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A B S T R A C T   

Introduction: Uterine contractions during labour constrict maternal blood flow and oxygen delivery to the 
developing baby, causing transient hypoxia. While most babies are physiologically adapted to withstand such 
intrapartum hypoxia, those exposed to severe hypoxia or with poor physiological reserves may experience 
neurological injury or death during labour. Cardiotocography (CTG) monitoring was developed to identify babies 
at risk of hypoxia by detecting changes in fetal heart rate (FHR) patterns. CTG monitoring is in widespread use in 
intrapartum care for the detection of fetal hypoxia, but the clinical utility is limited by a relatively poor positive 
predictive value (PPV) of an abnormal CTG and significant inter and intra observer variability in CTG inter-
pretation. Clinical risk and human factors may impact the quality of CTG interpretation. Misclassification of CTG 
traces may lead to both under-treatment (with the risk of fetal injury or death) or over-treatment (which may 
include unnecessary operative interventions that put both mother and baby at risk of complications). 
Machine learning (ML) has been applied to this problem since early 2000 and has shown potential to predict fetal 
hypoxia more accurately than visual interpretation of CTG alone. To consider how these tools might be translated 
for clinical practice, we conducted a review of ML techniques already applied to CTG classification and identified 
research gaps requiring investigation in order to progress towards clinical implementation. 
Materials and method: We used identified keywords to search databases for relevant publications on PubMed, 
EMBASE and IEEE Xplore. We used Preferred Reporting Items for Systematic Review and Meta-Analysis for 
Scoping Reviews (PRISMA-ScR). Title, abstract and full text were screened according to the inclusion criteria. 
Results: We included 36 studies that used signal processing and ML techniques to classify CTG. Most studies used 
an open-access CTG database and predominantly used fetal metabolic acidosis as the benchmark for hypoxia 
with varying pH levels. Various methods were used to process and extract CTG signals and several ML algorithms 
were used to classify CTG. We identified significant concerns over the practicality of using varying pH levels as 
the CTG classification benchmark. Furthermore, studies needed to be more generalised as most used the same 
database with a low number of subjects for an ML study. 
Conclusion: ML studies demonstrate potential in predicting fetal hypoxia from CTG. However, more diverse 
datasets, standardisation of hypoxia benchmarks and enhancement of algorithms and features are needed for 
future clinical implementation.   

1. Introduction 

Fetal hypoxia occurs when there is a lack of oxygen supply to the 
baby during labour. Fetal hypoxic injury can cause a wide range of 
devastating damage, such as intrapartum stillbirth, asphyxia, neonatal 
encephalopathy, neonatal death and neurodevelopmental impairment 
[1–5]. In European hospitals, the overall incidence of fetal hypoxia 
ranges from 0.06% to 2.8% [6]. Globally, it is estimated that 

intrapartum fetal hypoxia leads to approximately 1.3 million stillbirths 
during childbirth, 0.9 million neonatal deaths, and 0.6 to 1 million in-
stances of long-term disability resulting from neonatal hypoxic-ischemic 
encephalopathy every year [7,8]. Therefore, this issue should be 
addressed to prevent further cases of hypoxia. 

A degree of hypoxic stress can be anticipated during labour when 
uterine contractions (UC) may impair maternal perfusion of the 
placenta, thus compromising oxygen delivery to the fetus. The primary 
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challenge clinicians face is identifying that small number of babies 
where the natural physiological protective mechanisms fail to 
compensate for the hypoxic stress of labour, contributing to significant 
cerebral injury [9]. Fetal monitoring during labour is crucial to prevent 
the devastating effects of fetal hypoxia on babies and families. It must 
also be sufficiently discriminatory to minimise unnecessary iatrogenic 
interventions in the form of surgical birth (caesarean section) that carry 
their own risks to both mother and baby [10]. 

Cardiotocography (CTG) is an electronic fetal monitoring tool 
commonly used to detect fetal hypoxia in the womb [11]. CTG records 
two measurements: fetal heart rate (FHR) and UC [12]. In standard 
clinical use, CTG recordings are visually interpreted by clinicians using 
these criteria: baseline, variability, accelerations and decelerations. 
Based on these indicators, clinicians will categorise the recording; in the 
UK the NICE guidelines use the classifiers reassuring, non-reassuring and 
pathological [13–15]. Depending on the classification, clinicians may 
take steps to ameliorate hypoxia (including change in maternal position, 
intravenous fluids and tocolysis to reduce contractions) or expedite birth 
via assisted vaginal birth or caesarean section, to reduce the adverse 
effect on new-borns while ensuring the safety of the mother. CTG is 
widely used in maternity care in most high-resource settings and is 
usually limited to women with existing risk factors for fetal hypoxia [16, 
17]. 

Since CTG was first introduced in the 1950s without randomised 
clinical trials, the interobserver variation in visual interpretation of CTG 
amongst clinicians has been consistently shown to result in a delayed 
response due to the time taken to achieve an agreement [18–23]. 
Furthermore, some decision-making can be subjective and with some 
level of ambiguity which may contribute to discrepancies in CTG 
interpretation [24]. 

Multiple studies have reported increased caesarean section rates 
where CTG is used. At least some of these interventions are presumed to 
have been unnecessary - there has been a fivefold increase in caesarean 
sections, while cerebral palsy prevalence remains the same [25]. 
Conversely, false-negative cases occur when a fetus is misidentified as 
normal (healthy), resulting in birth injury with damaging results for 
newborns and families [2,26]. Obstetrics and gynaecology account for 
50% of the total value of clinical negligence claims in the UK (£2.3 
billion), with CTG interpretation alone or in combination with 
mismanagement of labour and cerebral palsy contributing to a large 
proportion of claims [27,28]. This co-existence of over and 
under-intervention demonstrates that CTG, as currently implemented, is 
neither sensitive enough to reliably detect fetal hypoxia nor specific 
enough to avoid unnecessary surgical birth. 

One approach to tackle the shortcomings of visual CTG has been the 
introduction of computerised CTG analysis, theoretically standardising 
interpretations and allowing a quicker response to compromised fetuses. 
A randomised controlled trial and retrospective studies have shown that 
computerised CTG decision support could improve the quality of in-
terpretations while minimising decision-making time [29–31]. A sub-
sequent meta-analysis of six studies showed no significant improvement 
in fetal well-being between visual and computerised CTG [12]. This 
highlights the limitations of computerised analysis based on existing 
visual interpretation parameters and also the contextual barriers to 
implementing effective novel fetal monitoring strategies [32]. 

Machine learning (ML) is a discipline of artificial intelligence that 
has received increasing attention within medical research due to its 
potential to support decision-making for clinicians. ML can learn and 
identify patterns from collected data and make predictions [33,34]. 
Researchers who used ML on CTG data have demonstrated promising 
results in predicting and classifying FHR. Existing studies have reported 
a variety of ML models and inconsistent selections of FHR features using 
a range of clinical endpoints - this is likely to have contributed to vari-
able ML performance. 

