only possibleif

� the leftmostnon-terminalfrontier nodeof s� is of
thesamesyntacticcategory (e.g. S, NP, VP) asthe
rootnodeof s� , and

� the leftmost non-terminal frontier node of s� ’s
linkedcounterpartin t � is of thesamesyntacticcat-
egoryastherootnodeof t� .

Theresultingtreepairconsistsof acopy of s� where
s	 hasbeeninsertedat theleftmostfrontiernodeand
a copy of t � wheret	 hasbeeninsertedat the node
linkedto s� ’s leftmostfrontiernode.

As in DOP, the DOT probability of a translation
derivation is the joint probability of choosingeach
of thesubtreepairsinvolved in thatderivation. The
probabilityof selectinga subtreepair is its number
of occurrencesin thecorpusdividedby thenumber
of pairsin thecorpuswith thesamerootnodesasit:

��� ��������������� �!#"%$�&(' $*),+-!
.�/ &10 / ),2%3 4(5 .�/ &10 / )62
798�415 .
: &10 : )62
7 !;"=<>&(' <�)?+-!

Theprobabilityof a derivation in DOT is theprod-
uct of theprobabilitiesof thesubtreepairsinvolved
in building thatderivation. Thus,theprobabilityof
derivation � s� ,t ���@� ... �A� sB ,tBC� is givenby

��� ��DE���(F��G����HIHJHJ����D�BC�KF1BL��� � M ��� ��D M �(F M ���
Again, a translationcanbe generatedby many dif-
ferent derivations, so the probability of a transla-
tion w�ANPO w� is thesumof theprobabilitiesof its
derivations:

��� �RQ � �KQ � ��� �" � &TSK' � )9SU+�V M $UWYX � "%Z[&(' Z\),+ ��� �]F1� S �KF1� S ���
While the translationprocessunderDOT clearly

mirrors the DOP parsingprocess,DOT fragments
suffer from limited compositionalitywhere DOP

doesnot [Way, 2003a, Way, 2003b]. In DOP, a frag-
ment with root category NP can be freely com-
posedwith any fragmentwhoseleftmost substitu-
tion site is alsoof category NP. UnderDOT, how-
ever, a sourcefragmentwith root category NP can
only be composedwith a fragment whose left-
most substitutionsite is of category NP if their
target categories also correspond—forexample, a
pair with roots � NP,PP� cannotbecomposedwith
a pair whose leftmost substitutioncategories are� NP,NP� . Thus, the numberof potentialcompo-
sitions is reduced.Our DOT model is no different
from thoseof Poutsmain this respect.

2.3 Pruning: link depth

The re£nementof the fragmentationprocessto ac-
count for translationallinks may (and often does)
resultin asmallernumberof DOT fragmentpertree
pair than would be the casewith DOP. However,
pruning methodsto constrainthe size of the frag-
mentbasearestill necessary. Several pruningcri-
teriahave beenproposed[Bod, 2001], oneof which
involvesrestrictingthefragmentbasewith respectto
depth:fragmentsaboveacertaindepthareexcluded
from the fragmentbase.Since,for fragmentscon-
sistingof a singletree,any nodecanbe designated
a substitutionsite, such fragmentscan be pruned
at any node. However, the de£nitionof fragment
depthbecomeslessobvious whenthe fragmentsin
questionconsistof pairs of linked subtrees. For
linked subtreepairs,only linked nodescanbe des-
ignatedsubstitutionsitesand, therefore,suchfrag-
mentscan only be prunedat linked nodes—todo
otherwisewould result in sourcesubstitutionsites
with no linked counterpartin the associatedtarget
trees.Furthermore,aslinkedsourceandtargettrees
frequentlydiffer with respectto depth,an arbitrary
decisionwouldhave to betakenasto whetherdepth
is calculatedover thesourceor target trees.Conse-
quently, we replacethenotionof fragmentdepth—
the greatestnumberof stepstaken to get from the
root nodeto any frontier node—withthe notion of
link depthfor fragmentscomprisinglinked subtree
pairs. The link depthof a fragmentis the greatest
numberof stepstaken which depart from a linked
nodeto getfrom therootnodeto any frontiernodes.
This yields thesameresultwhethercalculatedover
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Figure 1: sourcedepth= 3, target depth= 6, link
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thesourceor targetfragment,asshown in Figure1.

