13 research outputs found

    Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'.</p> <p>Methods</p> <p>The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples.</p> <p>Results</p> <p>For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684.</p> <p>Conclusions</p> <p>Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals.</p

    Machine Learning in Fetal Cardiology: What to Expect

    Get PDF
    In fetal cardiology, imaging (especially echocardiography) has demonstrated to help in the diagnosis and monitoring of fetuses with a compromised cardiovascular system potentially associated with several fetal conditions. Different ultrasound approaches are currently used to evaluate fetal cardiac structure and function, including conventional 2-D imaging and M-mode and tissue Doppler imaging among others. However, assessment of the fetal heart is still challenging mainly due to involuntary movements of the fetus, the small size of the heart, and the lack of expertise in fetal echocardiography of some sonographers. Therefore, the use of new technologies to improve the primary acquired images, to help extract measurements, or to aid in the diagnosis of cardiac abnormalities is of great importance for optimal assessment of the fetal heart. Machine leaning (ML) is a computer science discipline focused on teaching a computer to perform tasks with specific goals without explicitly programming the rules on how to perform this task. In this review we provide a brief overview on the potential of ML techniques to improve the evaluation of fetal cardiac function by optimizing image acquisition and quantification/segmentation, as well as aid in improving the prenatal diagnoses of fetal cardiac remodeling and abnormalities

    N on - Invasive Feto - Maternal Well - Being Monitoring: A Review of Methods

    Get PDF

    A Novel Clinical Decision Support System Using Improved Adaptive Genetic Algorithm for the Assessment of Fetal Well-Being

    Get PDF
    A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG

    A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction

    Get PDF
    Non-invasive fetal electrocardiography appears to be one of the most promising fetal monitoring techniques during pregnancy and delivery nowadays. This method is based on recording electrical potentials produced by the fetal heart from the surface of the maternal abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are other interference signals in the abdominal recording that need to be filtered. The biggest challenge in designing filtration methods is the suppression of the maternal electrocardiographic signal. This study focuses on the extraction of fetal electrocardiographic signal from abdominal recordings using a combination of independent component analysis, recursive least squares, and ensemble empirical mode decomposition. The method was tested on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was performed by the assessment of the accuracy of fetal QRS complexes detection and the quality of fetal heart rate determination. The effectiveness of the method was measured by means of the statistical parameters as accuracy, sensitivity, positive predictive value, and F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database, accuracy higher than 80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75% [95% confidence interval: 91.19-93.88%], sensitivity 95.09% [95% confidence interval: 93.68-96.03%], positive predictive value 96.36% [95% confidence interval: 95.05-97.17%] and F1-score 95.69% [95% confidence interval: 94.83-96.35%]. When testing on the Physionet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25 recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44-81.85%], sensitivity 81.79% [95% confidence interval: 76.59-85.43%], positive predictive value 87.16% [95% confidence interval: 81.95-90.35%] and F1-score 84.08% [95% confidence interval: 80.75-86.64%]. Moreover, the non-invasive ST segment analysis was carried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total of 12 records (mean values mu < 0.1 and values of +/- 1.96 sigma < 0.1).Web of Science168art. no. e025615

