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1 Mathematische Grundlagen der Informatik, RWTH Aachen
E-mail address: {kaiser,vbarany}@informatik.rwth-aachen.de

2 Department of Computer Science, University of Auckland
E-mail address: rubin@cs.auckland.ac.nz

Abstract. We investigate structures that can be represented by omega-automata, so
called omega-automatic structures, and prove that relations defined over such structures
in first-order logic expanded by the first-order quantifiers ‘there exist at most ℵ0 many’,
’there exist finitely many’ and ’there exist k modulo m many’ are omega-regular. The
proof identifies certain algebraic properties of omega-semigroups.

As a consequence an omega-regular equivalence relation of countable index has an
omega-regular set of representatives. This implies Blumensath’s conjecture that a count-
able structure with an ω-automatic presentation can be represented using automata on
finite words. This also complements a very recent result of Hjörth, Khoussainov, Montal-
ban and Nies showing that there is an omega-automatic structure which has no injective
presentation.

1. Introduction

Automatic structures were introduced in [5] and later again in [6, 2] along the lines of
the Büchi-Rabin equivalence of automata and monadic second-order logic. The idea is to
encode elements of a structure A via words or labelled trees (the codes need not be unique)
and to represent the relations of A via synchronised automata. This way we reduce the
first-order theory of A to the monadic second-order theory of one or two successors. In
particular, the encoding of relations defined in A by first order formulas are also regular,
and automata for them can be computed from the original automata. Thus we have the
fundamental fact that the first-order theory of an automatic structure is decidable.

Depending on the type of elements encoding the structure, the following natural classes
of structures appear: automatic (finite words), ω-automatic (infinite words), tree-automatic
(finite trees), and ω-tree automatic (infinite trees). Besides the obvious inclusions, for in-
stance that automatic structures are also ω-automatic, there are still some some outstanding
problems. For instance, a presentation over finite words or over finite trees can be trans-
formed into one where each element has a unique representative.
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Kuske and Lohrey [9] point out an ω-regular equivalence relation (namely ∼e stating
that two infinite words are position-wise eventually equal) with no ω-regular set of repre-
sentatives. Thus, unlike the finite-word case, injectivity can not generally be achieved by
selecting a regular set of representatives from a given presentation. In fact, using topological
methods it has recently been shown [4] that there are omega-automatic structures having no
injective presentation. However, we are able to prove that every omega-regular equivalence
relation having only countably many classes does allow to select an omega-regular set of
unique representants. Therefore, every countable omega-automatic structure does have an
injective presentation.

A related question raised by Blumensath [1] is whether every countable ω-automatic
structure is also automatic. In Corollary 2.8 we confirm this by transforming the given pre-
sentation into an injective one, and then noting that an injective ω-automatic presentation
of a countable structure can be “packed” into one over finite words.

All these results rest on our main contribution: a characterisation of when there exist
countably many words x satisfying a given formula with parameters in a given ω-automatic
structure A (with no restriction on the cardinality of the domain of A or the injectivity of the
presentation). The characterisation is first-order expressible in an ω-automatic presentation
of an extension of A by ∼e. Hence we obtain an extension of the fundamental fact for ω-
automatic structures to include cardinality and counting quantifiers such as ’there exists
(un)countably many’, ’there exists finitely many’, and ’there exists k modulom many’. This
generalises results of Kuske and Lohrey [9] who achieve this for structures with injective
ω-automatic presentations.

2. Preliminaries

By countable we mean finite or countably infinite. Let Σ be a finite alphabet. With
Σ∗ and Σω we denote the set of finite, respectively ω-words over Σ. The length of a word
w ∈ Σ∗ is denoted by |w|, the empty word by ε, and for each 0 ≤ i < |w| the ith symbol
of w is written as w[i]. Similarly w[n,m] is the factor w[n]w[n+ 1] · · ·w[m] and w[n,m) is
defined by w[n,m − 1]. Note that we start indexing with 0 and that for u ∈ Σ∗ we denote
by un the concatenation of n number of us, in particular uω ∈ Σω.