We aimed to summarise the evidence relating to signal processing, 
feature extraction and ML techniques used on CTG data to detect fetal 

hypoxia. We mapped research gaps within ML approaches to CTG 
interpretation and identified actions that can improve the robustness 
and practicality of clinical implementation of computerised CTG. We 
have adopted a scoping review approach, rather than the more tradi-
tional systematic review, in order to summarise a high-level overview of 
this field with the technical and implementation challenges for the 
application of ML to analyse the CTG [35]. 

2. Methods 

2.1. Search strategy 

A full detailed protocol of this study was published in Open Science 
Framework (https://osf.io/) – Machine Learning for Cardiotocography 
Data to Classify Fetal Outcome [36]. In brief, we conducted this review 
based on Arkesy and O’Malley [37], Levac et al. [38] and the Joanna 
Briggs Institute recommendations [39]. We conducted a comprehensive 
search on electronic databases such as PubMed, EMBASE and IEEE 
Xplorefor relevant literature published from January 1, 2000 to 
September 1, 2023. The search strategy MeSH keywords for this study 
were support vector machine, random forest, k-nearest neighbours, 
extreme gradient boosting, decision trees, naive Bayes, artificial neural 
network, convoluted neural network, adaptive boosting, linear 
discriminant analysis, machine learning, artificial Intelligence, deep 
learning, genetic algorithm, cardiotocography and fetal heart rate. No 
restriction was applied during the search and the keyword combinations 
are listed in supplementary. The search results were imported to Covi-
dence (https://www.covidence.org/), where duplicate references were 
removed. 

2.2. Inclusion and exclusion criteria 

The inclusion criteria for this scoping review were: 1) studies ana-
lysed raw intrapartum CTG during labour using ML techniques, 2) 
studies written in English (reviewers are not familiar with any other 
languages), 3) studies published from the year 2000 onwards, 4) journal 
articles and 5) fetus without intrauterine growth restriction (IUGR). The 
exclusion criteria for this study are: 1) studies that analysed antenatal 
(prelabour) CTG, 2) animal studies, 3) studies that did not use ML 
techniques, 4) studies that analysed electrocardiogram data and com-
binations of data with CTG, 5) studies that did not specify if CTG re-
cordings are during intrapartum or antenatal, 6) studies with less than 
twenty subjects (low data sample will contribute to model overfitting, 
leading to a biased model), 7) conference papers, 8) studies with fetal 
IUGR only and 9) studies without clinical endpoint for classifying CTG, 
in order to ensure that the results of the included studies are clinically 
applicable (Table 1). 

2.3. Study selection 

The first reviewer (FF) identified relevant publications based on the 
title and abstract according to the inclusion and exclusion criteria. Next, 
full-text screening was conducted to refine inclusion and exclusion 
criteria further. A second reviewer (RT) reviewed 10% of the articles to 
ensure they met eligibility criteria. The discrepancy between reviewers 
on article eligibility was discussed to reach an agreement. 

2.4. Data extraction 

Eligible studies that meet the inclusion criteria went through data 
charting where results from articles were summarised based on the 
author(s), publication year, authors’ background, data set and type of 
data used and geographical regions of the primary institution. We 
extracted the following study characteristics: number of participants for 
both normal and abnormal FHR, maternal risk factors/condition, the 
standard used for outcome definition, model classifiers, features used, 
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number of features, type of features, validation methods, data pre- 
processing techniques, model interpretability and performance mea-
sures. Information regarding the risk of bias was also extracted. Five 
articles were used as a pilot to test if the form identified all the infor-
mation relevant to the research questions. One reviewer (FF) extracted 
all the information and experts (SS, RT, HW, SL) were consulted when 
there were uncertainties. 

2.5. Quality assessment 

The quality of the study design for selected studies was evaluated 
using the Recommendations for Reporting Machine Learning Analyses 
in Clinical Research [40]. Studies were categorised as 1) sufficient 
(missing one element or none), 2) medium (2 missing elements) and 3) 
insufficient (more than two missing elements). 

2.6. Collating, summarising and reporting the results 

Results from the charting were analysed according to the questions 
predetermined from the protocol mentioned above. Narrative (descrip-
tive) summaries were provided on a qualitative attribute, such as ML 
classifiers used on the CTG dataset. Quantifications were carried out on 
numerical data, such as the number of participants involved in this study 
and the number of classes for ML model development. The results from 
the literature search, screening processes and study selections were re-
ported in a flow diagram based on the PRISMA extension for scoping 
review (Fig. 1) [41]. 

3. Results 

3.1. Studies background 

We included 36 studies with 9923 women in this scoping review that 
met the inclusion and exclusion criteria (Fig. 1). Most of the first authors 
were from China, as shown in Fig. 2. We found that 22 (61.1%) publi-
cations used the same open-access dataset from the Czech Technical 
University in Prague and the University of Brno (CTU-CHB), four 
(12.9%) studies used a mixture of CTU-CHB and in-house dataset and 10 
(27.8%) use in-house only (Table 2) [42]. Various ‘gold standards’ were 
used as surrogate measures for fetal hypoxia, as illustrated in Fig. 3 and 
Table 2, where the majority used metabolic acidosis taken from the 
blood cord (n = 26). In addition, none of the studies incorporated 
clinical factors that could contribute to abnormal CTG readings. Based 
on Table 2, studies used various numbers of positive cases (hypoxic) 

where some of them had the same number of both normal and cases, 
while some had an imbalanced distribution where the cases were much 
less than normal (Fig. 4). 

We assessed the quality of the included studies based on the guide-
lines mentioned above. None of the studies were good as all at least have 
two missing reporting elements. 11 studies were insufficient and 25 
were medium (Table 2). None of the studies calibrated their model or 
published their code for reproducibility. We found that studies extracted 
CTG at different stages of labour - the CTU-CHB database provided the 
last hour of the second stage of labour. One study used the first stage of 
labour, one at the end of labour and others did not provide this infor-
mation in their paper. 

3.2. Signal processing 

As mentioned above, while CTG comprises FHR and UC, some re-
searchers chose to analyse FHR only (n = 26), while others chose FHR in 
combination with UC (n = 10). 

3.2.1. Pre-processing 
Studies adopted various techniques and methods to pre-process CTG 

signals which involves removing artefacts and noise that can reduce 
signal quality. Mother and fetal movements can cause interference 
during recording. Most researchers removed spikes and interpolated 
missing data points. Some researchers filtered out frequencies more than 
0.5Hz because they were considered noise. A detailed method used for 
each study is illustrated in Table 3. Various methods of interpolation, 
mainly linear and cubic spline methods, were used for missing 
recordings. 

3.2.2. Feature extraction 

3.2.2.1. Handcrafted features. The summary of features used by studies 
is in Table 3. Studies predominantly used the International Federation of 
Gynaecology and Obstetrics guidelines (FIGO) as a guide to extract FHR 
[14] (acceleration, deceleration, baseline and variability) which are also 
known as morphological features. Some studies also used features 
defined by the Royal College of Obstetricians and Gynaecologists 
(RCOG) [79] and the National Institute for Health and Care Excellence 
(NICE) [79]. In addition, studies used other signal-based features such as 
time series, frequency domain, linear, and non-linear. Although most 
studies primarily used FHR signals for ML modelling, studies like Pet-
rozziello et al [63] and Ben M’Barek et al. (2023) included UC signals as 
a characteristic for categorising fetal hypoxia. There is an inconsistent 
number and type of feature used between studies. Some justifications 
include using what was used in previous studies, while others did not 
report any reasoning for selecting specific features. However, all studies 
included morphological features outlined by FIGO. 