3 Poutsma’s original DOT systems

In developinghis DOT2 system,1 Poutsmadoesnot
takeadvantageof theoptimisationswhichhavebeen
developedfor DOP. Rather, fragmentsare created
explicitly andconvertedto rewrite rulesof theform

� root� ,root�1�@^_O� (frontier��` ...frontier�*a � ),( � frontier�U` ...frontier�?a ) �
with links indicating translationalcorrespondences
betweenfrontiers. He thenrelieson standardpars-
ing algorithmsto generatethechartrepresentingthe
parsespace.He usesMonte-Carlosamplingduring
disambiguationin orderto determinethemostprob-
able translation,limiting the samplesize to 1500
derivations.

Poutsma’s model [Poutsma,2000b] is testedvia
experimentscarriedoutonasubsetof theVerbmobil
corpus,whichcontainstranscribedspokendialogues
in thedomainof appointmentschedulingin German,
EnglishandJapanese.Poutsmausesjust theEnglish
andGermanstringsin hisexperiments—theEnglish
Verbmobilstringsareannotatedwith Penn-IITree-
bankannotations,andthe Germanstringswith the
Tübingenscheme.He manuallyanalysedeachtree
pairandinsertedtranslationallinks wherenecessary.
In total,hisdatasetcomprises266treepairsyielding
amaximumof 33,479fragments.

1For thepurposesof thisdiscussion,weignoreheretheorig-
inal DOT1 model[Poutsma,1998] which wasshown to derive
wrongtranslationswherethe b source,targetc word orderdiffer-
eredto any degree[Way, 1999]. This wasdueto the fact that
therecombinationoperatorin DOT wasde£nedonsourcetrees
only ratherthan b source,targetc pairsof trees.Poutsmanamed
his subsequentmodel of translationDOT2, which overcomes
this particularproblemof DOT1.

Poutsmauses226of the266Verbmobiltreepairs
asa trainingset,holdingout 40 treepairsto testthe
system.He translatesbothfrom Englishto German
andfrom Germanto English,andeachtime usesa
different training–testsplit to provide more repre-
sentative results. In a manualevaluation,he pro-
vides£guresfor exactmatch,alternate(a different,
thoughreasonabletranslationfrom the onegiven),
wrong (invalid translations),andpartial exact/alter-
nate. Comparative resultsare provided using Ba-
bel£shasa baseline. Poutsmaalsoprovidessepa-
rateresultsdependingon whatdepthof fragmentis
includedin thesystemdatabase.

For both languagepairs, DOT2 generatedmore
exact match translations than Babel£sh—about
2.5% more for German–Englishand 8-10% more
for English–German.WhereBabel£shoutperforms
DOT is in the ‘alternate’ translation category—
15-23% more for German–Englishand 32-35%
more for English–German. DOT also produces
many moreungrammaticaltranslationsfor English–
German(14% more), but far fewer for German–
English (8% fewer). As for ‘wrong’ translations,
Babel£shgeneratesfar moreof these—forEnglish–
German,17-30% more, and for German–English,
28-34%more. It is impossibleto provide compara-
tiveresultsfor ‘partial’ translationsasBabel£shdoes
notproducethese.

It is reasonablyeasyto provide anexplanationas
to why DOT outperformsBabel£shin certaincate-
gories: given that DOT was trainedon Verbmobil
datawhereasBabel£shis ageneralpurposeMT sys-
tem, onewould expectDOT to do well whencon-
frontedwith similar testdata.Nevertheless,it seems
from Poutsma’s £guresthat for German–English,
DOT is aboutaslikely to produceanexact(13-15%)
translationas an ungrammatical(13%) one, while
‘wrong’ translationsalsoappearmaximally13%of
thetime. For English–German,DOT is morelikely
to generateanungrammaticaltranslation(32%)than
an exact one (19%), with ‘wrong’ translationsap-
pearingaround5%of thetime. Disappointingly, and
contraryto theDOPhypothesis,theperformanceof
the DOT modeldoesnot improve when fragments
of greaterdepthareincludedin thesystemdatabase.
Poutsmaexplains this by the fact that “the treesin
our corpuscontaineda lot of lexical content... at
verysmalltreedepths”.



