10 research outputs found

    Cardinality and counting quantifiers on omega-automatic structures

    Get PDF
    We investigate structures that can be represented by omega-automata, so called omega-automatic structures, and prove that relations defined over such structures in first-order logic expanded by the first-order quantifiers `there exist at most aleph0aleph_0 many\u27, \u27there exist finitely many\u27 and \u27there exist kk modulo mm many\u27 are omega-regular. The proof identifies certain algebraic properties of omega-semigroups. As a consequence an omega-regular equivalence relation of countable index has an omega-regular set of representatives. This implies Blumensath\u27s conjecture that a countable structure with an omegaomega-automatic presentation can be represented using automata on finite words. This also complements a very recent result of Hj"orth, Khoussainov, Montalban and Nies showing that there is an omega-automatic structure which has no injective presentation

    Cardinality and counting quantifiers on omega-automatic structures

    Full text link
    We investigate structures that can be represented by omega-automata, so called omega-automatic structures, and prove that relations defined over such structures in first-order logic expanded by the first-order quantifiers `there exist at most 0\aleph_0 many', 'there exist finitely many' and 'there exist kk modulo mm many' are omega-regular. The proof identifies certain algebraic properties of omega-semigroups. As a consequence an omega-regular equivalence relation of countable index has an omega-regular set of representatives. This implies Blumensath's conjecture that a countable structure with an ω\omega-automatic presentation can be represented using automata on finite words. This also complements a very recent result of Hj\"orth, Khoussainov, Montalban and Nies showing that there is an omega-automatic structure which has no injective presentation

    Is Ramsey's theorem omega-automatic?

    Full text link
    We study the existence of infinite cliques in omega-automatic (hyper-)graphs. It turns out that the situation is much nicer than in general uncountable graphs, but not as nice as for automatic graphs. More specifically, we show that every uncountable omega-automatic graph contains an uncountable co-context-free clique or anticlique, but not necessarily a context-free (let alone regular) clique or anticlique. We also show that uncountable omega-automatic ternary hypergraphs need not have uncountable cliques or anticliques at all

    The Isomorphism Relation Between Tree-Automatic Structures

    Get PDF
    An ω\omega-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω\omega-tree-automatic structures. We prove first that the isomorphism relation for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is neither a Σ21\Sigma_2^1-set nor a Π21\Pi_2^1-set

    Automatic structures of bounded degree revisited

    Full text link
    The first-order theory of a string automatic structure is known to be decidable, but there are examples of string automatic structures with nonelementary first-order theories. We prove that the first-order theory of a string automatic structure of bounded degree is decidable in doubly exponential space (for injective automatic presentations, this holds even uniformly). This result is shown to be optimal since we also present a string automatic structure of bounded degree whose first-order theory is hard for 2EXPSPACE. We prove similar results also for tree automatic structures. These findings close the gaps left open in a previous paper of the second author by improving both, the lower and the upper bounds.Comment: 26 page

    Interpretations in Trees with Countably Many Branches

    Full text link
    Abstract—We study the expressive power of logical interpreta-tions on the class of scattered trees, namely those with countably many infinite branches. Scattered trees can be thought of as the tree analogue of scattered linear orders. Every scattered tree has an ordinal rank that reflects the structure of its infinite branches. We prove, roughly, that trees and orders of large rank cannot be interpreted in scattered trees of small rank. We consider a quite general notion of interpretation: each element of the interpreted structure is represented by a set of tuples of subsets of the interpreting tree. Our trees are countable, not necessarily finitely branching, and may have finitely many unary predicates as labellings. We also show how to replace injective set-interpretations in (not necessarily scattered) trees by ‘finitary’ set-interpretations. Index Terms—Composition method, finite-set interpretations, infinite scattered trees, monadic second order logic. I
    corecore