3.2.2.2. Image-based features. Papers using convoluted neural network 
(CNN) techniques did not extract handcrafted features. Instead, they 
used images of the CTG, either the FHR or both FHR and UC. Studies pre- 
processed raw CTG before feeding the image into CNN to remove noise 
such as abrupt change and interpolate missing values. Some studies split 
the whole CTG of each subject into smaller frames or windows to 
generate multiple samples. For example, studies by Deng et al. [52] and 
Liang et al. (2022) used the same open-source database and split the 
CTG into several frames to increase the sample size (Table 2). 

3.3. ML model development 

3.3.1. Pre-processing and feature engineering 
Most of the datasets used by studies are imbalanced, with more 

normal numbers than abnormal CTG. Nine studies used the Synthetic 
Minority Oversampling and one used the Adaptive Synthetic Sampling 

Table 1 
Summarises the inclusion and exclusion criteria of the included studies.  

Inclusion Criteria Exclusion Criteria 

1) studies analysed raw intrapartum 
CTG during labour using ML 
techniques 

1) studies that analysed antenatal 
(prelabour) 

2) studies written in English 
(reviewers are not familiar with any 
other languages) 

2) animal studies 

3) studies published from the year 
2000 onwards 

3) studies that did not use ML techniques 

4) journal articles 4) studies that analysed electrocardiogram 
data and combinations of data with CTG 

5) fetus without intrauterine growth 
restriction (IUGR) 

5) studies that did not specify if CTG 
recordings are during intrapartum or 
antenatal  
6) studies with less than twenty subjects 
(low data sample will contribute to model 
overfitting, leading to a biased model)  
7) conference papers  
8) studies with fetal IUGR only  
9) studies without clinical endpoint for 
classifying CTG  
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Method to synthetically increase the number of cases to the same level as 
the normal (Table 3). The remaining studies also randomly selected a 
balanced number of normal and cases from resampling, where they split 
the CTG into several segments (Table 3) [73]. However, some studies did 
not mention if the dataset was augmented or if modelling was carried 

out on an imbalanced dataset. This could have an effect on the training 
model and generalisability. For example, if the training set has more 
cases, the model will have more training on the cases and might perform 
poorly when identifying the cases. 

Fig. 1. Illustrates a PRISMA flowchart of the processes of identifying relevant studies in this review.  
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3.3.2. Classifiers 
All studies used supervised learning to classify abnormal CTG and 

clustering. Fig. 5 shows the distribution of classifiers used by included 
studies. Various types of deep learning (neural networks) were also used. 
We found that most studies used support vector machines (SVM). Other 
methods used include decision tree (DT), random forest (RT), k-nearest 
neighbour (KNN), CNN, hierarchical Dirichlet process Gaussian mixture 
model (HDPGM), naïve Bayes (NB), linear discriminant analysis (LDA), 
Fisher LDA (FLDA), generative model (NB and first order Markov-chain 
and maximum a posteriori decision-based method), LSTM, artificial 
neural network (ANN) (also known as multi-level perceptron), ADA-
BOOST and XGBOOST. Some studies used several algorithms and 
compared classification performance between different algorithms, 
while others used only one. Interestingly, three studies combined several 
classifiers in their modelling, such as FLDA with RF and SVM, FLDA with 
RF only, FLDA with SVM only and RF with SVM only [54]. Ensemble 
methods used were the Ensemble Cost-sensitive SVM (ECSVM) [71], 
ADABOOST [64,65], DECORATE and XGBOOST [64]. Details of classi-
fiers used for each study are summarised in Table 3. 

3.3.3. Model validation 
20 studies split their datasets into training and testing sets (hold-out 

validation) for internal validation, while others did not specify the 
methods used for validation. The internal validation method used was 
cross-validation (CV), including predominantly k-fold, followed by 
stratified k-fold, single loop and double loop nested CV. 14 studies split 
and cross-validated their dataset. We found 16 studies that either did not 
perform internal validation or failed to mention it in their publications. 
Only four studies used an external dataset to validate their model per-
formance [43,46,63,69]. Details of internal validation used are sum-
marised in Table 3. 

3.3.4. Performance measures 
Most studies used specificity, sensitivity, and area under the 

receiving operating characteristics curve (AUROC). Other performance 
measures include quality metric, accuracy, quality measure, F-measure, 

weight relative accuracy (WRA), balance error rate (BER), geometric- 
mean, percentage of correct diagnosis, positive predictive value, nega-
tive predicted value, mean square error (MSE), quality metric, quality 
index, false positive rate (FPR), true positive, false positive and Mat-
thew’s correlation coefficient. The number of studies that used each 
performance metric is quantified and illustrated in a bar chart in Fig. 6 
below, and details of the performance measures used are summarised in 
Table 3. Based on Table 3, we plotted the top three common perfor-
mance metrics to compare the relationship between the number of 
positive cases and model performances. Lollipop plots were plotted to 
illustrate the pooled results achieved by studies using sensitivity, Fig. 8 
illustrates specificity, Fig. 9 illustrates AUROC and Fig. 10 illustrates 
accuracy. 

4. Discussion 

This descriptive scoping review draws on 36 studies to summarise 
signal processing and ML techniques applied to CTG data, identify gaps 
in current studies, and guide future research directions. Compared to a 
recent review of ML for intrapartum CTG classification by O’Sullivan 
et al. (2021), our study systematically searched for relevant literature 
and screened them based on eligibility criteria to ensure an unbiased 
selection of pooled studies. We also included a detailed summary of CTG 
signal pre-processing methods, the type of signal features extracted and 
a more detailed summary of ML techniques and results than another 
previous review [80]. Our initial search identified a large number of 
manuscripts reporting the use of machine learning in analysing CTG 
data. Because we are primarily interested in moving to clinical trans-
lation, we included only those studies that linked their machine learning 
to clinical evidence of fetal hypoxia. 

4.1. Study characteristics 

CTGs are used globally, and it is essential for CTGs to provide an 
accurate classification. Most studies (61.1%) used the same open-access 
database, highlighting an urgent need for further open-access CTG 

Fig. 2. Shows the number of publications by the first author’s country of institution.  
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datasets to facilitate external validation and test the generalisability of 
models developed in different settings. As most studies used the open 
access dataset without external validation, the model may overfit the 
population in the Czech Republic, specifically patients that go to the 
hospitals in Prague and Brno. This can result in bias in performance 
when applied to other populations. Out of 36 publications, none of the 
studies adhered to the reporting guidelines was concerning where 
studies did not fully report their experimental design or adhere to the 
best practices for predictive modelling, including validating the model 
on an external dataset based on the Recommendations for Reporting 
Machine Learning Analyses in Clinical Research to ensure high-quality 
reporting and reproducibility [40]. As none of those studies shared 
their codes, researchers should be encouraged to share codes to help 
increase transparency between studies and facilitate work that builds. 

