640,385 research outputs found
“THERAPEUTIC CASTING” : MUNGKINKAH (?)
Abstract
Therapeutic Casting is one of the processes of casting (i.e. the selection and determination of the actors/actresses for a theatrical performance, whose genuine characters are in contadiction with the characters to be assumed in the performance). The other types of casting include the casting by ability (i.e. one based on the skill and intellegence of the actors/actresses), the antitype/educational casting (i.e. one in contradiction with the generality of human characters), and the casting to emotional temperament (i.e. one based on similarity of emotion).
Therapeutic Casting is very rarely applied by the nowadays directors because it is regarded an a losing project, let alone when it is connected to theatrical profesionalism, namely theatre as business. However, this model of casting of great significance from the humanity aspect because it serves as a media for healing the actor/actresses from their mental instability or mental shock due to cetaim causes
Microstructure control during twin roll casting of an AZ31 magnesium alloy
The existing twin roll casting technique for magnesium alloys suffers heterogeneity in both microstructure and chemistry and downstream processing is required to improve the strip quality, resulting in cost rise. In the present work, twin roll casting was carried out using an AZ31 magnesium alloy, with the application of intensive shearing melt conditioning prior to casting. The effect of process parameters such as pouring temperature and casting speed on microstructure control during casting and subsequent downstream processing was studied. Experimental results showed that the melt conditioning treatment allowed the production of AZ31 strips with uniform and refined microstructure free of centreline segregations. It was also shown that an optimized combination of pouring temperature and casting speed, in conjunction with a strip thickness control operation, resulted in uniformly distributed stored energies due to enhanced plastic deformation, which promoted recrystallization during casting and subsequent heat treatment. Strips prepared by twin roll casting and homogenization developed similar microstructural features to those prepared by twin roll casting followed by lengthy downstream processing by homogenization, hot rolling and annealing and displayed a weaker basal texture, exhibiting a potentially better formability.The EPSRC (UK
The improvement of aluminium casting process control by application of the new CRIMSON process
All The traditional foundry usually not only uses batch melting where the
aluminium alloys are melted and held in a furnace for long time, but also uses
the gravity filling method in both Sand Casting Process (SCP) and Investment
Casting Process (ICP). In the gravity filling operation, the turbulent behaviour
of the liquid metal causes substantial entrainment of the surface oxide films
which are subsequently trapped into the liquid and generate micro cracks and
casting defects. In this paper a new CRIMSON process is introduced which
features instead of gravity filling method, using the single shot up-casting
method to realize the rapid melting and rapid filling mould operations which
reduce the contact time between the melt and environment thus reducing the
possibility of defect generation. Another advantage of the new process is the
drastic reduction of energy consumption due to shortened melting and filling
time. Two types of casting samples from SCP and ICP were compared with the new
process. The commercial software was used to simulate the filling and
solidification processes of the casting samples. The results show that the new
process has a more improved behaviour during filling a mould and solidification
than the two conventional casting processes
PCPro a Novel Technology for Rapid Prototyping and Rapid Manufacturing
PCPro stands for Precise Cast Prototyping, which is a combination of casting technologies and
milling. This method was developed at Fraunhofer IWS in Dresden, Germany. It is patented in
Germany [1] and is applied in the USA under US 10/794,936. The main goal for this
development was to shorten the process chain for making plastic prototypes accompanied by
higher quality. The casting technology was integrated in a machining center in order to enable a
high degree of automation and to avoid an external casting system. This means that Rapid
Manufacturing can be easily implemented using such an automated combination of casting and
machining.
