607,391 research outputs found

    Strategy Selection for Product Service Systems Using Case-based Reasoning

    Get PDF
    A product service system integrates products and services in order to lower environmental impact. It can achieve good eco-efficiency and has received increase in the last decade. This study focuses on strategy selection for product service system design. Case-based reasoning is utilized to provide suggestions for finding an appropriate strategy. To build a case database, successful PSS cases from the literature and websites were collected and formulated. Twelve indices under three categories were analyzed and selected to describe cases. A lot of successful PSS cases and their information were collected. Forty seven cases were used in this study because of the completeness of information. The analytic hierarchic process is used to find the relative weights of the factors that relate to the selection of customers. These weights are used in calculating the similarity in the case-based reasoning process. The successful strategy of the most similar case is extracted and recommended for PSS strategy determination. More than 90% of tested cases obtained an appropriate strategy from the most similar case. Finally, two new products are introduced to find the best strategy for product service system design and development using the proposed case-based reasoning system

    Integrating case-based reasoning and hypermedia documentation: an application for the diagnosis of a welding robot at Odense steel shipyard

    No full text
    Reliable and effective maintenance support is a vital consideration for the management within today's manufacturing environment. This paper discusses the development of a maintenance system for the world's largest robot welding facility. The development system combines a case-based reasoning approach for diagnosis with context information, as electronic on-line manuals, linked using open hypermedia technology. The work discussed in this paper delivers not only a maintenance system for the robot stations under consideration, but also a design framework for developing maintenance systems for other similar applications

    A hybrid reasoning system for supporting the modelling of estuaries

    Get PDF
    Estuaries are complex natural water systems. Their behaviour depends on many factors, which are possible to analyse only adopting different study approaches. The physical processes within estuaries are generally investigated through computer modelling. However, models are not easily accessible. Their employment is only possible within restricted conditions and assumptions. Furthermore, in depth knowledge is required to interpret the information related to different disciplines and sources for the selection of a correct modelling approach. Therefore, the usability of computational estuarine models appears lower than their actual capability. This thesis describes the application of case-based reasoning methodology to support the design of estuarine models. The system (CBEM—Case-Based reasoning for Estuarine Modelling) aims to provide a general user with the necessary guidance for selecting the model that better matches to his/her goal and the nature of the problem to be solved. The system is based on the co-operative action of three modules: a case-based reasoning scheme and a genetic algorithm and a library of numerical estuarine models. [Continues.

    An Intelligent Help-Desk Framework for Effective Troubleshooting

    Get PDF
    Nowadays, technological infrastructure requires an intelligent virtual environment based on decision processes. These processes allow the coordination of individual elements and the tasks that connect them. Thus, incident resolution must be efficient and effective to achieve maximum productivity. In this paper, we present the design and implementation of an intelligent decision-support system applied in technology infrastructure at the University of Seville (Spain). We have used a Case Based Reasoning (CBR) methodology and an ontology to develop an intelligent system for supporting expert diagnosis and intelligent management of incidents. This is an innovative and interdisciplinary approach to knowledge management in problem-solving processes that are related to environmental issues. Our system provides an automatic semantic indexing for the generating of question/answer pairs, a case based reasoning technique for finding similar questions, and an integration of external information sources via ontologies. A real ontology-based question/answer platform named ExpertSOS is presented as a proof of concept. The intelligent diagnosis platform is able to identify and isolate the most likely cause of infrastructure failure in case of a faulty operation

    Hybrid approach in learning from examples in construction process design

    Get PDF
    This paper presents options for implementing an advisory system to support production processes in the construction sector. With case-based reasoning methods (implementation of learning from examples) and simulation, an advisory system can be built on the foundation of a knowledge base, being a systematic collection of information aimed at the advancement of construction processes on site. Based on the evaluation of studied process results acquired in specified conditions (using the abductive approach), options are proposed for new case design engineering. The paper presents an example of application of case-based reasoning in delivering ready-mixed concrete to a large construction site from two batching plants

    A Review of Diagnostic Techniques for ISHM Applications

    Get PDF
    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern

    Improvement of retrieval in Case-Based Reasoning for system design

    Get PDF
    The problematic addressed in this article is dealing with the improvement of retrieval in Case-Based Reasoning for system design. The retrieval activity is based on the evaluation of similarities between requirements (target) and the solutions (sources). However, similarities between features is often a subjective kind of knowledge difficult to formalize within companies. Based on an ontology of domain, the approach permits to retrieve compatible solutions rather than similar ones using a model of designer preferences. The requirements are modeled by means of constraints. When constraints are confronted to solutions in order to evaluate a compatibility measure, missing information within solutions with regard to requirements are taken into account using semantic similarities between concepts. A case study validates the proposals

    Event-based Compositional Reasoning of Information-Flow Security for Concurrent Systems

    Full text link
    High assurance of information-flow security (IFS) for concurrent systems is challenging. A promising way for formal verification of concurrent systems is the rely-guarantee method. However, existing compositional reasoning approaches for IFS concentrate on language-based IFS. It is often not applicable for system-level security, such as multicore operating system kernels, in which secrecy of actions should also be considered. On the other hand, existing studies on the rely-guarantee method are basically built on concurrent programming languages, by which semantics of concurrent systems cannot be completely captured in a straightforward way. In order to formally verify state-action based IFS for concurrent systems, we propose a rely-guarantee-based compositional reasoning approach for IFS in this paper. We first design a language by incorporating ``Event'' into concurrent languages and give the IFS semantics of the language. As a primitive element, events offer an extremely neat framework for modeling system and are not necessarily atomic in our language. For compositional reasoning of IFS, we use rely-guarantee specification to define new forms of unwinding conditions (UCs) on events, i.e., event UCs. By a rely-guarantee proof system of the language and the soundness of event UCs, we have that event UCs imply IFS of concurrent systems. In such a way, we relax the atomicity constraint of actions in traditional UCs and provide a compositional reasoning way for IFS in which security proof of systems can be discharged by independent security proof on individual events. Finally, we mechanize the approach in Isabelle/HOL and develop a formal specification and its IFS proof for multicore separation kernels as a study case according to an industrial standard -- ARINC 653

    Effective retrieval and new indexing method for case based reasoning: Application in chemical process design

    Get PDF
    In this paper we try to improve the retrieval step for case based reasoning for preliminary design. This improvement deals with three major parts of our CBR system. First, in the preliminary design step, some uncertainties like imprecise or unknown values remain in the description of the problem, because they need a deeper analysis to be withdrawn. To deal with this issue, the faced problem description is soften with the fuzzy sets theory. Features are described with a central value, a percentage of imprecision and a relation with respect to the central value. These additional data allow us to build a domain of possible values for each attributes. With this representation, the calculation of the similarity function is impacted, thus the characteristic function is used to calculate the local similarity between two features. Second, we focus our attention on the main goal of the retrieve step in CBR to find relevant cases for adaptation. In this second part, we discuss the assumption of similarity to find the more appropriated case. We put in highlight that in some situations this classical similarity must be improved with further knowledge to facilitate case adaptation. To avoid failure during the adaptation step, we implement a method that couples similarity measurement with adaptability one, in order to approximate the cases utility more accurately. The latter gives deeper information for the reusing of cases. In a last part, we present a generic indexing technique for the base, and a new algorithm for the research of relevant cases in the memory. The sphere indexing algorithm is a domain independent index that has performances equivalent to the decision tree ones. But its main strength is that it puts the current problem in the center of the research area avoiding boundaries issues. All these points are discussed and exemplified through the preliminary design of a chemical engineering unit operation
    corecore