This can help future studies replicate pre-existing work, ensuring 
reproducibility in research and improving existing techniques. Since 
none of the studies publish their codes, CTG studies are not reproducible 
and impede clinical implementation in advancing CTG studies. 
Furthermore, none of the studies calibrated their model. Therefore, they 
cannot be interested as true probability. The medium to low quality of 
studies affects the overall generalisability of this field as it undermines 
the reliability of results achieved and the relevance to real-world 
scenarios. 

Due to the nature of the field, there are fewer cases of hypoxia 
compared to normal, which causes an imbalance (Fig. 4). Training on 
imbalanced data has a profound impact on the performance of models 
by limiting learning experienced by minority classes and causing bias in 
classification models. A few studies synthetically increased their case 

Table 2 
Shows the characteristics of datasets and gold standards used by each study. Studies used variable thresholds when determining metabolic acidosis pH levels, ranging 
from pH less than 7.00 to pH less than 7.20 defined as low pH. The table also shows the proportion number of subject in cases and normal, country of subjects, source of 
dataset and the quality of each study.  

Study 
ID 

Fetal outcome surrogate measure for cases Data Source Country of 
participants 

Number of cases Number of 
normal 

Quality 

[43] Metabolic acidosis (pH < 7.05) CTU-CHB and in 
house 

France and Czech 
Republic 

In house-56 
CTU-CHB -26 

France- 1756 
Czech-446 

Insufficient 

[44] Metabolic acidosis (pH < 7.15) CTU-CHB Czech Republic 105 447 Medium 
[45] Metabolic acidosis (pH ≤ 7.05) or low Apgar or resuscitation 

required 
In-house Spain 17 15 Insufficient 

[46] Metabolic acidosis (pH < 7.05,7.15) CTU-CHB, external, 
in house 

Czech Republic, 
France and UK 

142 1387 Insufficient 

[47] Metabolic acidosis (pH < 7.20) CTU-CHB Czech Republic 177 375 Medium 
[48] Metabolic acidosis (pH ≤ 7.15) CTU-CHB Czech Republic 113 439 Medium 
[49] Metabolic acidosis (pH < 7.2) CTU-CHB Czech Republic 177 375 Medium 
[50] Metabolic acidosis (pH < 7.15) CTU-CHB Czech Republic Did not specify Did not 

specify 
Insufficient 

[51] Metabolic acidosis (pH < 7.15) In-house US 24 60 Medium 
[52] Metabolic acidosis (pH < 7.05) CTU-CHB Czech Republic 44 (106 

segments) 
508 (106 
segments) 

Medium 

[53] Type of delivery (vaginal or caesarean) CTU-CHB Czech Republic 46 506 Medium 
[54] Type of delivery (vaginal or caesarean) CTU-CHB Czech Republic 46 506 Insufficient 
[55] Type of delivery (vaginal or caesarean) CTU-CHB Czech Republic 46 506 Medium 
[56] Type of delivery (vaginal or caesarean) CTU-CHB Czech Republic 18 354 Insufficient 
[57] Metabolic acidosis (pH < 7.1) In house Portugal 20 60 Medium 
[58] Metabolic acidosis (pH < 7.05) CTU-CHB Czech Republic 46 508 Medium 
[59] Metabolic acidosis (pH < 7.2) In-house US 92 92 Medium 
[60] Metabolic acidosis (pH ≤ 7.15) CTU-CHB Czech Republic 105 (2369 

segments) 
447 (2369 
segments) 

Medium 

[61] Apgar and FHR deceleration In-house China 581 52 Medium 
[62] Other: pH lower than 7.20 or Apgar score lower than 7 at 1 min In-house Japan 162 162 Medium 
[63] Metabolic acidosis (pH ≤ 7.05) CTU-CHB, in-house 

and Lyon (external) 
UK, France and 
Czech Republic 

In-house-1065 
External-100 

In-house- 
4249 
External-752 

Medium 

[64] Type of delivery (vaginal or caesarean) In-house Italy Did not specify Did not 
specify 

Insufficient 

[65] Type of delivery (vaginal or caesarean) CTU-CHB Czech Republic 46 506 Insufficient 
[66] Metabolic acidosis (pH < 7.05) In-house France 31 1251 Medium 
[67] Fetal distress: Pathological CTG trace, meconium stain fluid, 

admission to neonatal intensive care unit and prevalence of fetal 
distress in labour in the population 

In-house Italy 42 260 Insufficient 

[68] Base deficit: 12 mmol/L and death or evidence of hypoxic-ischemic 
encephalopathy 

In-house Canada 26 187 Medium 

[69] Metabolic acidosis (pH < 7.15) CTU-CHB and in 
-house 

Czech Republic 113 439 Medium 

[70] Metabolic acidosis (pH = 7.2, 7.05 and 7.1) CTU-CHB Czech Republic pH 7.05 = 88, pH 
7.1 = 122 

unclear Medium 

[71] Type of delivery (vaginal or caesarean) CTU-CHB Czech Republic 27 442 Medium 
[72] Metabolic acidosis (pH < 7.05) CTU-CHB Czech Republic 40 386 Insufficient 
[73] Metabolic acidosis (pH < 7.05) CTU-CHB Czech Republic 40 but 

oversample to 
300 

300 Medium 

[74] Metabolic acidosis (pH < 7.15) CTU-CHB Czech Republic 105 447 Medium 
[75] Metabolic acidosis (pH = 7.15) CTU-CHB Czech Republic 105 477 Medium 
[76] Metabolic acidosis (pH < 7.15) CTU-CHB Czech Republic 105 105 Medium 
[77] Metabolic acidosis (pH < 7.15) CTU-CHB Czech Republic Did not specify Did not 

specify 
Insufficient 

[78] Metabolic acidosis (pH = 7.15) CTU-CHB Czech Republic 113 439 Medium  
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sample to match the number of normal groups, while others did not. 
Oversampling produces better performances for prediction models as 
there are more training data [58,64]. However, synthetically over-
sampling may not represent real-life events and clinical applications. In 
addition, a study demonstrated that the minority group that was syn-
thetically oversampled had a high error rate in generating samples 
where some of the data generated belonged to the majority group [81]. 
Moreover, synthetically balancing data may cause an overfitting and 
may create noisy instances [82,83]. Therefore, future studies should use 

different methods to overcome imbalanced data. Some studies poten-
tially used imbalanced data or failed to report this information. Using 
imbalanced data may influence poor and biased performance for mi-
nority classes due to less training data for cases of hypoxia. 

4.2. Surrogate outcomes 

We identified several clinical endpoints used to diagnose fetal hyp-
oxia at both (Table 1). 26 studies used metabolic acidosis identified by 

Fig. 3. Shows the number of studies that use different gold standards for fetal hypoxia.  

Fig. 4. Shows a dot plot of the percentage of cases in each study.  
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Table 3 
Describes the pre-processing methods, features extracted by studies, which part of CTG analysed, internal validation method used, classifiers and performance 
measures used by each study. The performance measures in the table are the highest achieved by classifiers used. Performance is recorded as percentage with (95% 
Confidence interval (Cl)). Not every study reported 95%Cl. Oversampling columns identify studies that used oversampling technique. LSTM stands for long short-term 
memory, ADABOOST stands for adaptive boosting, XGBOOST stands for extreme gradient boosting and DECORATE stands for Diverse Ensemble Creation by 
Oppositional Relabelling of Artificial Training Examples.  