This article describes the PCPro method by means of the fabrication of sample parts. The
advantages and the limitations in comparison to common Rapid Prototyping and Rapid
Manufacturing process chains will be discussed. In addition, the manufacturing of a prototype
machine is presented.Mechanical Engineerin
Influence of melt feeding scheme and casting parameters during direct-chill casting on microstructure of an AA7050 billet
© The Minerals, Metals & Materials Society and ASM International 2012Direct-chill (DC) casting billets of an AA7050 alloy produced with different melt feeding schemes and casting speeds were examined in order to reveal the effect of these factors on the evolution of microstructure. Experimental results show that grain size is strongly influenced by the casting speed. In addition, the distribution of grain sizes across the billet diameter is mostly determined by melt feeding scheme. Grains tend to coarsen towards the center of a billet cast with the semi-horizontal melt feeding, while upon vertical melt feeding the minimum grain size was observed in the center of the billet. Computer simulations were preformed to reveal sump profiles and flow patterns during casting under different melt feeding schemes and casting speeds. The results show that solidification front and velocity distribution of the melt in the liquid and slurry zones are very different under different melt feeding scheme. The final grain structure and the grain size distribution in a DC casting billet is a result of a combination of fragmentation effects in the slurry zone and the cooling rate in the solidification range
Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging
Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for inter cast and intra cast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Design: Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semi-automatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. Results: The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter and intra cast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. Conclusion: The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit
Effects of flux application and melting parameters in investment casting of pure aluminium by in-situ melting technique
Investment cast aluminium suffers porosity defect attributed to the complex
combination of various factors including melt quality, casting process parameter
and pouring technique. Even though, melt treatment and controlled of the process
parameter have promising result, however turbulence developed during pouring of
molten aluminium increasing the formation of porosity as a result of the
entrainment of the surface oxide (Al2O3) film known as bifilm. Currently,
turbulence free filling system was applied in casting process using tilt casting,
bottom filling integrated with low pressure and also in-situ casting or in-situ
melting techniques to address the porosity problem. However, in-situ melting
technique has not been studied to reduce the porosity of the investment cast
aluminium due to the oxidation of the granular aluminium occurs during heating
hinders the complete melting of the granules. This research develops a procedure
for investment casting of aluminium granules of 99.4% purity by in-situ melting
technique. The aluminium granules were filled in ceramic moulds and heated at
four different temperatures of 700, 750, 800 and 850oC for 30 and 60 min in a high
temperature muffle furnace in ambient. As the heating temperature and duration
were increased, the aluminium granules incompletely melt and produced a casting,
however the granules agglomerate and replicate the shape of the ceramic mould.
The aluminium granules oxidised during heating, encapsulated by a layer of
complex oxides composed of stable [α-Al2O3], metastable [γ-Al2O3] and
hydroxides. The thickness of the oxide layer formed on the surface of the air-heated
granules increased as the heating temperature and duration were increased. The
aluminium granules then were heated at the temperature of 850oC for 30 min in
argon environment at the flow rate of argon gas 0.5, 2.5 and 5 l/min to reduce the
oxidation of the aluminium granules. The thickness of the oxide layer formed on
the argon-heated granule (5 l/min) was reduced by 60%, but failed to produce a
casting. NaCl-KCl flux was applied, which was mixed and sprinkled on the
aluminium granules at the Al:Flux ratio of 1:0.2, 1:0.25 and 1:0.33 and heated at
the temperature of 850oC for 30 min to break the oxide layer that encapsulate the
granules during heating. At the Al:Flux ratio of 1:0.33, 99% of the aluminium
granules were successfully melted and produced a casting. The granules began
melting at the temperature range 657.2 to 658.4oC and completely melted in 16 min
with final melting temperature between 660.1 and 660.6oC. The average porosity
level of the casting was 1.22%, which is lower than the investment cast aluminium
produced by current pouring technique (2.48%). The low porosity level was
attributed to micro-intergranular porosity present in the casting due to volume
shrinkage. Investment casting of aluminium granules by in-situ melting technique
with application of NaCl-KCl flux at the Al:Flux ratio of 1:0.33 mixed and
sprinkled on the granules heated at the temperature of 850oC for 30 min producing
low porosity aluminium casting
Recommended from our members
Rapid Fabrication of Smart Tooling with Embedded Sensors by Casting in Molds Made by Three Dimensional Printing
This paper is to investigate the feasibility of constructing “smart tooling” by embedding thin film
sensors, specifically, thin film thermocouples (TFTC) in castings made by molds formed by 3
Dimensional Printing (3DP). This study investigates whether thin film sensors can effectively be
cast into larger metal structures and if the sensors survive the casting process. The investigation
includes making 3DP molds to produce cast lap joint test bars of aluminum A356 and
electroplated nickel to characterize by mechanical testing to find the best process conditions to
maximize bond strength between the embedded thin film sensors and the cast material. Lastly
molds were made and embedded sensors were placed inside the mold for casting. Some of the
embedded sensors survived the casting process. In-situ monitoring of casting process with the
embedded sensors was accomplished.Mechanical Engineerin
- …