We consider relations on finite and ω-words recognised by multi-tape finite automata
operating in a synchronised letter-to-letter fashion. Formally, ω-regular relations are those
accepted by some finite non-deterministic automaton A with Büchi, parity or Muller accep-
tance conditions, collectively known as ω-automata, and having transitions labelled by
m-tuples of symbols of Σ. Equivalently, A is a usual one-tape ω-automaton over the
alphabet Σm accepting the convolution ⊗~w of ω-words w1, . . . , wm defined by ⊗~w[i] =
(w1[i], . . . , wm[i]) for all i.

Words u, v ∈ Σω have equal ends, written u ∼e v, if for almost all n ∈ N, u[n] = v[n].
This is an important ω-regular equivalence relation. We overload notation so that for
S, T ⊂ N we write S ∼e T to mean for almost all n ∈ N, n ∈ S ⇐⇒ n ∈ T .

Example 2.1. The non-deterministic Büchi automaton depicted in Fig. 1 accepts the
equal-ends relation on alphabet {0, 1}.

In the case of finite words one needs to introduce a padding end-of-word symbol � 6∈ Σ
to formally define convolution of words of different length. For simplicity, we shall identify
each finite word w ∈ Σ∗ with its infinite padding w� = w�

ω ∈ Σω
�

where Σ� = Σ ∪ {�}.
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Figure 1: An automaton for the equal ends relation ∼e.

To avoid repeating the definition of automata for finite words, we say that a m-ary relation
R ⊆ (Σ∗)m is regular (synchronised rational) whenever it is ω-regular over Σ�.

2.1. Automatic structures

We now define what it means for a relational structure (we implicitly replace any
structure with its relational counterpart) to have an (ω-)automatic presentation.

Definition 2.2 ((ω-)Automatic presentations).
Consider a relational structure A = (A, {Ri}i) with universe dom(A) = A and relations
Ri. A tuple of ω-automata d = (A,A≈, {Ai}i) together with a surjective naming function
f : L(A) → A constitutes an (ω-)automatic presentation of A if the following criteria are
met:

(i) the equivalence, denoted ≈, and defined by {(u,w) ∈ L(A)2 | f(u) = f(w)} is recog-
nised by A≈,

(ii) every L(Ai) has the same arity as Ri,
(iii) f is an isomorphism between Ad = (L(A), {L(Ai)}i)/≈ and A.

The presentation is said to be injective whenever f is, in which case A≈ can be omitted.

The relation ≈ needs to be a congruence of the structure (L(A), {L(Ai)}i) for item
(iii) to make sense. In case L(A) only consists of words of the form w� where w ∈ Σ∗,
we say that the presentation is automatic. Call a structure (ω−)automatic if it has an
(ω-)automatic presentation.

The advantage of having an (ω-)automatic presentation of a structure lies in the fact
that first-order (FO) formulas can be effectively evaluated using classical automata con-
structions. This is expressed by the following fundamental theorem.

Theorem 2.3. (Cf. [5], [6], [3].)

(i) There is an effective procedure that given an (ω−)automatic presentation d, f of a
structure A, and given a FO-formula ϕ(~a, ~x) with parameters ~a from A (defining a
k-ary relation R over A), constructs a k-tape synchronous (ω−)automaton recognising
f−1(R).

(ii) The FO-theory of every (ω−)automatic structure is decidable.
(iii) The class of (ω−)automatic structures is closed under FO-interpretations

Let FOC denote the extension of first-order logic with all quantifiers of the form

• ∃(r mod m)x . ϕ meaning that the number of x satisfying ϕ is finite and is congruent
to r mod m;
• ∃∞x . ϕ meaning that there are infinitely many x satisfying ϕ;
• ∃≤ℵ0x . ϕ and ∃>ℵ0x . ϕ meaning that the cardinality of the set of all x satisfying ϕ

is countable, or uncountable, respectively.
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It has been observed that for injective (ω-)automatic presentations Theorem 2.3 can be
extended from FO to FOC [8, 9]. Moreover, Kuske and Lohrey show that the cardinality of
any set definable in FOC is either countable or equal to that of the continuum. Our main
contribution is the following generalisation of their result.