Study 
ID 

Pre-processing 
method 

Type of features 
extracted 

Part 
of 
CTG 
used 

Clinicians 
as author 
(s) 

Hold-out- 
validation 

Cross 
validation 
method 

ML classifier(s) 
used 

Model 
interpretability 

Performance 
measure(s) 

Oversampling 

[43] Sliding median 
filter and linear 
spline 
interpolation 

FIGO, spectral 
and scale-free 

FHR Both Yes Single loop 
and double 
loop CV 

Sparse-SVM Partially SLCV: 
Sensitivity =
72.0% 
Specificity =
67.0% Balance 
error rate =
70.0% 

No 

[44] Gaussian 
Butterworth 
filtering high 
cut 20Hz and 
low 200Hz 

Image FHR Non- 
clinician 

Yes k-fold 1D-CNN No Accuracy =
99.99% AUROC 
= 91.90% 
F1 = 98.68% 

No 

[45] Dividing signal 
into a set of 
short sliding 
windows (5-min 
segments), 
denoise, and 
linear 
interpolation 

Time, moments 
and frequency 
domain 

FHR Non- 
clinician 

No Leave-one- 
out 

KNN and SVM Partially KNN: 
Accuracy for 
frequency 
domain = 77% 
Accuracy for 
moments = 88% 
Accuracy for 
time domain =
70% 

No 

[46] Linear 
interpolation 

FHR FIGO 
features and UC 

FHR 
and 
UC 

Non- 
clinician 

Yes k-fold LG Yes LG: 
AUROC = 74% 

No 

[47] Cubic Hermite 
interpolation 

morphological, 
time, frequency, 
wavelet 
transform, 
statistical 
analysis, 
nonlinear 

FHR Non- 
clinician 

No k-fold ANN, SVM and 
kNN 

No SVM: 
Accuracy =
77.81% 
Sensitivity =
76.83% 
Specificity =
78.27% 
Geometric mean 
= 77.29% 
F measure =
68.48% 
AUROC = 84% 

Yes 

[48] Outlier 
detection, cubic 
spine 
interpolation 
and segmenting 

morphological, 
time, frequency 

FHR Non- 
clinician 

No None SVM Partially Accuracy =
65.41%, 
Sensitivity =
63.45% 
Specificity =
65.88% 
Quality Index 
(QI) = 64.04% 
F measure =
42.17% 

No 

[49] Segment 
selection, 
outlier detection 
and 
interpolation 

morphological, 
linear, nonlinear 
and frequency 
domain 

FHR Non- 
clinician 

No k-fold SVM, ANN, KNN, 
DT 

Partially Weighted SVM 
Accuracy =
88.58% 
Sensitivity =
77.40% 
Specificity =
93.8% 
QI = 85.23% 
F measure =
81.30% 

No 

[50] Did not specify morphological FHR 
and 
UC 

Non- 
clinician 

No k-fold MLP, bagging, 
RF ands SVM 

Partially RF 
Sensitivity =
96.4% 
Specificity =
98.4% Accuracy 
= 96.7% 
Precision =
96.8% 

Yes 

[51] Segmentation 
feature 
discretization 

NICHD features 
with heart rate 
variability and 

FHR 
and 
UC 

Non- 
clinician 

Yes stratified 
k-fold 

Naive bayes GM 
and first order 
markov chain 

Partially Naive bayes GM: 
Specificity =
82.0% 

No 

(continued on next page) 
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Table 3 (continued ) 

Study 
ID 

Pre-processing 
method 

Type of features 
extracted 

Part 
of 
CTG 
used 

Clinicians 
as author 
(s) 

Hold-out- 
validation 

Cross 
validation 
method 

ML classifier(s) 
used 

Model 
interpretability 

Performance 
measure(s) 

Oversampling 

non-linear 
features 

GM compared to 
SVM 

Sensitivity =
61.0% 

[52] Remove spikes, 
interpolate, and 
segment into 20 
min 

Wavelet packet 
decomposition 
image 

FHR Non- 
clinician 

No k-fold 2DCNN No CNN: 
Accuracy =
95.24% 
Sensitivity =
90.4% 
Specificity =
100% 

No 

[53] Signal 
recordings were 
filtered using a 
6th-order low- 
pass 
Butterworth 
filter. Noise and 
missing values 
were removed 
using cubic 
Hermite spline 
interpolation 

FIGO and NICE, 
morphological, 
time series, 
frequency 
domain, non- 
linear 

FHR Non- 
clinician 

No K-fold RF, deep 
learning and 
fishers linear 
discriminant 
analysis 

No Deep learning 
Sensitivity =
94.0% 
Specificity =
91.0% AUROC 
= 99.0% 
F measure =
100.0% 
mean squared 
error (MSE) =
1.0% 

Yes 

[54] Filtered using a 
finite impulse 
response 6th 
order high pass 
filter and cubic 
Hermite spline 
interpolation 

FIGO, 
Accelerations, 
decelerations 
and non-linear 
features 

FHR Non- 
clinician 

Yes k-fold Fishers Linear 
Discriminant 
Analysis, RF, 
SVM and 
combinations of 
classifiers: 
FLDA_FR_SVM, 
FLDA_RF, 
FLDA_SVM and 
RF_SVM 

Partially Ensemble 
classifier: 
FLDA_RF_SVM- 
sensitivity =
87.0% (95% Cl: 
86.0%, 88.0%), 
Specificity =
90.0% (95% CI: 
89.0%, 91.0%), 
AUROC = 96.0% 
(95% CI: 96.0%, 
97.0%) and MSE 
= 9.0% (95% CI: 
9.0%, 10.0%) 

Yes 

[55] Cubic Hermite 
spline 
interpolation 

Image FHR Non- 
clinician 

Yes Did not 
specify 

1DCNN, RF and 
SVM 

No Window 200: 
Sensitivity =
80.0% 
Specificity =
79.0% 
AUROC = 86.0% 

Yes 

[56] Denoising, 
baseline 
estimation, 
floating line 
computation, 
signal 
detrending and 
signal 
decomposition 

Time domain, 
frequency 
domain, non- 
linear and time- 
variant 

FHR Non- 
clinician 

No K-fold SVM, LDA and 
KNN 

Partially SVM: 
Quality metric 
Including modal 
spectral = 81.7% 

Yes 

[57] Removing noise Time domain, 
frequency 
domain and 
morphological 
features 

FHR Non- 
clinician 

Yes None SVM and KNN Partially SVM: 
Geometric mean 
= 77.1% 
Accuracy =
78.8% 
AUROC = 78.0% 

No 

[58] Artifact 
rejection and 
Hermite spline 
interpolation 

FIGO based, 
time domain, 
frequency 
domain and non- 
linear domain 

FHR Non- 
clinician 

Yes Stratified 
k-fold 

least square SVM Partially 1-Balance Error 
Rate (BER) =
73.1% 
Geometric mean 
= 72.9% 
F measure =
25.2% 
Matthew’s 
correlation 
coefficient 
(MCC) = 28.5% 

