5,244 research outputs found

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    An investigation of factors affecting technology acceptance and use decisions by Australian allied health therapists

    Get PDF
    The research reported in this paper describes the development, empirical validation and analysis of a model of technology acceptance by Australian occupational therapists. The study described involved the collection of quantitative data through a national survey, with over 2000 responses and a longitudinal case study within the community health sector. Results provide qualitative and quantitative support for the proposed model and demonstrate the inadequacy of traditional models of technology acceptance when applied to the health sector. This work extends technology acceptance studies into new realms of the health sector and highlights the need for a broadening of health IT research, and particularly technology acceptance studies, to encompass a more holistic and inclusive view of those who work in healthcare in order to gain a greater understanding of its complexities and how IS implementation success can be enhanced in this arena

    A Methodological Framework for the Integrated Design of Decision-Intensive Care Pathways\u2014an Application to the Management of COPD Patients

    Get PDF
    Healthcare processes are by nature complex, mostly due to their multi-disciplinary character that requires continuous coordination between care providers. They encompass both organizational and clinical tasks, the latter ones driven by med- ical knowledge, which is inherently incomplete and distributed among people having different expertise and roles. Care pathways refer to planning and coordination of care processes related to specific groups of patients in a given setting. The goal in defining and following care pathways is to improve the quality of care in terms of patient satisfaction, costs reduction, and medical outcome. Thus, care pathways are a promising methodological tool for standardizing care and decision-making. Business process management techniques can successfully be used for representing organiza- tional aspects of care pathways in a standard, readable, and accessible way, while supporting process development, analysis, and re-engineering. In this paper, we intro- duce a methodological framework that fosters the integrated design, implementation, and enactment of care processes and related decisions, while considering proper rep- resentation and management of organizational and clinical information. We focus here and discuss in detail the design phase, which encompasses the simulation of care pathways. We show how business process model and notation (BPMN) and decision model and notation (DMN) can be combined for supporting intertwined aspects of decision-intensive care pathways. As a proof-of-concept, the proposed methodology has been applied to design care pathways related to chronic obstructive pulmonary disease (COPD) in the region of Veneto, in Italy

    Exploring perceptions of healthcare providers use of electronic advance directive forms in electronic health records

    Get PDF
    Dr. Gregory Alexander, Dissertation Supervisor.Background: Advance directives (ADs) are documents that allow competent individuals to set forth their medical treatment wishes and/or to name a proxy in the event that they lose the capacity to communicate these decisions in the future. Technology has remained an important driver of change for centuries; the electronic health record (EHR) has evolved as an important facilitator in patient care processes and the implementation of electronic ADs in an EHR is no exception. The integration of ADs into EHRs is one of the means that has been improvised to improve instant accessibility of AD documents for healthcare providers. Although healthcare providers' perception of electronic ADs in EHRs can greatly impact its usability, little or no study has been conducted using Technology Acceptance Model constructs to explore perceptions of providers' use of electronic ADs. Aim: The aim of this study is to explore the perception of healthcare providers' use of electronic AD forms in the EHR in terms of perceived usefulness, perceived ease of use, and behavioral intention to use, and to measure impact on actual system usage. This study also examined existing relationships among the participants' demographics and the research variables described. Methods: This study was guided by the Technology Acceptance Model (TAM) using a survey adapted from the TAM literature. A cross-sectional, correlational quantitative design was utilized. The study was conducted in six departments at a public, academic healthcare system in the southern United States. Results: Of the 165 surveys distributed, a total of 151 participants (92 percent) responded: 67 percent female (n = 101), 33 percent male (n = 50). Participants included physicians (n=78); staff nurses (n=57); nurse practitioners (n=4); social workers/case managers (n=6); administrators (n=1); and others (n=5). There was a moderately strong positive correlation between Perceived Usefulness and Actual System Usage (r=0.70, p is less than 0.0001). Likewise, Perceived Ease of Use and Actual System Usage had a moderately strong positive correlation (r=00.70, p is less than 0.0001). In contrast, the strength of the relationship between Behavioral Intention to Use and Actual System Usage was more modest (r=0.22, p is less than 0.004). In addition, the results of the Kruskal-Wallis H test found there was a statistically significant differences in the Actual System Usage of the electronic ADs between the 6 departments [symbol]2(5) = 79.325, p is less than 0.000. Specifically, the Primary Care Clinics are highly significant with p=0.0004 for Behavioral Intention to Use and p is less than 0.0001 for Perceived Usefulness and Perceived Ease of Use. There were not significant relationships between the participants' demographics and the research variables. Conclusion: The relationships among primary TAM constructs found in this research are largely consistent with those typical in previous TAM research, with the exception of the Behavioral Intention to Use, which is slightly lower. These data suggest that the healthcare providers' perception has great influence on the usage of the electronics ADs. However, this study lacks generalization because it was conducted in few departments at a single hospital. Therefore, it is recommended that the future researchers conduct a similar study in a larger scale and, if possible, across different types of EHRs.Dr. Gregory Alexander, Dissertation Supervisor.Includes bibliographical references