Theorem 2.4. The statements of Theorem 2.3 hold true for FOC over all (not necessarily
injective) ω-automatic presentations.

It is easily seen that finite-word automatic presentations can be assumed to be injec-
tive. This is achieved by restricting the domain of the presentation to a regular set of
representatives of the equivalence involved. This can be done effectively, e.g. by selecting
the length-lexicographically least word of every class.

This brings us to the question which ω-automatic structures allow an injective ω-
automatic presentation. In [9] Kuske and Lohrey have pointed out that not every ω-regular
equivalence has an ω-regular set of representatives. In particular, the following Lemma
shows that the equal-ends relation ∼e of Example 2.1 is a counterexample.

Lemma 2.5 ([9, Lemma 2.4]). Let A be a Büchi automaton with n states over Σ× Γ and
let u ∈ Σω be given. Consider the set V = {v ∈ Γω | u⊗ v ∈ L(A)}. Then V is uncountable
if and only if |V/ ∼e | > n, otherwise it is finite or countable.

The lemma implies that an ω-regular set is countable if and only if it meets only finitely
many equal-ends-classes. In this case each of its members is ultimately periodic with one
of finitely many periods.

Corollary 2.6. An ω-regular set is countable iff it can be written as a finite union of sets
of the form Uj · (wj)

ω with each Uj a regular set of finite words and each wj a finite word.

A related question raised by Blumensath [1] is whether every countable ω-automatic
structure is also automatic. It is easy to see that every injective ω-automatic presentation
of a countable structure can be “packed” into an automatic presentation.

Proposition 2.7. ([1, Theorem 5.32]) Let d be an injective ω-automatic presentation of a
countable structure A. Then, an (injective) automatic presentation d′ of A can be effectively
constructed.

In our proof of Theorem 2.4 we identify a property of finite semigroups that recognise
transitive relations (Lemma 3.3 item (3)) that allows us to drop the assumption of injectivity
in the previous statement. We are thus able to answer the question of Blumensath.

Corollary 2.8. A countable structure is ω-automatic if and only if it is automatic. Trans-
forming a presentation of one type into the other can be done effectively.

2.2. ω-Semigroups

The fundamental correspondence between recognisability by finite automata and by
finite semigroups has been extended to ω-regular sets. This is based on the notion of ω-
semigroups. Rudimentary facts on ω-semigroups are well presented in [10]. We only mention
what is most necessary.

An ω-semigroup S = (Sf , Sω, ·, ∗, π) is a two-sorted algebra, where (Sf , ·) is a semigroup,
∗ : Sf × Sω 7→ Sω is the mixed product satisfying for every s, t ∈ Sf and every α ∈ Sω the
equality

s · (t ∗ α) = (s · t) ∗ α
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and where π : Sω
f 7→ Sω is the infinite product satisfying

s0 · π(s1, s2, . . .) = π(s0, s1, s2, . . .)

as well as the associativity rule

π(s0, s1, s2, . . .) = π(s0s1 · · · sk1
, sk1+1sk1+2 · · · sk2

, . . .)

for every sequence (si)i≥0 of elements of Sf and every strictly increasing sequence (ki)i≥0

of indices. For s ∈ Sf we denote sω = π(s, s, . . .).
Morphisms of ω-semigroups are defined to preserve all three products as expected.

There is a natural way to extend finite semigroups and their morphisms to ω-semigroups.
As in semigroup theory, idempotents play a central role in this extension. An idempotent is
a semigroup element e ∈ S satisfying ee = e. For every element s in a finite semigroup the
sub-semigroup generated by s contains a unique idempotent sk. The least k > 0 such that
sk is idempotent for every s ∈ Sf is called the exponent of the semigroup Sf and is denoted
by π. Another useful notion is absorption of semigroup elements: say that s absorbs t (on
the right) if st = s.