Yes 

[59] Smoothing morphological 
and statistical 

FHR 
and 
UC 

Non- 
clinician 

No k-fold NN, RF, 
clustering and 
SVM 

Partially Ensemble 
combination- 
NN, RF, k-means 
and SVM: 
Accuracy =
92.30% 

No 

(continued on next page) 
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Table 3 (continued ) 

Study 
ID 

Pre-processing 
method 

Type of features 
extracted 

Part 
of 
CTG 
used 

Clinicians 
as author 
(s) 

Hold-out- 
validation 

Cross 
validation 
method 

ML classifier(s) 
used 

Model 
interpretability 

Performance 
measure(s) 

Oversampling 

[60] Processing 
outliers and 
removing spike 
using moving 
average 

Image FHR 
and 
UC 

Non- 
clinician 

Yes Did not 
specify 

1D-CNN and 
bidirectional 
Gate 
Recurrent Unit 
(BiGRU) 

No Accuracy =
95.15% 
Sensitivity =
96.20% 
Specificity =
94.09%, 
Precision =
94.21% 
F measure =
95.20% 
AUROC =
99.29% 

No 

[61] Did not specify Image FHR Non- 
clinician 

Yes Did not 
specify 

CNN No AUROC = 72.3% 
Sensitivity =
52.8% 

No 

[62] Denoising, 
smoothing, 
Hilbert 
transform and 
peak detection 
steps 

Number of 
accelerations 
and the total 
area of the 
decelerations in 
each case were 
calculated 

FHR 
and 
UC 

Both No k-fold CNN with 3 
convolution 
layers & LSTM 

No CNN: 
F measure =
67% 

No 

[63] Abrupt 
increases and 
decreases were 
removed and 
missing values 
were linearly 
interpolated. 
The signals were 
then averaged 
down to 0.25Hz 

Image FHR 
and 
UC 

Both Yes k-fold Multimodal CNN 
and stacked 
MCNN 

No Tested on 
external dataset 
MCNN: 
14% FPR =
58.0% (95% CI: 
53.0%–60.0%) 
35%FPR =
80.0% (95% CI: 
75.0%–85.0%) 
Stacked MCNN: 
14%FPR =
55.0% (95% CI: 
53.0%–60.0%) 
and 35%FPR =
83.0% (95% CI: 
75.0%–88.0%) 

No 

[64] Cubic spline 
interpolation 

FIGO, time 
domain, 
frequency 
domain and non- 
linear features 

FHR Non- 
clinician 

No k-fold DT, ADABOOST, 
RF, Gradient 
boosted tree and 
DECORATE 

Yes RF: 
Accuracy =
91.1%Precision 
= 90.0% 
Sensitivity =
92.2% and 
AUROC = 96.7% 

Yes 

[65] Sliding mean, 
6th order 
Butterworth 
filter with 0.5Hz 
as cut-off 

Non-linear and 
non-stationary 
(time variant) 

FHR Non- 
clinician 

Yes Did not 
specify 

DT, SVM with 
Gaussian kernel 
and AdaBoost 
with 20 weak 
learner 
(assemble 
classifiers) 

Partially ADABOOST: 
Sensitivity =
91.8%, 
Specificity =
95.5%, AUROC 
= 98.0% MSE =
5.0% 

Yes 

[66] Sliding median 
and cubic spline 
interpolation 

FIGO, frequency 
domain and time 
domain and 
frequency 
(multiscale 
multifractal 
analysis) 

FHR 
and 
UC 

Both No Did not 
specify 

SVM and sparse 
SVM 

No Sparse SVM with 
DLCV: 
Sensitivity =
73.0%, 
Specificity =
75.0%, 
AUROC =
77.0%, 
TP=N:26 and 
FP––N:305 

No 

[67] Did not specify RCOG with 
adaptations 

FHR  Yes Did not 
specify 

ANN No AUROC =
62.0%, 
Sensitivity =
56.0% 
Specificity =
91.0% 
PPV = 53.0% 
NPV = 92.0% 
Accuracy =
86.0% 

No 

(continued on next page) 
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Table 3 (continued ) 

Study 
ID 

Pre-processing 
method 

Type of features 
extracted 

Part 
of 
CTG 
used 

Clinicians 
as author 
(s) 

Hold-out- 
validation 

Cross 
validation 
method 

ML classifier(s) 
used 

Model 
interpretability 

Performance 
measure(s) 

Oversampling 

[68] Interpolate 
interruptions 
that is less than 
15s, remove 
segments 
containing 
longer 
interruptions 
and segmenting 
signals 

Frequency 
domain 

FHR 
and 
UC 

Both Yes k-fold SVM with 
gaussian kernel 

No AUROC = 13.1% 
FPR = 7% 

No 

[69] Outlier 
detection and 
linear 
interpolation 

linear and 
nonlinear, 
extract feature 
using CNN & 
LSTM 

FHR Non- 
clinician 

No k-fold SVM and CNN- 
BiLSTM 

Partially SVM: 
Sensitivity =
56.97% 
Specificity =
73.35% 
QI = 63.91% 

No 

[70] Piecewise cubic 
Hermite 
polynomial 
interpolation 

time frequency FHR Non- 
clinician 

Yes k-fold hierarchical 
Dirichlet process 
gaussian model 

Partially HDPGMs 
sensitivity =
65.0%, 
specificity =
86.7%, 
WRA = 51.7% 

No 

[71] Signal quality 
interpolation 

Time frequency 
and linear 
features 

FHR 
and 
UC 

Non- 
clinician 

No Did not 
specify 

Ensemble Cost- 
sensitive SVM 
(ECSVM), DT, 
NB and SVM 

Partially Ensemble Cost- 
sensitive SVM: 
AUROC = 77% 

No 

[72] Did not specify Image based and 
text 

FHR Non- 
clinician 

Yes Stratified 
k-fold 

CNN No MMIF-1 (ViT-B/ 
16): Accuracy =
96.3% 
F measure =
96.3% 
AUROC = 96.2% 

No 

[73] Did not specify Image FHR Non- 
clinician 

Yes k-fold KNN, NB, SVM, 
DT, RF, 
ADABOOST, 
XGBOOST 

No XGBOOST: 
Accuracy =
96.3% 
Precision =
95.4% 
Recall = 97.3% 
F measure =
96.4% 
AUROC = 95.9% 

No 

[74] Denoising, 
remove spike 
and spline 
interpolation 

Morphological, 
time domain, 
frequency 
domain and non- 
linear features 

FHR Non- 
clinician 

Yes k-fold SVM, DT and 
ADABOOST 

Partially ADABOOST: 
Accuracy =
92.0%, 
Sensitivity =
92.0%, 
Specificity =
92.0%, 
AUROC = 91.0% 

No 

[75] Cubic spline 
interpolation 

Image FHR  No k-fold CNN No Accuracy =
98.34%, 
Sensitivity =
98.22%, 
Specificity =
94.87%, Quality 
index = 96.53%, 
AUROC =
97.82% 

No 

[76] Gap detection, 
interpolation, 
outlier detection 
and detrending. 