Poutsma’s systemwould appearto be feasible
solely becausehis experimentswerecarriedout on
asmallscale.However, having implementedaDOP
parserusingsimilar rewrite rulesandconventional
parsingtechniques,it is clearto usthatsuchsystems
cannotwork with larger fragmentbases.Therefore,
we feel that it would not be possibleto carry out
furtherexperimentswith a larger fragmentbaseus-
ing his approach.His systemis simplistic, andyet
despitethis, theresultsin [Poutsma,2000b]arenot
overly encouraging.

4 Optimised Data-Oriented Translation

As the driving technologybehindany DOT system
is aDOPparser, DOT canonly beimplementedef£-
ciently androbustly if advancesin DOPtechnology
areincorporated.

4.1 Creation of the fragment base

In order to test our MT system,we employed a
datasetcomprising the £rst 605 aligned English-
Frenchsentencepairs from the HomeCentrecor-
puswhichwemanuallyannotatedwith translational
links. In total, our datasetyields in excessof 343
million fragments. Although fewer fragmentsare
extractedper treepair thanfor DOP, thenumberof
bilingual fragmentpairsextractedis still signi£cant
and,aswe aredealingwith pairsof trees,thenum-
berof actualfragmentscreatedis doublethis£gure.
Clearly, generating,storingandsearchingthis num-
ber of fragments,as well as gatheringfrequencies
of occurrencefor eachsubtreepair, is a non-trivial
task.

We have developeda dynamic methodto gen-
erate a compact representationof all fragments
which can be derived from a particular tree pair
[HearneandWay, 2003]. Fragmentsgeneratedby
the root operationare extractedas usual. These
fragmentsare then decoratedwith a set of unique
identi£ersreferringto eachfragmentwhich canbe
extractedvia the frontier operation. Frequency in-
formation is calculatedby recursively comparing
all decoratedtreesandidentifying duplicates.This
methodallows us to storeandaccessonly theorig-
inal treebanktrees,thusalleviating the needto ex-
plicitly create the fragment base—atask which,

given a corpusof reasonablesize and complexity,
quickly becomesunfeasible. Instead,we can ef£-
ciently retrieve only thosefragmentsdirectly useful
in translatingthegiveninput string.

4.2 Construction of the translation space

A chartbuilt duringtheanalysisphaseis a compact
representationof all possiblederivationsleadingto
valid parsedtranslationsof the input string, which
canbeconstructedeitherbottom-upor top-down. In
orderto build a translationchartusingconventional
chart-parsingtechniques,eachfragmentpair must
be expressedasa rewrite rule wherelinks between
frontiersarepreservedanda direct referenceto the
original fragmentstructureis be retained—thisis
theapproachtakenby Poutsma.However, theseap-
proachesarenot equippedto handlethesheernum-
bersof fragmentsinvolvedin large-scaletranslation
within thedata-orientedframework.

We have developeda two-phaseanalysiscompo-
nent basedon the DOP optimisationproposedby
Sima’an[Sima’an,1999]. However, we have opti-
misedfor top-down computationof themostproba-
bletranslationratherthanbottom-upcomputationof
themostprobablederivation.The£rstphaseof anal-
ysisinvolvesusingthecontext-freegrammarunder-
lying the sourceside of the corpusto computean
approximationof theparsespacefor theinputusing
theCKY algorithm.Giventhat thegrammarunder-
lying theEnglishsectionof theHomeCentrecorpus
comprisesjust 2606rules,this clearly constitutesa
dramaticreductionof the initial searchspace.Dur-
ing thesecondphase,thesetof bilingual fragments
is appliedto this reducedparsespaceto generatethe
exactDOT translationspacefor thegiven input. In
orderto do so, a correspondenceis drawn between
thecontext-freegrammarrulesusedduringthe£rst
phaseandthe treefragmentswe wish to insertinto
the chartduring the secondphase.The fragmenta-
tion processdescribedin the previous sectionpro-
videsthesecorrespondencesbecausethey allow the
extractionof uniqueidenti£ersfor all fragmentsas-
sociatedwith eachcontext-free grammarrule. The
appropriatefragmentsare rebuilt using theseiden-
ti£ers, thus allowing for a highly optimised sec-
ondanalysisphase.Furtherdetailscanbe found in
[HearneandWay, 2003].