There is also a natural extension of the free semigroup Σ+ to the ω-semigroup (Σ+,Σω)
with ∗ and π determined by concatenation. An ω-semigroup S = (Sf , Sω) recognises a
language L ⊆ Σω via a morphism φ : (Σ+,Σω)→ (Sf , Sω) if φ−1(φ(L)) = L. This notion of
recognisability coincides, as for finite words, with that by non-deterministic Büchi automata.
In [10] constructions from Büchi automata to ω-semigroups and back are also presented.

Theorem 2.9 ([10]).
A language L ⊆ Σω is ω-regular iff it is recognised by a finite ω-semigroup.

We note that this correspondence allows one to engage in an algebraic study of varieties
of ω-regular languages, and also has the advantage of hiding complications of cutting apart
and stitching together runs of Büchi automata as we shall do. This is precisely the reason
that we use this algebraic framework. Most remarkably, one does not need to understand
the exact relationship between automata and ω-semigroups and the technical details of
the constructions behind Theorem 2.9 to comprehend our proof. An alternative approach,
though likely less advantageous, would be to use the composition method, which is closer
in spirit to ω-semigroups than to automata. 1

3. Cardinality and modulo counting quantifiers

This section is devoted to establishing the key to Theorem 2.4 announced earlier.
We characterise when there exist countably many words x satisfying a given formula

with parameters ϕ(x, ~z) in some ω-automatic structure A. The characterisation is first-order
expressible in an ω-automatic extension of A by the equal-ends relation ∼e.

So, fix an ω-automatic presentation of some A with congruence ≈, and a first-order
formula ϕ(x, ~z) in the language of A with x and ~z free variables.

Proposition 3.1. There is a constant C, computable from the presentation d, so that for
all tuples ~z of infinite words the following are equivalent:

(1) ϕ(−, ~z) is satisfiable and ≈ restricted to the domain ϕ(−, ~z) has countably many
equivalence classes.

1Define Tf resp. Tω as the sets of bounded (in terms of quantifier rank) theories of finite, respectively, of
ω-words. The composition theorem ensures that ·, ∗, π can naturally be defined on bounded theories.
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(2) there exist C-many words x1, · · · , xC each satisfying ϕ(−, ~z), so that every x satis-
fying ϕ(−, ~z) is ≈-equivalent to some y ∼e xi. Formally, the structure (A,≈,∼e)
models the sentence below.

∀~z

(

∃≤ℵ0w .ϕ(w, ~z)←→ ∃x1 . . . xC

(

∧

i

ϕ(xi, ~z) ∧ ∀xϕ(x, ~z)→ ∃y(x ≈ y ∧
∨

i

y ∼e xi)

))

Proof. Suppose d, A, and ϕ are given. Define C to be c2, where c is the size of the
largest ω-semigroup corresponding to any of the given automata (from the presentation
or corresponding to ϕ). Now fix parameters ~z. From now on, ≈ denotes the equivalence
relation ≈ restricted to domain ϕ(−, ~z).

2 → 1: Condition 2 and the fact that every ∼e-class is countable imply that all words
satisfying ϕ(−, ~z) are contained in a countable number of ≈-classes.

1→ 2: We prove the contra-positive in three steps.
If ϕ(−, ~z) is satisfiable then the negation of condition 2 implies that there are C + 1

many words x0, . . . , xC each satisfying ϕ(−, ~z), and so that for i, j ≤ C, i 6= j, the ≈-class
of xj does not meet the ∼e-class of xi. In particular, the xis are pairwise 6∼e.

The plan is to produce uncountably many pairwise non-≈ words that satisfy ϕ(−, ~z).
In the first ’Ramsey step’, similar to what is done in [9], we find two words from the given
C many, say x1, x2 ∈ Σ∗, and a factorisation H ⊂ N so that both words behave the same
way along the factored sub-words with respect to the ≈- and ϕ-semigroups. In the second
’Coarsening step’ we identify a technical property of finite semigroups recognising transitive
relations. This allows us to produce an altered factorisation G and new, well-behaving words
y1, y2. In the final step, the new words are ’shuffled along G’ to produce continuum many
pairwise non-≈ words, each satisfying ϕ(−, ~z).