    Improving Antibiotic Resistant Infection Transmission Situational Awareness in Enclosed Facilities with a Novel Graphical User Interface for Tactical Biosurveillance

    Get PDF
    Serious challenges associated with antibiotic resistant infections (ABRIs) force healthcare practitioners (HCP) to seek innovative approaches that will slow the emergence of new ABRIs and prevent their spread. It was realized that traditional approaches to infection prevention based on education, retrospective reports, and biosurveillance often fail to ensure reliable compliance with infection prevention guidelines and real-time problem solving. The objective of this original research was to develop and test the conceptual design of a situational awareness (SA)-oriented information system for coping with healthcare-associated infection transmission. Constantly changing patterns in spatial distribution of patients, prevalence of infectious cases, clustering of contacts, and frequency of contacts may compromise the effectiveness of infection prevention and control in hospitals. It was hypothesized that providing HCPs with a graphical user interface (GUI) to visualize spatial information on the risks of exposure to ABRIs would effectively increase HCPs’ SA. Increased SA may enhance biosurveillance and result in tactical decisions leading to better patient outcomes. The study employed a mixed qualitative-quantitative research method encompassing conceptualization of GUI content, transcription of electronic health record and biosurveillance data into GUI visual artifacts, and evaluation of the GUI’s impact on HCPs’ perception and comprehension of the conditions that increase the risk of ABRI transmission. The study provided pilot evidence that visualization of spatial disease distribution and spatially-linked exposures and interventions significantly increases HCPs’ SA when compared to current practice. The research demonstrates that the SA-oriented GUI enables the HCPs to promptly answer the question, “At a given location, what are the risks of infection transmission there?” This research provides a new form of medical knowledge representation for spatial population-based decision-making within enclosed environments. The next steps include rapid application development and further hypothesis testing concerning the impact of this GUI on decsion-making

    Modelling of a System for the Detection of Weak Signals Through Text Mining and NLP. Proposal of Improvement by a Quantum Variational Circuit