4.3 Computation of the output translation

Disambiguation, the £nal stage in the transla-
tion process,involves selecting the most proba-
ble translationor derivation from the translation
chart. Monte-Carlosamplinghas beenproposed
as a methodfor maximisationof the MPP in the
DOP framework [Bod, 1998] and we have applied
this techniqueto selectionof the MPT for DOT. A
fragmentis chosenat randomfrom the top of the
chart. Fragmentschosenat randomfrom appropri-
atechartpositionsandwhich have appropriateroot
categoriesarethensuccessively composedwith this
fragmentuntil thereare no opensubstitutionsites
left, atwhichpoint thederivationis complete.When
suf£cient sampleshave beenseen,the translation
which occursmost frequentlyin the samplecorre-
spondsto theMPT.

5 Experiments and Results

Having manually aligned the � source,target� tree
fragmentsfrom the£rst605alignedEnglish-French
sentencepairs from the HomeCentrecorpus, we
divide our datasetinto 8 different training/testset
splits, whereeachtraining setcontains545 parsed
sentencepairs and eachtest set 60 sentencepairs.
Onerestrictionwasplacedonthetraining/testsplits,
namelythatall wordsoccurringin thesourcesideof
thetestsethadto alsooccurin thesourcesideof the
trainingset,but not necessarilywith thesamelexi-
cal category. All translationscarriedout werefrom
Englishinto French.Finally, we limited thenumber
of samplestakenduringthedisambiguationprocess
to 5000.

Link Depth 1 2 3

No. fragments 4,506 23,478 104,400
Secs/sentence 17.80 16.27 15.33

Coverage(%) 66.47 67.92 67.92
Type1 fail (%) 11.46 11.46 11.46
Type2 fail (%) 1.04 1.04 1.04
Type3 fail (%) 21.04 19.58 19.58

Table 1: Quantitative evaluation of DOT on the
HomeCentreCorpus

5.1 Coverage

As thesizeof thefragmentbaseincreases,thenum-
ber of sentencesfor which translationscanbe pro-
ducedremainsrelatively steady. As canbe seenin
Table1, thereis a slight increasein coveragefrom
66.47%at link depth1 to 67.92%at link depth2 and
no increaseat link depth3. Thereare3 possiblerea-
sonswhy a particularsentencecannotbetranslated,
whichwehaveclassi£edastypes1, 2 and3.

� A type 1 failure occurswhere a completeparse
spacecannotbeconstructedfor thesourcesentence
using the CFG underlying the sourceside of the
trainingset. As all wordsin the testsetalsooccur
in the training set, this generallyindicatesa word
of unknown category—thisis alsoa majorproblem
for DOP[Bod, 1998].

� A type 2 failure occurswhere a completeparse
spacecanbeconstructedfor thesourcesentenceus-
ing the CFG but not usingthe fragmentsextracted
from the sourcesideof the training set. This situ-
ation doesnot ariseusinga monolingualfragment
baseastheminimal setof depth1 fragmentscorre-
spondsexactly to the setof underlyingCFG rules.
This is not thecasefor DOT, however, asthemin-
imal setof fragmentsis of link depth1 ratherthan
depth1 (cf. Figure1).

� A type 3 failure occurswhere a completeparse
spacecanbeconstructedfor thesourcesentenceus-
ing both the CFG andthe fragmentbaseextracted
from the sourcesideof the training setbut a com-
pletetranslationspacecannotbeconstructedusing
thebilingual fragmentbaseasDOT fragmentssuf-
fer from reducedcompositionality.

5.2 Automatic evaluation of quality

Table2 shows IBM BleuscoresusingtheNIST MT
EvaluationToolkit2 for DOT ateachlink depth.The
Bleu scores– calculatedover translationsactually
produced– rangefrom 0.7018whenonly fragments
of link depth1 areconsidered,to 0.7838whenall
fragmentsup to link depth 3 are included in the
competitionset. The absolutebleu scoresrange
from 0.2911to 0.3472. Suchscoresare possible
giventhelinguistic sophisticationof thetreebank—
the availability of goodcontextual informationen-
suresthat only suitable fragmentsare considered

2http://www.nist.gov/speech/tests/mt/mt2001/index.htm



wheretranslationsarederived by recombiningdif-
ferentsubtreepairs. Of course,this is only achiev-
ablegiventheeffort takento manuallyconstructthe
setof � source,target� treefragmentsin thesystem’s
database.However, wearecon£dentthatbetterBleu
scoresareachievablewhenweaugmentour transla-
tion modelswith thesyntacticinformationcontained
in theLFG f-structuresin theHomecentrecorpus.