Image FHR Non- 
clinician 

Yes k-fold CNN No Accuracy =
98.36%, 
Sensitivity =
99.05% 
Specificity =
97.67% AUROC 
= 98.36% 

No 

[77] Lagrange 
interpolation 

Image FHR Non- 
clinician 

No Did not 
specify 

Double Trend 
Accumulation 
Former CNN 

No Accuracy =
90.6% 

No 

[78] Lagrange 
interpolation 

curve 
classification 

FHR Non- 
clinician 

Yes k-fold Trend-Guided 
Long CNN 

No Accuracy =
89.80% 

No  
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the umbilical cord pH after birth. A wide range of cut-off values were 
used, limiting our ability to compare model performance directly. In 
addition, several studies used a much higher pH cut-off point than is 
likely to be clinically relevant - for example, pH < 7.2. Poor neonatal and 
childhood outcomes are most strongly associated with pH values < 7.0 
[84–86]. Models developed using inappropriate surrogate biomarkers to 
classify the CTG would be likely to result in a high false positive rate in 
clinical practice. This may result in unnecessary intervention, exposing 
mothers and newborns to the risk of unnecessary caesarean section. 

Other surrogate outcomes for intrapartum fetal hypoxia identified in 
the included studies were types of delivery, a mixture of Apgar scores 
and pH and multiple definitions of fetal distress (Table 2). When 
comparing studies that used similar open-access datasets, the number of 
subjects in each class (normal and cases) differed in almost every study. 
The variations in pH values used as benchmarks contribute to differ-
ences in the proportion of hypoxic cases (see Table 2), thereby influ-
encing the performance of ML models. Consequently, direct 
comparisons of results between studies cannot be undertaken. 

Fig. 5. Shows a bar chart of studies using different ML classifiers to classify CTG. The bar for others is grouped classifiers with only 1 study using them. Ensemble 
classifiers are considered as others. 

Fig. 6. Shows the performance measures used by studies in this review. The bar for others is grouped performance measures with only one study using them.  
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4.3. Signal processing 

The pre-processing stage is of utmost importance in the extraction 
and interpretation of signals. It is anticipated that a range of approaches 
would have been employed, as these depend on the inherent charac-
teristics of the raw CTG signal and are subject to the researcher’s sub-
jective choices. As evidenced in Table 3, studies that utilised the same 
open-access database varied in their pre-processing techniques. For 
instance, studies employed different interpolation methods to fill in 
missing data, such as linear or cubic spline interpolation, demonstrating 
the diversity of techniques employed. While these interpolation methods 
are commonly used, each has its own set of advantages and disadvan-
tages, necessitating researchers to carefully select appropriate methods 
based on the quality of the CTG signal. For example, linear interpolation 
can be clearly visualised, but the curve is not smooth and inaccurate for 
non-linear trend data. On the other hand, the cubic spline produces a 
smooth curve, but it may introduce oscillations between points for un-
even data. Research suggests that data that has been improperly pre- 
processed may perform worse than the original data [87]. Conse-
quently, signals suffer some degree of loss of information that could be 
useful for distinguishing hypoxia, which may lead to variability and 
misinterpretation in the results achieved [88]. 

4.4. Feature extraction 

Our review demonstrated that studies used different parts of CTG to 
build detection models. Some studies used FHR alone, whereas others 
used a combination of FHR and UC. Using FHR only is of particular 
concern in the intrapartum (in labour) context because the relationship 
between uterine contractions and FHR patterns is the key to fetal 
physiological resilience to labour. The FHR will often decelerate in 
response to UC; this is a normal physiological response and typically 
recovers rapidly [13,90]. During visual interpretation, clinicians use UC 
as a reference and assess the speed of recovery and depth of the decel-
eration to determine the probability of fetal hypoxia. As most studies 
only used FHR for modelling, it challenges the clinical validity of those 
studies. It is likely that the features extracted in ML models relate to 
these visually evident features, but ML may be able to identify early and 
subtle changes more reliably than clinician assessors. Clinicians also 
consider other factors that can cause FHR changes that do not neces-
sarily indicate that the fetus is experiencing hypoxia, such as maternal 
movement, umbilical cord compression, and environmental factors [89, 
90]. Hence, when extracting hand-crafted features, studies should 
consider other factors that can cause FHR pattern changes, particularly 
UC. One included study produced an open-access software called 
CTC-OAS for processing CTG signals. Still, this software excludes UC 
data and therefore, any CTG research using the software is likely to be 
clinically irrelevant in the intrapartum setting [91]. 

Most studies extracted hand-crafted features according to the med-
ical guidelines, also known as morphological features [14]. Additional 
features commonly extracted were from the time series domain, fre-
quency domain, linear, non-linear and statistical features. These types of 
features are the generic features relating to the signal processing tech-
nique. Our results revealed that a majority of the studies utilised features 
that were consistent with the clinical guidelines, specifically the 
morphological changes of CTG. However, these studies did not 
adequately explain why they incorporated additional features from the 
time, frequency, and non-linear domains into their model. Without 
employing feature selection techniques, it is impossible to determine the 
significance of each feature in classifying CTG. Those CTG characteris-
tics that are not visible by the naked eye might help improve the pre-
diction of fetal hypoxia beyond visual interpretation. Most studies 
extracted some similar but varied feature types, which may explain the 
inconsistency in ML modelling performances even using the same 
open-access dataset. Only one investigated the effects on ML perfor-
mances of different feature sets using several feature selection methods, 

where the important feature set varies based on the algorithm used. Only 
one study combined raw CTG data with other modalities, combining 
images of CTG with images of the text of the CTG interpretation [72]. 

4.5. Classifiers 

Studies used a variety of classifiers, SVM is the most used due to its 
versatility, separating linear and non-linear classification (Fig. 3). SVM 
also works well with high-dimensionality data and it has different ways 
to interpret SVM outcomes [92–95]. The next most frequently used 
classifiers are the CNN, either by itself or combined with other classifiers 
such as LSTM [62,69]. Recently, more CTG-ML studies have used CNN, 
particularly studies from China, suggesting a growing interest in 
modelling fetal hypoxia using images, indicating that researchers are 
exploring different techniques to advance CTG research. Other 
commonly used classifiers are KNN, DT and RF. The advantages of those 
classifiers are that they are more explainable and instinctive, making it 
straightforward for non-AI professionals to understand how decisions 
were made, which is highly desirable in healthcare settings [96]. Studies 
mainly reported several classifiers used to build CTG models. This is a 
good practice to compare how different classifiers distinguish decision 
boundaries of the same dataset, where some classifiers perform better 
than the rest. However, this can be limited by recourse and cost of using 
multiple classifiers. The drawback of only using one classifier is that 
there might be other methods that work better for the CTG dataset. 
Studies should also choose appropriate classifiers for modelling CTG, as 
there are algorithms that can handle class imbalances better, such as 
ensemble learning, if authors did not perform any data augmentations 
[97,98]. 

