115,684 research outputs found

    Insights into Analogy Completion from the Biomedical Domain

    Get PDF
    Analogy completion has been a popular task in recent years for evaluating the semantic properties of word embeddings, but the standard methodology makes a number of assumptions about analogies that do not always hold, either in recent benchmark datasets or when expanding into other domains. Through an analysis of analogies in the biomedical domain, we identify three assumptions: that of a Single Answer for any given analogy, that the pairs involved describe the Same Relationship, and that each pair is Informative with respect to the other. We propose modifying the standard methodology to relax these assumptions by allowing for multiple correct answers, reporting MAP and MRR in addition to accuracy, and using multiple example pairs. We further present BMASS, a novel dataset for evaluating linguistic regularities in biomedical embeddings, and demonstrate that the relationships described in the dataset pose significant semantic challenges to current word embedding methods.Comment: Accepted to BioNLP 2017. (10 pages

    The Coat Problem. Counterfactuals, Truth-makers, and Temporal specification

    Get PDF
    Standard semantic treatments of counterfactuals appeal to a relation of similarity between possible worlds. Similarity, however, is a vague notion. Lewis suggests reducing the vagueness of similarity by adopting a principle known as 'late departure' (LD): the more the past two worlds share, the more they are similar. LD has several virtues. However, as Bennett points out, a standard semantics based on LD suffers from the so-called coat problem. In a nutshell, we are led to assign counterintuitive truth-values to counterfactuals whose antecedent time is left underspecified. In the present paper, we argue that the coat problem may be solved by defining a time-sensitive notion of similarity. To illustrate, we assume a Priorean, tensed language, interpreted on branching-time frames in the usual, 'Ockhamist' way, and we enrich it with a counterfactual connective. Within this framework, we define a time-sensitive relation of similarity, based on Yablo's work on truth-makers and partial truth. In the resulting semantics, which has independent interest, the coat problem does not arise

    Typicality, graded membership, and vagueness

    Get PDF
    This paper addresses theoretical problems arising from the vagueness of language terms, and intuitions of the vagueness of the concepts to which they refer. It is argued that the central intuitions of prototype theory are sufficient to account for both typicality phenomena and psychological intuitions about degrees of membership in vaguely defined classes. The first section explains the importance of the relation between degrees of membership and typicality (or goodness of example) in conceptual categorization. The second and third section address arguments advanced by Osherson and Smith (1997), and Kamp and Partee (1995), that the two notions of degree of membership and typicality must relate to fundamentally different aspects of conceptual representations. A version of prototype theory—the Threshold Model—is proposed to counter these arguments and three possible solutions to the problems of logical selfcontradiction and tautology for vague categorizations are outlined. In the final section graded membership is related to the social construction of conceptual boundaries maintained through language use

    Incorporating Structured Commonsense Knowledge in Story Completion

    Full text link
    The ability to select an appropriate story ending is the first step towards perfect narrative comprehension. Story ending prediction requires not only the explicit clues within the context, but also the implicit knowledge (such as commonsense) to construct a reasonable and consistent story. However, most previous approaches do not explicitly use background commonsense knowledge. We present a neural story ending selection model that integrates three types of information: narrative sequence, sentiment evolution and commonsense knowledge. Experiments show that our model outperforms state-of-the-art approaches on a public dataset, ROCStory Cloze Task , and the performance gain from adding the additional commonsense knowledge is significant

    Verb Physics: Relative Physical Knowledge of Actions and Objects

    Full text link
    Learning commonsense knowledge from natural language text is nontrivial due to reporting bias: people rarely state the obvious, e.g., "My house is bigger than me." However, while rarely stated explicitly, this trivial everyday knowledge does influence the way people talk about the world, which provides indirect clues to reason about the world. For example, a statement like, "Tyler entered his house" implies that his house is bigger than Tyler. In this paper, we present an approach to infer relative physical knowledge of actions and objects along five dimensions (e.g., size, weight, and strength) from unstructured natural language text. We frame knowledge acquisition as joint inference over two closely related problems: learning (1) relative physical knowledge of object pairs and (2) physical implications of actions when applied to those object pairs. Empirical results demonstrate that it is possible to extract knowledge of actions and objects from language and that joint inference over different types of knowledge improves performance.Comment: 11 pages, published in Proceedings of ACL 201
    • …
    corecore