3.1. Ramsey step

This step effectively allows us to discard the parameters ~z. Before we use Ramsey’s
theorem, we introduce a convenient notation to talk about factorisations of words.

Definition 3.2. Let A = a1 < a2 < · · · be any subset of N and h : Σ∗ → S be a morphism
into a finite semigroup S. For an ω-word α ∈ Σω, and element e ∈ S, say that A is an
h, e-homogeneous factorisation of α if for all n ∈ N

+, h
(

α[an, an+1)
)

= e.

Observe that

(1) if A is an h, s-homogeneous factorisation of α and k ∈ N
+ then the set {aki}i∈N+ is

an h, sk-homogeneous factorisation of α.
(2) if A is an h, e-homogeneous factorisation of α and e is idempotent, then every infinite

B ⊂ A is also an h, e-homogeneous factorisation of α.

In the following we write wϕ and w≈ to denote the image of w under the semigroup mor-
phism into the finite semigroup associated to ϕ and ≈, respectively, as determined by the
presentation. Accordingly, we will speak of e.g. ϕ, si-homogeneous factorisations.

Let us now colour every {n,m} ∈ [N]2, say n < m, by the tuple of ω-semigroup elements

〈
(

⊗ (xi, ~z)[n,m)ϕ
)

0≤i≤C
,
(

⊗ (xi, xj)[n,m)≈
)

0≤i≤j≤C
〉.

By Ramsey’s theorem there exists infinite H ⊂ N and a tuple of ω-semigroup elements
〈

(si)1≤i≤C , (t(i,j))1≤i≤j≤C

〉

so that for all 0 ≤ i ≤ j ≤ C,
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• H is a ϕ, si-homogeneous factorisation of the word ⊗(xi, ~z),
• H is ≈, t(i,j)-homogeneous factorisation of the word ⊗(xi, xj).

Note that by virtue of additivity of our colouring and Ramsey’s theorem each of the si

and t(i,j) above are idempotents. Note that since there are at most c-many sis and c-many

t(i,i)s there are at most c2 many pairs (si, t(i,i)) and so there must be two indices, we may
suppose 1 and 2, with s1 = s2 and t(1,1) = t(2,2).

3.2. Coarsening step

For technical reasons we now refine H and alter x1, x2 so that the semigroup elements
have certain additional properties.

To start with, using the fact that x1 6∼e x2 and our observation on coarsenings, we as-
sume without loss of generality that H is coarse enough so that x1[hn, hn+1) 6= x2[hn, hn+1)
for all n ∈ N.

Lemma 3.3. There exists a subset G ⊂ H, listed as g1 < g2 < · · · , and ω-words y1, y2 with
the following properties:

(1) The words y1 and y2 are neither ≈-equivalent nor ∼e-equivalent, and each satisfies
ϕ(−, ~z).

(2) There exists an idempotent ϕ-semigroup element s such that G is a ϕ, s-homogeneous
factorisation for each of ⊗(y1, ~z) and ⊗(y2, ~z).

(3) There exist idempotent ≈-semigroup elements t, t↑, t↓ so that for yj ∈ {y1, y2}

• both t↑ and t↓ absorb t
• ⊗(yj, yj)[0, g1)

≈ absorbs t
• G is an ≈, t-homogeneous factorisation of ⊗(yj, yj)

• G is an ≈, t↑-homogeneous factorisation of ⊗(y1, y2)
• G is an ≈, t↓-homogeneous factorisation of ⊗(y2, y1).

Proof. Define ω-words y1 := x2[0, h2)x1[h2,∞), and y2 by

y2[0, h2) := x2[0, h2) and

y2[h2n, h2n+2) := x2[h2n, h2n+1)x1[h2n+1, h2n+2) for n > 0.