    Intelligent Pattern Analysis of the Foetal Electrocardiogram

    Get PDF
    The aim of the project on which this thesis is based is to develop reliable techniques for foetal electrocardiogram (ECG) based monitoring, to reduce incidents of unnecessary medical intervention and foetal injury during labour. World-wide electronic foetal monitoring is based almost entirely on the cardiotocogram (CTG), which is a continuous display of the foetal heart rate (FHR) pattern together with the contraction of the womb. Despite the widespread use of the CTG, there is no significant improvement in foetal outcome. In the UK alone it is estimated that birth related negligence claims cost the health authorities over £400M per-annum. An expert system, known as INFANT, has recently been developed to assist CTG interpretation. However, the CTG alone does not always provide all the information required to improve the outcome of labour. The widespread use of ECG analysis has been hindered by the difficulties with poor signal quality and the difficulties in applying the specialised knowledge required for interpreting ECG patterns, in association with other events in labour, in an objective way. A fundamental investigation and development of optimal signal enhancement techniques that maximise the available information in the ECG signal, along with different techniques for detecting individual waveforms from poor quality signals, has been carried out. To automate the visual interpretation of the ECG waveform, novel techniques have been developed that allow reliable extraction of key features and hence allow a detailed ECG waveform analysis. Fuzzy logic is used to automatically classify the ECG waveform shape using these features by using knowledge that was elicited from expert sources and derived from example data. This allows the subtle changes in the ECG waveform to be automatically detected in relation to other events in labour, and thus improve the clinicians position for making an accurate diagnosis. To ensure the interpretation is based on reliable information and takes place in the proper context, a new and sensitive index for assessing the quality of the ECG has been developed. New techniques to capture, for the first time in machine form, the clinical expertise / guidelines for electronic foetal monitoring have been developed based on fuzzy logic and finite state machines, The software model provides a flexible framework to further develop and optimise rules for ECG pattern analysis. The signal enhancement, QRS detection and pattern recognition of important ECG waveform shapes have had extensive testing and results are presented. Results show that no significant loss of information is incurred as a result of the signal enhancement and feature extraction techniques

    Algorithms and systems for home telemonitoring in biomedical applications

    Get PDF
    During the past decades, the interest of the healthcare community shifted from the simple treatment of the diseases towards the prevention and maintenance of a healthy lifestyle. This approach is associated to a reduced cost for the Health Systems, having to face the constantly increased expenditures due to the reduced mortality for chronical diseases and to the progressive population ageing. Nevertheless, the high costs related to hospitalization of patients for monitoring procedures that could be better performed at home hamper the full implementation of this approach in a traditional way. Information and Communication Technology can provide a solution to implement a care model closer to the patient, crossing the physical boundaries of the hospitals and thus allowing to reach also those patients that, for a geographical or social condition, could not access the health services as other luckier subjects. This is the case of telemonitoring systems, whose aim is that of providing monitoring services for some health-related parameters at a distance, by means of custom-designed electronic devices. In this thesis, the specific issues associated to two telemonitoring applications are presented, along with the proposed solutions and the achieved results. The first telemonitoring application considered is the fetal electrocardiography. Non-invasive fetal electrocardiography is the recording of the fetal heart electrical activity using electrodes placed on the maternal abdomen. It can provide important diagnostic parameters, such as the beat-to-beat heart rate variability, whose recurring analysis would be useful in assessing and monitoring fetal health during pregnancy. Long term electrocardiographic monitoring is sustained by the absence of any collateral effects for both the mother and the fetus. This application has been tackled from several perspectives, mainly acquisition and processing. From the acquisition viewpoint a study on different skin treatments, disposable commercial electrodes and textile electrodes has been performed with the aim of improving the signal acquisition quality, while simplifying the measurement setup. From the processing viewpoint, different algorithms have been developed to allow extracting the fetal ECG heart rate, starting from an on-line ICA algorithm or exploiting a subtractive approach to work on recordings acquired with a reduced number of electrodes. The latter, took part to the international "Physionet/Computing in Cardiology Challenge" in 2013 entering into the top ten best-performing open-source algorithms. The improved version of this algorithm is also presented, which would mark the 5th and 4th position in the final ranking related to the fetal heart rate and fetal RR interval measurements performance, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. The research in this field has been carried out in collaboration with the Pediatric Cardiology Unit of the Hospital G. Brotzu in Cagliari, for the acquisition of non-invasive fetal ECG signals from pregnant voluntary patients. The second telemonitoring application considered is the telerehabilitation of the hand. The execution of rehabilitation exercises has been proven to be effective in recovering hand functionality in a wide variety of invalidating diseases, but the lack of standardization and continuous medical control cause the patients neglecting this therapeutic procedures. Telemonitoring the rehabilitation sessions would allow the physician to closely follow the patients' progresses and compliance to the prescribed adapted exercises. This application leads to the development of a sensorized telerehabilitation system for the execution and objective monitoring of therapeutic exercises at the patients' home and of the telemedicine infrastructure that give the physician the opportunity to monitor patients' progresses through parameters summarizing the patients' performance. The proposed non-CE marked medical device, patent pending, underwent a clinical trial, reviewed and approved by the Italian Public Health Department, involving 20 patients with Rheumatoid Arthritis and 20 with Systemic Sclerosis randomly assigned to the experimental or the control arm, enrolled for 12 weeks in a home rehabilitation program. The trial, carried out with the collaboration of the Rheumatology Department of the Policlinico Universitario of Cagliari, revealed promising results in terms of hand functionality recovering, highlighting greater improvements for the patients enrolled in the experimental arm, that use the proposed telerehabilitation system, with respect to those of the control arm, which perform similar rehabilitation exercises using common objects