    Full text link
    Tesis por compendio[ES] En esta tesis doctoral se propone y evalúa un sistema para detectar señales débiles (weak signals) relacionadas con cambios futuros trascendentales. Si bien la mayoría de las soluciones conocidas se basan en el uso de datos estructurados, el sistema propuesto detecta cuantitativamente estas señales utilizando información heterogénea y no estructurada de fuentes científicas, periodísticas y de redes sociales. La predicción de nuevas tendencias en un medio tiene muchas aplicaciones. Por ejemplo, empresas y startups se enfrentan a cambios constantes en sus mercados que son muy difíciles de predecir. Por esta razón, el desarrollo de sistemas para detectar automáticamente cambios futuros significativos en una etapa temprana es relevante para que cualquier organización tome decisiones acertadas a tiempo. Este trabajo ha sido diseñado para obtener señales débiles del futuro en cualquier campo dependiendo únicamente del conjunto de datos de entrada de documentos. Se aplican técnicas de minería de textos y procesamiento del lenguaje natural para procesar todos estos documentos. Como resultado, se obtiene un mapa con un ranking de términos, una lista de palabras clave clasificadas automáticamente y una lista de expresiones formadas por múltiples palabras. El sistema completo se ha probado en cuatro sectores diferentes: paneles solares, inteligencia artificial, sensores remotos e imágenes médicas. Este trabajo ha obtenido resultados prometedores, evaluados con dos metodologías diferentes. Como resultado, el sistema ha sido capaz de detectar de forma satisfactoria nuevas tendencias en etapas muy tempranas que se han vuelto cada vez más importantes en la actualidad. La computación cuántica es un nuevo paradigma para una multitud de aplicaciones informáticas. En esta tesis doctoral también se presenta un estudio de las tecnologías disponibles en la actualidad para la implementación física de qubits y puertas cuánticas, estableciendo sus principales ventajas y desventajas, y los marcos disponibles para la programación e implementación de circuitos cuánticos. Con el fin de mejorar la efectividad del sistema, se describe un diseño de un circuito cuántico basado en máquinas de vectores de soporte (SVM) para la resolución de problemas de clasificación. Este circuito está especialmente diseñado para los ruidosos procesadores cuánticos de escala intermedia (NISQ) que están disponibles actualmente. Como experimento, el circuito ha sido probado en un computador cuántico real basado en qubits superconductores por IBM como una mejora para el subsistema de minería de texto en la detección de señales débiles. Los resultados obtenidos con el experimento cuántico muestran también conclusiones interesantes y una mejora en el rendimiento de cerca del 20% sobre los sistemas convencionales, pero a su vez confirman que aún se requiere un desarrollo tecnológico continuo para aprovechar al máximo la computación cuántica.[CA] En aquesta tesi doctoral es proposa i avalua un sistema per detectar senyals febles (weak signals) relacionats amb canvis futurs transcendentals. Si bé la majoria de solucions conegudes es basen en l'ús de dades estructurades, el sistema proposat detecta quantitativament aquests senyals utilitzant informació heterogènia i no estructurada de fonts científiques, periodístiques i de xarxes socials. La predicció de noves tendències en un medi té moltes aplicacions. Per exemple, empreses i startups s'enfronten a canvis constants als seus mercats que són molt difícils de predir. Per això, el desenvolupament de sistemes per detectar automàticament canvis futurs significatius en una etapa primerenca és rellevant perquè les organitzacions prenguen decisions encertades a temps. Aquest treball ha estat dissenyat per obtenir senyals febles del futur a qualsevol camp depenent únicament del conjunt de dades d'entrada de documents. S'hi apliquen tècniques de mineria de textos i processament del llenguatge natural per processar tots aquests documents. Com a resultat, s'obté un mapa amb un rànquing de termes, un llistat de paraules clau classificades automàticament i un llistat d'expressions formades per múltiples paraules. El sistema complet s'ha provat en quatre sectors diferents: panells solars, intel·ligència artificial, sensors remots i imatges mèdiques. Aquest treball ha obtingut resultats prometedors, avaluats amb dues metodologies diferents. Com a resultat, el sistema ha estat capaç de detectar de manera satisfactòria noves tendències en etapes molt primerenques que s'han tornat cada cop més importants actualment. La computació quàntica és un paradigma nou per a una multitud d'aplicacions informàtiques. En aquesta tesi doctoral també es presenta un estudi de les tecnologies disponibles actualment per a la implementació física de qubits i portes quàntiques, establint-ne els principals avantatges i desavantatges, i els marcs disponibles per a la programació i implementació de circuits quàntics. Per tal de millorar l'efectivitat del sistema, es descriu un disseny d'un circuit quàntic basat en màquines de vectors de suport (SVM) per resoldre problemes de classificació. Aquest circuit està dissenyat especialment per als sorollosos processadors quàntics d'escala intermèdia (NISQ) que estan disponibles actualment. Com a experiment, el circuit ha estat provat en un ordinador quàntic real basat en qubits superconductors per IBM com una millora per al subsistema de mineria de text. Els resultats obtinguts amb l'experiment quàntic també mostren conclusions interessants i una millora en el rendiment de prop del 20% sobre els sistemes convencionals, però a la vegada confirmen que encara es requereix un desenvolupament tecnològic continu per aprofitar al màxim la computació quàntica.[EN] In this doctoral thesis, a system to detect weak signals related to future transcendental changes is proposed and tested. While most known solutions are based on the use of structured data, the proposed system quantitatively detects these signals using heterogeneous and unstructured information from scientific, journalistic, and social sources. Predicting new trends in an environment has many applications. For instance, companies and startups face constant changes in their markets that are very difficult to predict. For this reason, developing systems to automatically detect significant future changes at an early stage is relevant for any organization to make right decisions on time. This work has been designed to obtain weak signals of the future in any field depending only on the input dataset of documents. Text mining and natural language processing techniques are applied to process all these documents. As a result, a map of ranked terms, a list of automatically classified keywords and a list of multi-word expressions are obtained. The overall system has been tested in four different sectors: solar panels, artificial intelligence, remote sensing, and medical imaging. This work has obtained promising results that have been evaluated with two different methodologies. As a result, the system was able to successfully detect new trends at a very early stage that have become more and more important today. Quantum computing is a new paradigm for a multitude of computing applications. This doctoral thesis also presents a study of the technologies that are currently available for the physical implementation of qubits and quantum gates, establishing their main advantages and disadvantages and the available frameworks for programming and implementing quantum circuits. In order to improve the effectiveness of the system, a design of a quantum circuit based on support vector machines (SVMs) is described for the resolution of classification problems. This circuit is specially designed for the noisy intermediate-scale quantum (NISQ) computers that are currently available. As an experiment, the circuit has been tested on a real quantum computer based on superconducting qubits by IBM as an improvement for the text mining subsystem in the detection of weak signals. The results obtained with the quantum experiment show interesting outcomes with an improvement of close to 20% better performance than conventional systems, but also confirm that ongoing technological development is still required to take full advantage of quantum computing.Griol Barres, I. (2022). Modelling of a System for the Detection of Weak Signals Through Text Mining and NLP. Proposal of Improvement by a Quantum Variational Circuit [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183029TESISCompendi

    Emerging Opportunities: Monitoring and Evaluation in a Tech-Enabled World

    Get PDF
    Various trends are impacting on the field of monitoring and evaluation in the area of international development. Resources have become ever more scarce while expectations for what development assistance should achieve are growing. The search for more efficient systems to measure impact is on. Country governments are also working to improve their own capacities for evaluation, and demand is rising from national and community-based organizations for meaningful participation in the evaluation process as well as for greater voice and more accountability from both aid and development agencies and government.These factors, in addition to greater competition for limited resources in the area of international development, are pushing donors, program participants and evaluators themselves to seek more rigorous – and at the same time flexible – systems to monitor and evaluate development and humanitarian interventions.However, many current approaches to M&E are unable to address the changing structure of development assistance and the increasingly complex environment in which it operates. Operational challenges (for example, limited time, insufficient resources and poor data quality) as well as methodological challenges that impact on the quality and timeliness of evaluation exercises have yet to be fully overcome

    ALT-C 2010 - Conference Introduction and Abstracts

    Get PDF
    corecore