Link Depth 1 2 3

Score4 (%) 60.12 74.13 75.52
Score3 (%) 27.32 14.18 13.22
Score2 (%) 8.40 7.38 5.95
Score1 (%) 4.15 4.31 4.31

BLEU score 0.7018 0.7456 0.7838

Table 2: Qualitative evaluation calculated over
translationsproduced

5.3 Manual evaluation of quality

In orderto manuallyevaluatethequality of our MT
system,we assignedeachtranslationproducedto
oneof thefollowing categories:
� Category4: perfecttranslation(exact/alternative);

� Category 3: good quality translationwith minor
syntacticor translationerrors;

� Category 2: partially intelligible translationwith
majorsyntacticor translationerrors;

� Category1: unintelligible.

Two native speakersof Frenchwith ¤uentEnglish
carriedout this task. As shown in Table 2, trans-
lation quality improvedconsistentlyasthesizeand
complexity of the fragmentbaseincreased.Perfect
translationsrangedfrom 60.12%to 75.52%aslink
depthincreased.NotethattheBleuscoresin Table2
arequitesimilar to theseCategory 4 manualevalu-
ations,which bearsout the claim that Bleu scores
areintendedto correlatehighly with thoseof human
evaluators.Furthermore,minorandmajorgrammat-
ical and translationerrorsdecreased,rangingfrom
27.32%to 13.22%andfrom 8.40%to 5.95%respec-
tively, asmorefragmentswereincluded.A goodex-
ampleis thepage is printed. d le pageestimprimé.
Herewe seetwo agreementerrors:betweenthede-
terminerandnoun,andbetweenthesubjectNP and

theendingon thepastparticiple.Both errorswould
beeasyto £x in LFG-DOT giventheavailability of
syntacticinformationin the f-structures.The num-
ber of translationsso poor as to be unintelligible
remainedrelatively stable,rangingfrom 4.15% to
4.31%.Theseresultsappearto con£rmthattheDOP
hypothesisalsoholdsfor DOT aswe have observed
thattranslationaccuracy alsoincreasesaslargersub-
treepairsareincludedin thefragmentbase.

5.4 Time

From Table 1 we observe that, contrary to intu-
ition, the averagetime taken to translateeachsen-
tencedecreasesasmore fragmentsare includedin
the fragmentbase.During the disambiguationpro-
cess,fragmentsaresampledfrom thechartandsub-
stituted into the current derivation until no open
substitutionsitesremainin that derivation. Where
large fragmentsare selected,fewer fragmentsare
subsequentlysampledin completingthederivation,
thusresultingin reduceddisambiguationtime. It is
unclear—and,indeed,unlikely—thatthis trendwill
continueas link depthis increased;further experi-
mentsat greaterlink depthswill berequiredto ver-
ify this.

Given that most criticisms of DOP-basedap-
proachescentreon problemsof ef£ciency, we con-
sider the translationtimes of between15–18 sec-
ondsper sentenceto be quite reasonable,particu-
larly when the translationquality is taken into ac-
count. Thesewere achieved on a Pentium4 with
1.7GHzCPUand750MbRAM.

5.5 Contrasting Results

In termsof quality, we achieve perfectexact or al-
ternative translationsin 60.12%–75.52%of cases,
whereasPoutsmareportsresultsof 18.92%–24.33%
for thesamecategory. Our results,which alsoshow
increasedquality asfragmentdepthincreases,pro-
vide initial con£rmationthat the DOP hypothesis
alsoholdsfor DOT, contraryto Poutsma’s £ndings.
Hesuggeststhatthisis dueto thefactthathisdataset
containedmuchlexical context at small treedepths,
andalsothathisdatasetwassmallandof poorqual-
ity [Poutsma,2000a]. Our £ndingswould appear
to con£rmthis conclusionasour datasetis of high



quality and containsa greaterdegreeof linguistic
complexity.

Our innovation of link depthmay alsobe impor-
tant in con£rmingthe DOP hypothesisfor DOT as
Poutsmadoesnot describehow he calculatesthe
depthof a linkedsubtreepair. While theseissuesgo
someway towardsexplaining why our resultshave
improved on thoseof Poutsma,it is also the case
thatour experimentshave beenperformedon a dif-
ferentlanguagepair. Therefore,we intendto extend
our experimentsbothby translatingfrom Frenchto
English and by working with the English-German
sectionof theHomeCentrecorpus.