Item 1. Clearly, y1 6∼e y2 and each yj ∈ {y1, y2} satisfies ϕ(yj , ~z) since by homogeneity and
s1 = s2

⊗(y1, ~z)
ϕ = ⊗(x2, ~z)[0, h2)

ϕsω
1

= ⊗(x2, ~z)[0, h2)
ϕsω

2

= ⊗(x2, ~z)
ϕ

and similarly

⊗(y2, ~z)
ϕ = ⊗(x2, ~z)[0, h2)

ϕ(s2s1)
ω

= ⊗(x2, ~z)[0, h2)
ϕsω

2

= ⊗(x2, ~z)
ϕ
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Next we check that y1 6≈ y2.

⊗(y1, y2)
≈ = π≈

(

⊗ (x2, x2)[0, h2)
≈,
(

⊗ (x1, x2)[h2n, h2n+1)
≈, ⊗(x1, x1)[h2n+1, h2n+2)

≈
)

n∈N+

)

= ⊗(x2, x2)[0, h1)
≈ t(2,2) (t(1,2)t(1,1))

ω

= ⊗(x2, x2)[0, h1)
≈ t(2,2)t(2,2) (t(1,2)t(1,1))

ω

= ⊗(x2, x2)[0, h1)
≈ t(2,2)t(2,2) (t(1,2)t(2,2))

ω

= ⊗(x2, x2)[0, h1)
≈ t(2,2) (t(2,2)t(1,2))

ω

= π≈
(

⊗ (x2, x2)[0, h2)
≈,
(

⊗ (x2, x2)[h2n, h2n+1)
≈, ⊗(x1, x2)[h2n+1, h2n+2)

≈
)

n∈N+

)

= ⊗(y2, x2)
≈

Thus, if y1 ≈ y2 then also y2 ≈ x2 and so by transitivity y1 ≈ x2. But since y1 ∼e x1,
the ≈-class of x2 meets the ∼e-class of x1, contradicting the initial choice of the xis.

Items 2 and 3. Define intermediate semigroup elements q := s1, r := t(1,1), r
↑ := t(1,2)t(1,1)

and r↓ := t(2,1)t(1,1). Then

(1) both r↑ and r↓ absorb r, since t(1,1) is idempotent;
(2) ⊗(yj, yj)[0, h2)

≈ = ⊗(yj, yj)[0, h1)
≈t(2,2) and thus absorbs r (for yj ∈ {y1, y2}).

In this notation, for all i ∈ N
+ and yj ∈ {y1, y2},

• ⊗(yj, ~z)[h2i, h2i+2)
ϕ is qq = q,

• ⊗(yj, yj)[h2i, h2i+2)
≈ is rr = r,

• ⊗(y1, y2)[h2i, h2i+2)
≈ is t(1,2)t(1,1) = r↑,

• ⊗(y2, y1)[h2i, h2i+2)
≈ is t(2,1)t(1,1) = r↓.

Finally, define the set G := {h2ki}i>1, i.e. gi = h2k(i+1), and the semigroup elements

t := rk, t↑ := (r↑)k, t↓ := (r↓)k and s := qk. The extra multiple of k (defined as the product
of the exponents of the give semigroups for ∼e and ≈) ensures all these semigroup elements
(in particular t↑ and t↓) are idempotent. We now verify the absorption properties:

t↑t = r↑krk = r↑k = t↑ because r↑ absorbs r

Similarly, t↓t absorbs t. Further, since g1 = h4k, we have

⊗(yj, yj)[0, g1)
≈ = ⊗(yj, yj)[0, h2)

≈ ⊗ (yj, yj)[h2, h4k)≈

= ⊗(yj, yj)[0, h2)
≈r4k−2

= ⊗(yj, yj)[0, h2)
≈r3k−2t

and thus absorbs t.
Finally we verify the homogeneity properties: G is an ≈, t↓-homogeneous factorisation

of ⊗(y2, y1) since for i ∈ N
+

⊗(y2, y1)[gi, gi+1)
≈ = ⊗(y2, y1)[h2k(i+1), h2k(i+2))

≈ = (r↓)k = t↓.

