640,385 research outputs found

    “THERAPEUTIC CASTING” : MUNGKINKAH (?)

    Get PDF
    Abstract Therapeutic Casting is one of the processes of casting (i.e. the selection and determination of the actors/actresses for a theatrical performance, whose genuine characters are in contadiction with the characters to be assumed in the performance). The other types of casting include the casting by ability (i.e. one based on the skill and intellegence of the actors/actresses), the antitype/educational casting (i.e. one in contradiction with the generality of human characters), and the casting to emotional temperament (i.e. one based on similarity of emotion). Therapeutic Casting is very rarely applied by the nowadays directors because it is regarded an a losing project, let alone when it is connected to theatrical profesionalism, namely theatre as business. However, this model of casting of great significance from the humanity aspect because it serves as a media for healing the actor/actresses from their mental instability or mental shock due to cetaim causes

    Microstructure control during twin roll casting of an AZ31 magnesium alloy

    Get PDF
    The existing twin roll casting technique for magnesium alloys suffers heterogeneity in both microstructure and chemistry and downstream processing is required to improve the strip quality, resulting in cost rise. In the present work, twin roll casting was carried out using an AZ31 magnesium alloy, with the application of intensive shearing melt conditioning prior to casting. The effect of process parameters such as pouring temperature and casting speed on microstructure control during casting and subsequent downstream processing was studied. Experimental results showed that the melt conditioning treatment allowed the production of AZ31 strips with uniform and refined microstructure free of centreline segregations. It was also shown that an optimized combination of pouring temperature and casting speed, in conjunction with a strip thickness control operation, resulted in uniformly distributed stored energies due to enhanced plastic deformation, which promoted recrystallization during casting and subsequent heat treatment. Strips prepared by twin roll casting and homogenization developed similar microstructural features to those prepared by twin roll casting followed by lengthy downstream processing by homogenization, hot rolling and annealing and displayed a weaker basal texture, exhibiting a potentially better formability.The EPSRC (UK

    The improvement of aluminium casting process control by application of the new CRIMSON process

    Get PDF
    All The traditional foundry usually not only uses batch melting where the aluminium alloys are melted and held in a furnace for long time, but also uses the gravity filling method in both Sand Casting Process (SCP) and Investment Casting Process (ICP). In the gravity filling operation, the turbulent behaviour of the liquid metal causes substantial entrainment of the surface oxide films which are subsequently trapped into the liquid and generate micro cracks and casting defects. In this paper a new CRIMSON process is introduced which features instead of gravity filling method, using the single shot up-casting method to realize the rapid melting and rapid filling mould operations which reduce the contact time between the melt and environment thus reducing the possibility of defect generation. Another advantage of the new process is the drastic reduction of energy consumption due to shortened melting and filling time. Two types of casting samples from SCP and ICP were compared with the new process. The commercial software was used to simulate the filling and solidification processes of the casting samples. The results show that the new process has a more improved behaviour during filling a mould and solidification than the two conventional casting processes

    PCPro a Novel Technology for Rapid Prototyping and Rapid Manufacturing

    Get PDF
    PCPro stands for Precise Cast Prototyping, which is a combination of casting technologies and milling. This method was developed at Fraunhofer IWS in Dresden, Germany. It is patented in Germany [1] and is applied in the USA under US 10/794,936. The main goal for this development was to shorten the process chain for making plastic prototypes accompanied by higher quality. The casting technology was integrated in a machining center in order to enable a high degree of automation and to avoid an external casting system. This means that Rapid Manufacturing can be easily implemented using such an automated combination of casting and machining. This article describes the PCPro method by means of the fabrication of sample parts. The advantages and the limitations in comparison to common Rapid Prototyping and Rapid Manufacturing process chains will be discussed. In addition, the manufacturing of a prototype machine is presented.Mechanical Engineerin

    Influence of melt feeding scheme and casting parameters during direct-chill casting on microstructure of an AA7050 billet

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012Direct-chill (DC) casting billets of an AA7050 alloy produced with different melt feeding schemes and casting speeds were examined in order to reveal the effect of these factors on the evolution of microstructure. Experimental results show that grain size is strongly influenced by the casting speed. In addition, the distribution of grain sizes across the billet diameter is mostly determined by melt feeding scheme. Grains tend to coarsen towards the center of a billet cast with the semi-horizontal melt feeding, while upon vertical melt feeding the minimum grain size was observed in the center of the billet. Computer simulations were preformed to reveal sump profiles and flow patterns during casting under different melt feeding schemes and casting speeds. The results show that solidification front and velocity distribution of the melt in the liquid and slurry zones are very different under different melt feeding scheme. The final grain structure and the grain size distribution in a DC casting billet is a result of a combination of fragmentation effects in the slurry zone and the cooling rate in the solidification range

    Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging

    Get PDF
    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for inter cast and intra cast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Design: Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semi-automatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. Results: The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter and intra cast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. Conclusion: The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit

    Effects of flux application and melting parameters in investment casting of pure aluminium by in-situ melting technique

    Get PDF
    Investment cast aluminium suffers porosity defect attributed to the complex combination of various factors including melt quality, casting process parameter and pouring technique. Even though, melt treatment and controlled of the process parameter have promising result, however turbulence developed during pouring of molten aluminium increasing the formation of porosity as a result of the entrainment of the surface oxide (Al2O3) film known as bifilm. Currently, turbulence free filling system was applied in casting process using tilt casting, bottom filling integrated with low pressure and also in-situ casting or in-situ melting techniques to address the porosity problem. However, in-situ melting technique has not been studied to reduce the porosity of the investment cast aluminium due to the oxidation of the granular aluminium occurs during heating hinders the complete melting of the granules. This research develops a procedure for investment casting of aluminium granules of 99.4% purity by in-situ melting technique. The aluminium granules were filled in ceramic moulds and heated at four different temperatures of 700, 750, 800 and 850oC for 30 and 60 min in a high temperature muffle furnace in ambient. As the heating temperature and duration were increased, the aluminium granules incompletely melt and produced a casting, however the granules agglomerate and replicate the shape of the ceramic mould. The aluminium granules oxidised during heating, encapsulated by a layer of complex oxides composed of stable [α-Al2O3], metastable [γ-Al2O3] and hydroxides. The thickness of the oxide layer formed on the surface of the air-heated granules increased as the heating temperature and duration were increased. The aluminium granules then were heated at the temperature of 850oC for 30 min in argon environment at the flow rate of argon gas 0.5, 2.5 and 5 l/min to reduce the oxidation of the aluminium granules. The thickness of the oxide layer formed on the argon-heated granule (5 l/min) was reduced by 60%, but failed to produce a casting. NaCl-KCl flux was applied, which was mixed and sprinkled on the aluminium granules at the Al:Flux ratio of 1:0.2, 1:0.25 and 1:0.33 and heated at the temperature of 850oC for 30 min to break the oxide layer that encapsulate the granules during heating. At the Al:Flux ratio of 1:0.33, 99% of the aluminium granules were successfully melted and produced a casting. The granules began melting at the temperature range 657.2 to 658.4oC and completely melted in 16 min with final melting temperature between 660.1 and 660.6oC. The average porosity level of the casting was 1.22%, which is lower than the investment cast aluminium produced by current pouring technique (2.48%). The low porosity level was attributed to micro-intergranular porosity present in the casting due to volume shrinkage. Investment casting of aluminium granules by in-situ melting technique with application of NaCl-KCl flux at the Al:Flux ratio of 1:0.33 mixed and sprinkled on the granules heated at the temperature of 850oC for 30 min producing low porosity aluminium casting
    corecore