Clinical interpretability is becoming essential and future studies 
should consider this when developing prediction models. Based on 
Table 3, most studies used non-interpretable classifiers when building 
their model. We regard models such as decision trees, logistic regression, 
linear regression and naïve Bayes as inherently interpretable, random 
forest and support vector machines are partially interpretable and deep 
learning models are not interpretable. This categorisation is partly based 
on Molnar’s [99]. Only one study by Zhang et al [73] attempted to 
explain the feature outputs using the Shapely Additive exPlanations 
(widely known as SHAP) algorithm to explain features used in their 
models to increase the interpretability. SHAP uses the game theoretic 
approach that aims to elucidate the output of any machine learning 
model. By employing optimal credit allocation and local explanations, it 
incorporates the classical Shapley values from game theory and their 
associated extensions [100,101]. Researchers ought to consider the 
trade-off between the complexity and interpretability of models when 
aiming to improve fetal hypoxia detection. Although complex models 
may perform better, employing interpretability techniques to elucidate 
clinical decision-making could be advantageous. Nonetheless, using 
complex models for intricate data may prove beneficial in achieving 
high performance. 

4.6. Performances 

Specificity was used most, followed by AUROC and sensitivity to 
evaluate model performances. Sensitivity, specificity, negative predic-
tive values and positive predictive values are the most clinically relevant 
measures of model performance. AUROC evaluates performance across 
all thresholds, including clinically relevant and clinically irrelevant ones 
[102]. Diagnostic and prognostic tests are generally conceptualised 
when describing gains and losses to specific patients where AUROC 
lacks, which makes it clinically challenging to interpret results where 
many healthcare practitioners have limited ML or statistical knowledge 
[102–105]. Several studies used accuracy to measure their classification 
model, which is unsuitable for an imbalanced model where it generates 
misleading high results caused by systematically predicting the majority 
class [106]. Trevethan [102] suggested that high positive predictive 
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values (minimum false-positive outcomes) and high negative predictive 
values (minimum false-negative outcomes) are preferable in healthcare 
settings. In addition [106], recommends using balanced accuracy to 
reduce classification error. The most outstanding performance was 
attained by a CNN algorithm employing image-based features, as re-
ported by Zhou et al. (2023): an accuracy of 98%, a sensitivity of 
99.05%, a specificity of 97.67%, and AUROC of 98.36%. As for 
non-image features, the highest performance was demonstrated in a 
study by Fergus et al. [53] using deep learning, using the CTU-UHB 
database to classify CTG based on delivery type: a sensitivity of 
94.0%, a specificity of 91.0%, an AUROC of 99.0%, an F measure of 
100.0%, and an MSE of 1.0%. Notably, this study exhibited a lower 
quantity of cases compared to others, yet it achieved commendable re-
sults. However, to enhance the classification of CTG, this study 
employed synthetic oversampling to augment the number of cases. 
Based on the plots in Figs. 4 and 7–9, the results achieved are expected 
for study with an equal number of cases and normal where the model has 
matched training numbers. A very high model performance produced by 
studies could indicate overfitting if the studies are not externally vali-
dated. Another factor contributing to overfitting is balancing the dis-
tribution using oversampling techniques, which can lead to overfitting 
because the model learns from the same example as other drawbacks 
previously mentioned. For the imbalanced model, Although these model 
performances are encouraging, it is important to note that the medical 
guidelines for visual interpretation features were integrated with 
signal-processing features during model building. Therefore, we cannot 
directly compare the performances of existing studies with features 
proposed by clinical guidelines for interpreting CTG. Moreover, previous 
research has employed non-interpretable classifiers for modelling, 
which may impede clinical implementation due to the difficulty clini-
cians face in interpreting the decisions made by the model. 

4.7. Strengths and limitations 

The biggest strength of this review is that we summarised the various 
techniques for automatically predicting fetal hypoxia using CTG during 
labour. We provided a concise summary of the dataset, methods used to 
pre-process raw CTG, feature extraction, surrogate outcome selection, 
ML modelling and performance measures. We emphasised how different 
techniques used by studies resulted in various model performances, even 
when using the same dataset. 

This review is limited to English publications. Since ML in healthcare 
is expanding and CTG data are publicly available, we would aim to 
include CTG-ML research reported in other languages in future work. 
The SVM classifier may be over-represented in our review as it was 
included in our keyword search strategy, but we have mitigated this by 
careful hand-searching and a comprehensive search strategy. We 
observed that keywords such as ‘machine learning’ and ‘artificial in-
telligence’ did not capture all ML-CTG publications and therefore 
included specific ML classifiers as keywords in our search strategy to 
maximise our sensitivity. 

4.8. Future research 

We demonstrated a lack of the gold standard for identifying fetal 
hypoxia as many studies used surrogate markers that were clinically 
irrelevant. An agreed common outcome would make more CTG-ML 
studies more consistent. From the results, there is also a need to estab-
lish guidelines for processing and interpreting CTG-ML for research 
purposes. No studies took clinical factors into account, but clinicians are 
well aware that events in labour, uterine activity and maternal pre- 
existing risk factors are key to accurately identifying fetuses experi-
encing intrapartum hypoxia because these factors modify the fetal re-
serves and response to hypoxic insult. Researchers must clearly 
understand the relationship between FHR and UC to develop clinically 

Fig. 7. Lollipop graph showing the relationship between the percentage of hypoxic cases in a dataset and the sensitivity of models.  
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Fig. 8. Lollipop graph showing the relationship between the percentage of hypoxic cases in a dataset and the specificity of models.  

Fig. 9. Lollipop graph showing the relationship between the percentage of hypoxic cases in a dataset and the AUROC of models.  
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relevant ML algorithms. We highly recommend experts in this field come 
to a consensus on the best way to analyse and interpret CTG using ML to 
encourage clinical application to reduce the adverse effects of fetal 
hypoxia. We propose that future studies employ consistent performance 
metrics to facilitate the comparison of results and advance the field. 

5. Conclusion 

In conclusion, we have summarised 36 international studies 
attempting to improve the classification of CTG by using ML. These have 
shown the ability of ML to detect subtle changes in the intrapartum FHR 
and, therefore, potential clinical utility in aiding decision-making in 
maternity units. The steps for CTG modelling are: 1) pre-processing of 
raw signals, 2) extracting features, 3) feature engineering, 4) model 
building, and 5) performance evaluation. We found various methods to 
process and extract CTG signals. Implementation is limited by the fact 
that ML algorithms used need to be interpretable. Our work also dem-
onstrates how studies using blood pH as clinical endpoints and the same 
data source have different distributions of the number of hypoxic and 
normal fetuses, indicating that the degree of data imbalance is highly 
dependent on the range of pH benchmarks. We can also see a similar 
pattern in the model performances, highlighting the complexity of this 
field. 

We have highlighted the gap in this field where there is a need for 
more open-source CTG datasets, transparency of code and modelling 
strategies, consensus-derived meaningful clinical endpoints and 
consideration of baseline risk when implementing new fetal monitoring 
strategies. We also identified the gaps in CTG processing, including 
inconsistent use of FHR and UC for morphological analysis, features, and 
classifiers. Our research emphasised the lack of consistency of CTG-ML 
research from choosing the gold standard of hypoxia to evaluating 
model performances and future research should address these short-
comings for clinical application. 
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