    Midwives' decision making during normal labour and birth

    Get PDF
    Aim and research question The aim of this thesis is to explore midwifery decision making during normal labour and birth. The research question posed is: What influences midwives’ decision making during normal labour and birth? Background Normal physiological birth leads to improved health outcomes in every possible aspect: physiologically, mentally, emotionally and socially yet it is extremely well documented that rates of medical intervention in childbirth are increasing. How midwives make decisions and what influences those decisions during normal labour and birth might illuminate why this is happening. There is a dearth of research exploring midwifery decision making in clinical practice more widely but in particular decision making during normal labour and birth. Methods and methodology An Interpretivist epistemology was chosen and a case-study approach selected which included data collection at 2 case-sites. Three focus group interviews were conducted at each case site labour suite. Eleven observational visits were made at case site 1 (total 92 hours) and ten observational visits (total 84 hours) were made at case site 2. In addition two midwives at case site 1 completed a decision making diary. A documentary review was also conducted. Ethical principles of conducting research were adhered to, including gaining ethical approval. Data was analysed using thematic and cross-case analysis. Findings and discussion There were five main themes identified: ‘Woman focussed determinants’ ‘Midwifery specific influences’, ‘environmental and organisational factors’, and ‘intra and inter-professional influences’. The overarching, central theme was the ‘hybrid midwife’. Each theme contained categories. Within the overarching theme, midwives in the case study environments were operating in dualistic belief systems in effect being ‘hybrid midwives’. Some functioning as ‘being with’ midwives, embracing a social model of childbirth and some operating as ‘doing to’ midwives, embracing a biomedical model. In normal, straightforward labour and birth, intuitive- humanistic, phenomenological decision making processes tend to be utilised. However, this study also revealed that in busy labour suite settings, there appeared to be, at times, a dominance of women with complex needs. In higher risk situations hypothetic-deductive, rationalistic decision making models were reported to be used. It was apparent that some midwives struggled to function in this way, in that some ‘being with’ midwives were under organisational pressure to work as ‘doing to’ midwives, even when caring for women in normal childbirth. In addition, ‘low risk’ women’s choices and decisions were sometimes not supported due to the sheer busyness of the labour suite. Arising from the theme of ‘the hybrid midwife’ I proposed the more constructive concept of the dynamic midwife, who could balance the challenges of decision making when caring for both low risk and high risk childbearing women. Consequently the situated, dynamic midwifery decision making framework: Focus on straightforward labour and birth was developed as a result of this study. The model consists of two figures, the first based on empirical findings from this study, the second based on a continuum of existing decision making theories, models and influencing factors. This model could be utilised by midwives to enhance their knowledge regarding different types of clinical decision making approaches that can be used in normal childbirth. Conclusions Decision making in normal labour and birth is an extremely complex phenomenon, influenced by a multitude of factors as exemplified by the themes identified in the findings. Midwives have to frequently balance decision making strategies that are appropriate for childbearing women in all risk categories. Further recommendations have been made for research, practice and education to improve knowledge of midwives’ decision making. The situated, dynamic midwifery decision making framework: Focus on straightforward labour and birth would benefit from evaluation in educational settings
    corecore