119 research outputs found

    Segmentation of Retinal Low-Cost Optical Coherence Tomography Images using Deep Learning

    Full text link
    The treatment of age-related macular degeneration (AMD) requires continuous eye exams using optical coherence tomography (OCT). The need for treatment is determined by the presence or change of disease-specific OCT-based biomarkers. Therefore, the monitoring frequency has a significant influence on the success of AMD therapy. However, the monitoring frequency of current treatment schemes is not individually adapted to the patient and therefore often insufficient. While a higher monitoring frequency would have a positive effect on the success of treatment, in practice it can only be achieved with a home monitoring solution. One of the key requirements of a home monitoring OCT system is a computer-aided diagnosis to automatically detect and quantify pathological changes using specific OCT-based biomarkers. In this paper, for the first time, retinal scans of a novel self-examination low-cost full-field OCT (SELF-OCT) are segmented using a deep learning-based approach. A convolutional neural network (CNN) is utilized to segment the total retina as well as pigment epithelial detachments (PED). It is shown that the CNN-based approach can segment the retina with high accuracy, whereas the segmentation of the PED proves to be challenging. In addition, a convolutional denoising autoencoder (CDAE) refines the CNN prediction, which has previously learned retinal shape information. It is shown that the CDAE refinement can correct segmentation errors caused by artifacts in the OCT image.Comment: Accepted for SPIE Medical Imaging 2020: Computer-Aided Diagnosi

    U-Net and its variants for medical image segmentation: theory and applications

    Full text link
    U-net is an image segmentation technique developed primarily for medical image analysis that can precisely segment images using a scarce amount of training data. These traits provide U-net with a very high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in all major image modalities from CT scans and MRI to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. As the potential of U-net is still increasing, in this review we look at the various developments that have been made in the U-net architecture and provide observations on recent trends. We examine the various innovations that have been made in deep learning and discuss how these tools facilitate U-net. Furthermore, we look at image modalities and application areas where U-net has been applied.Comment: 42 pages, in IEEE Acces

    Active contour method for ILM segmentation in ONH volume scans in retinal OCT

    Get PDF
    The optic nerve head (ONH) is affected by many neurodegenerative and autoimmune inflammatory conditions. Optical coherence tomography can acquire high-resolution 3D ONH scans. However, the ONH's complex anatomy and pathology make image segmentation challenging. This paper proposes a robust approach to segment the inner limiting membrane (ILM) in ONH volume scans based on an active contour method of Chan-Vese type, which can work in challenging topological structures. A local intensity fitting energy is added in order to handle very inhomogeneous image intensities. A suitable boundary potential is introduced to avoid structures belonging to outer retinal layers being detected as part of the segmentation. The average intensities in the inner and outer region are then resealed locally to account for different brightness values occurring among the ONH center. The appropriate values for the parameters used in the complex computational model are found using an optimization based on the differential evolution algorithm. The evaluation of results showed that the proposed framework significantly improved segmentation results compared to the commercial solution

    Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

    Full text link
    [EN] Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 +/- 2.59 and 1.90 +/- 0.91 mu m is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 +/- 1.25 mu m is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Conclusions: Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.Animal experiment permission was granted by the Danish Animal Experimentation Council (license number: 2017-15-020101213). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This work has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant agreement No. 732613 (GALAHAD Project), the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869 and GVA through project PROMETEO/2019/109.Morales, S.; Colomer, A.; Mossi GarcĂ­a, JM.; Del Amor, R.; Woldbye, D.; Klemp, K.; Larsen, M.... (2021). Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks. Computer Methods and Programs in Biomedicine. 198:1-14. https://doi.org/10.1016/j.cmpb.2020.105788S11419

    U-net and its variants for medical image segmentation: A review of theory and applications

    Get PDF
    U-net is an image segmentation technique developed primarily for image segmentation tasks. These traits provide U-net with a high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in nearly all major image modalities, from CT scans and MRI to Xrays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. Given that U-net’s potential is still increasing, this narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends. We also discuss the many innovations that have advanced in deep learning and discuss how these tools facilitate U-net. In addition, we review the different image modalities and application areas that have been enhanced by U-net

    GAN-Based Super-Resolution And Segmentation Of Retinal Layers In Optical Coherence Tomography Scans

    Get PDF
    Optical Coherence Tomography (OCT) has been identified as a noninvasive and cost-effective imaging modality for identifying potential biomarkers for Alzheimer\u27s diagnosis and progress detection. Current hypotheses indicate that retinal layer thickness, which can be assessed via OCT scans, is an efficient biomarker for identifying Alzheimer\u27s disease. Due to factors such as speckle noise, a small target region, and unfavorable imaging conditions manual segmentation of retina layers is a challenging task. Therefore, as a reasonable first step, this study focuses on automatically segmenting retinal layers to separate them for subsequent investigations. Another important challenge commonly faced is the lack of clarity of the layer boundaries in retina OCT scans, which compels the research of super-resolving the images for improved clarity. Deep learning pipelines have stimulated substantial progress for the segmentation tasks. Generative adversarial networks (GANs) are a prominent field of deep learning which achieved astonishing performance in semantic segmentation. Conditional adversarial networks as a general-purpose solution to image-to-image translation problems not only learn the mapping from the input image to the output image but also learn a loss function to train this mapping. We propose a GAN-based segmentation model and evaluate incorporating popular networks, namely, U-Net and ResNet, in the GAN architecture with additional blocks of transposed convolution and sub-pixel convolution for the task of upscaling OCT images from low to high resolution by a factor of four. We also incorporate the Dice loss as an additional reconstruction loss term to improve the performance of this joint optimization task. Our best model configuration empirically achieved the Dice coefficient of 0.867 and mIOU of 0.765
    • …
    corecore