6 Conclusions and future work

We have developed a high-performancedata-
orientedMT systemwhich incorporatesandadapts
optimisationsoriginally developed for DOP. We
havetestedthissystemonthecomplex andchalleng-
ing HomeCentrecorpusandhave achievedpromis-
ing results,both in termsof resultsandef£ciency.
We intend to perform further experiments—using
alternative translation directions, languagepairs
and pruning parameters—inorder to test our sys-
tem comprehensively and, consequently, establish
the data-orientedtranslationmodelsas viable ap-
proachesto MT.

As the corpusis alignedat sentencelevel, sub-
sentential translationalequivalencesmust be in-
sertedmanually—todatewe have completed75%
of thealignmentprocess.Despitethereducednum-
berof fragmentsproducedfor DOT, pruningof the
searchspaceis still essential.This involvesrede£n-
ing pruningparametersusedfor DOP—suchasmax.
depth,max. no. of lexical entries,max. no. of sub-
stitution sitesetc.—torenderthemfunctionalwith
DOT fragments.We intendto completethis align-
ment processand test our systemon the whole of
theHomecentrecorpusto seewhetherour good,in-
terim resultscanbemaintained.

Weprovidedinstancesof translationerrorswhich
would be correctedin an LFG-DOT system. Er-
rorsof determiner-nounandsubject-verbagreement,
for example, would not be made if the syntac-
tic information available in the LFG f-structures
were available in the translationmodel. In ad-
dition, [Way, 2003a,Way, 2003b] has shown (al-

beit on small datasets)that the DOT problem of
limited compositionality, whereby fragmentscan-
not be adequatelygeneralisedand are therefore
only reusablein very restrictedcircumstanceswith
very small probabilities,can be avoided in LFG-
DOT. We intend in further work to create a
parserand translationsystembasedon LFG-DOP
[Bod andKaplan,1998],wherethe full LFG repre-
sentationsarealliedwith thetechniquesof DOP. We
hopethat the extensionof our prototypeDOT sys-
temto LFG-DOT will imporoveupontheencourag-
ing resultsachievedherewhenexperimentsarecar-
riedoutusingthef-structureannotationsprovidedin
theHomeCentrecorpus.
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Jean-Ćedric ChappelierandMartin Rajman. 2003. Parsing
DOPwith Monte-CarloTechniques.In Bodetal., eds.(2003).

AnetteFrank.1999.LFG-basedsyntactictransferfrom English
to Frenchwith theXeroxTranslationEnvironment.ESSLLI’99
SummerSchool, Utrecht,TheNetherlands.

JoshuaGoodman. 1996. Ef£cient Algorithms for Parsing
the DOP Model. ProceedingsEmpirical Methodsin Natural
LanguageProcessing, Philadelphia,PA, pp.143–152.

Mary HearneandAndy Way. 2003. A Robust,Wide-Coverage
Data-OrientedParserfor Tree-BasedTranslation.Working pa-
per, Schoolof Computing,Dublin City University, Ireland.

Arjen Poutsma.1998. Data-OrientedTranslation.In Proc. 9th
CLIN, Leuven,Belgium.

Arjen Poutsma. 2000a. Data-OrientedTranslation: Using
theData-OrientedParsingframeworkfor MachineTranslation.
MSc thesis,Universityof Amsterdam,TheNetherlands.

Arjen Poutsma. 2000b. Data-OrientedTranslation. In 18th
COLING, Saarbr̈ucken,Germany, pp.635–641.

Khalil Sima’an. 1999. Learning Ef£cient Disambiguation.
PhDThesis,Universityof Utrecht,TheNetherlands.

Andy Way. 1999. A Hybrid Architecturefor RobustMT using
LFG-DOP. Journal of ExperimentalandTheoretical Arti£cial
Intelligence11:441–471,TaylorandFrancis,London.

Andy Way. 2003a. MachineTranslationusingLFG-DOP. In
Bodetal., eds.(2003).

Andy Way. 2003b. Translatingwith Examples:TheLFG-DOT
Modelsof Translation. In RecentAdvancesin Example-Based
Machine Translation, M. Carl andA. Way, eds.,Kluwer Aca-
demicPublishers,Dordrecht,TheNetherlands,pp.443–472.


