608 research outputs found

    Exploring Human Vision Driven Features for Pedestrian Detection

    Full text link
    Motivated by the center-surround mechanism in the human visual attention system, we propose to use average contrast maps for the challenge of pedestrian detection in street scenes due to the observation that pedestrians indeed exhibit discriminative contrast texture. Our main contributions are first to design a local, statistical multi-channel descriptorin order to incorporate both color and gradient information. Second, we introduce a multi-direction and multi-scale contrast scheme based on grid-cells in order to integrate expressive local variations. Contributing to the issue of selecting most discriminative features for assessing and classification, we perform extensive comparisons w.r.t. statistical descriptors, contrast measurements, and scale structures. This way, we obtain reasonable results under various configurations. Empirical findings from applying our optimized detector on the INRIA and Caltech pedestrian datasets show that our features yield state-of-the-art performance in pedestrian detection.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    A Hybrid Real-Time Vision-Based Person Detection Method

    Full text link
    [EN] In this paper, we introduce a hybrid real-time method for vision-based pedestrian detection made up by the sequential combination of two basic methods applied in a coarse to fine fashion. The proposed method aims to achieve an improved balance between detection accuracy and computational load by taking advantage of the strengths of these basic techniques. Haar-like features combined with Boosting techniques, which have been demonstrated to provide rapid but not accurate enough results in human detection, are used in the first stage to provide a preliminary candidate selection in the scene. Then, feature extraction and classification methods, which present high accuracy rates at expenses of a higher computational cost, are applied over boosting candidates providing the final prediction. Experimental results show that the proposed method performs effectively and efficiently, which supports its suitability for real applications.This work is supported by CASBLIP project 6-th FP\cite{RefCASBLIP}. The authors acknowledge the support of the Technological Institute of Optics, Colour and Imaging of Valencia - AIDO. Dr. Samuel Morillas acknowledges the support of Generalitat Valenciana under grant GVPRE/2008/257 and Universitat Politècnica de València under grant Primeros Proyetos de Investigación 13202. }Oliver Moll, J.; Albiol Colomer, A.; Morillas, S.; Peris Fajarnes, G. (2011). A Hybrid Real-Time Vision-Based Person Detection Method. Waves. 86-95. http://hdl.handle.net/10251/57676S869

    Histogram of Oriented Phase and Gradient (HOPG) Descriptor for Improved Pedestrian Detection

    Get PDF
    This paper presents a new pedestrian detection descriptor named Histogram of Oriented Phase and Gradient (HOPG) based on a combination of the Histogram of Oriented Phase (HOP) features and the Histogram of Oriented Gradient features (HOG). The proposed descriptor extracts the image information using both the gradient and phase congruency concepts. Although the HOG based method has been widely used in the human detection systems, it lacks to deal effectively with the images impacted by the illumination variations and cluttered background. By fusing HOP and HOG features, more structural information can be identified and localized in order to obtain more robust and less sensitive descriptors to lighting variations. The phase congruency information and the gradient of each pixel in the image are extracted with respect to its neighborhood. Histograms of the phase congruency and the gradients of the local segments in the image are computed with respect to its orientations. These histograms are concatenated to construct the HOPG descriptor. The performance evaluation of the proposed descriptor was performed using INRIA and DaimlerChrysler datasets. A linear support vector machine (SVM) classifier is used to train the pedestrians. The experimental results show that the human detection system based on the proposed features has less error rates and better detection performance over a set of state of the art feature extraction methodologies

    Boosted Random ferns for object detection

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.Peer ReviewedPostprint (author's final draft

    Night time pedestrian detection for Advanced Driving Assistance Systems (ADAS) using near infrared images

    Get PDF
    From last decade, Safety plays a major role in automobile industry, which results in the invention of various safety measures such as air bags, central locking system, automatic breaking system, traffic signal detection etc. In such case pedestrian detection in night vision is one of the vital issues in advanced driving assistance systems. The main aim of the night vision systems is to avoid collision of vehicles with the pedestrians while driving on roads. It is very much important in night time, due to the varying light conditions it is very difficult to detect a pedestrian. With the presentation of night vision systems another sort of driver support is achieved, which can compensate the weaknesses of the human visual system after shutdown of sunlight. A NIR (Near Infrared) camera is used in this system to take images of a night scene. As there are large intra class variations in the pedestrian poses, a tree structured classifier is proposed here to handle the problem by training it with different subset of images and different sizes. This research work discusses about combination of Haar-Cascade and HOG-SVM (Histogram of Oriented Gradients-Support Vector Machine) for classification and validation. Haar-Cascade is trained such that to classify the full body of humans which eliminates most of the non-pedestrian regions. For refining the pedestrians after detection, a part based SVM classifier with HOG features is used. Upper and lower body part HOG features of the pedestrians are used for part based validation of detected bounding boxes. A full body validation scheme is also implemented using HOG-SVM when any one of the part based validation does not validate that particular part. Combination of the different types of complementary features yields better results. Experiments on test images determines that the proposed pedestrian detection system has a high detection rate and low false alarm rate since it works on part based validation process
    corecore