2,461 research outputs found

    Information Theoretic Authentication and Secrecy Codes in the Splitting Model

    Full text link
    In the splitting model, information theoretic authentication codes allow non-deterministic encoding, that is, several messages can be used to communicate a particular plaintext. Certain applications require that the aspect of secrecy should hold simultaneously. Ogata-Kurosawa-Stinson-Saido (2004) have constructed optimal splitting authentication codes achieving perfect secrecy for the special case when the number of keys equals the number of messages. In this paper, we establish a construction method for optimal splitting authentication codes with perfect secrecy in the more general case when the number of keys may differ from the number of messages. To the best knowledge, this is the first result of this type.Comment: 4 pages (double-column); to appear in Proc. 2012 International Zurich Seminar on Communications (IZS 2012, Zurich

    A Robust Image Hashing Algorithm Resistant Against Geometrical Attacks

    Get PDF
    This paper proposes a robust image hashing method which is robust against common image processing attacks and geometric distortion attacks. In order to resist against geometric attacks, the log-polar mapping (LPM) and contourlet transform are employed to obtain the low frequency sub-band image. Then the sub-band image is divided into some non-overlapping blocks, and low and middle frequency coefficients are selected from each block after discrete cosine transform. The singular value decomposition (SVD) is applied in each block to obtain the first digit of the maximum singular value. Finally, the features are scrambled and quantized as the safe hash bits. Experimental results show that the algorithm is not only resistant against common image processing attacks and geometric distortion attacks, but also discriminative to content changes

    Approximating Dynamic Time Warping and Edit Distance for a Pair of Point Sequences

    Get PDF
    We give the first subquadratic-time approximation schemes for dynamic time warping (DTW) and edit distance (ED) of several natural families of point sequences in Rd\mathbb{R}^d, for any fixed d1d \ge 1. In particular, our algorithms compute (1+ε)(1+\varepsilon)-approximations of DTW and ED in time near-linear for point sequences drawn from k-packed or k-bounded curves, and subquadratic for backbone sequences. Roughly speaking, a curve is κ\kappa-packed if the length of its intersection with any ball of radius rr is at most κr\kappa \cdot r, and a curve is κ\kappa-bounded if the sub-curve between two curve points does not go too far from the two points compared to the distance between the two points. In backbone sequences, consecutive points are spaced at approximately equal distances apart, and no two points lie very close together. Recent results suggest that a subquadratic algorithm for DTW or ED is unlikely for an arbitrary pair of point sequences even for d=1d=1. Our algorithms work by constructing a small set of rectangular regions that cover the entries of the dynamic programming table commonly used for these distance measures. The weights of entries inside each rectangle are roughly the same, so we are able to use efficient procedures to approximately compute the cheapest paths through these rectangles

    Categoric aspects of authentication

    Get PDF
    [no abstract available

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications
    corecore