The other cases are similar.
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3.3. Shuffling step

We continue the proof of Proposition 3.1 by ’shuffling’ the words y1 and y2 along G
resulting in continuum many pairwise distinct words that are pairwise not ≈-equivalent,
each satisfying ϕ(−, ~z). To this end, define for S ⊂ N

+ the ’characteristic word’ χS by

χS [0, g1) := y2[0, g1) , and

χS [gn, gn+1) :=

{

y2[gn, gn+1) if n ∈ S

y1[gn, gn+1) otherwise

First note that A |= ϕ(χS , ~z). Indeed, by Lemma 3.3 item 2

⊗(χS , ~z)
ϕ = ⊗(y2, ~z)[0, g1)

ϕsω

= ⊗(y2, ~z)
ϕ

and A |= ϕ(y2, ~z) by Lemma 3.3 item 1. Moreover, for S 6∼e T the construction gives
that χS 6∼e χT . This is due our initial choice of x1 6∼e x2 and the assumption that the
factorisation (hn)n is coarse enough so that x1[hn, hn+1) 6= x2[hn, hn+1) and therefore also
y1[gn, gn+1) 6= y2[gn, gn+1) for all n.

The following two lemmas establish that if S 6∼e T then χS 6≈ χT .
Write x◦• for the word χ2N+ , and x•◦ for χ2N+−1 and let p denote ⊗(y2, y2)[0, g1)

≈.

Lemma 3.4. For all S 6∼e T ,

⊗(χS , χT )≈ =

{

⊗(x◦•, x•◦)
≈ or

⊗(x•◦, x◦•)
≈

Proof. Define semigroup-elements pn for n ∈ N by

pn :=











t↓ if n ∈ S \ T

t↑ if n ∈ T \ S

t otherwise

Let m be the smallest number in S4T . Suppose that m ∈ S \ T . Because both t↑ and
t↓ are idempotent and since t is absorbed by both p, t↑ and t↓ we have

⊗(χS , χT )≈ = π≈ (p, (pn)n∈N) = p(t↓t↑)ω

= ⊗(x•◦, x◦•)
≈

and the case that m ∈ T \ S similarly results in ⊗(x◦•, x•◦)
≈.

Lemma 3.5. x◦• 6≈ x•◦.

Proof. Define an intermediate word x◦•◦◦ := χ4N+−2. By computations similar to the above
we find that

⊗(x•◦, x◦•◦◦)
≈ = p(t↓t↑t↓t)ω = p(t↓t↑t↓)ω = p(t↓t↑)ω

= ⊗(x•◦, x◦•)
≈

and

⊗(x◦•, x◦•◦◦)
≈ = p(tttt↓)ω = p(t↓)ω

= ⊗(y2, y1)
≈
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Therefore, if x•◦ ≈ x◦• then also x•◦ ≈ x◦•◦◦ and so by symmetry and by transitivity

x◦• ≈ x◦•◦◦. But in this case also y2 ≈ y1, contradicting Lemma 3.3 item 1.

There are continuum many classes in P(N)/ ∼e, thus there is a continuum of pairwise not
≈-equivalent words χS each satisfying ϕ(−, ~z). This completes the proof of Proposition 3.1.

4. Consequences

Theorem 2.4 The statements of Theorem 2.3 hold true for FOC over all (not necessarily
injective) ω-automatic presentations.

Proof. We prove item (i) from which the rest of the theorem follows immediately. We induc-
tively eliminate occurrences of cardinality and modulo-counting quantifiers in the following
way.

The countability quantifier ∃≤ℵ0 and uncountability quantifier ∃>ℵ0 can be eliminated
(in an extension of the presentation by ∼e) by the formula given in Proposition 3.1.

For the remaining quantifiers we further expand the presentation with the ω-regular
relations

• π(a, b, c) saying that a ∼e b ∼e c and the last position where a differs from c is no
larger than the last position where b differs from c, and
• λ(a, b, c) saying that π(a, b, c) and π(b, a, c) and, writing k for this common position,

the word a[0, k] is lexicographically smaller than the word b[0, k].

Now ∃<∞. ϕ(x, ~z) is equivalent to

∃x1 · · · xC Ψ(x1, · · · , xC , ~z)

where Ψ expresses that x1, · · · xC satisfy ϕ(−, ~z) and there exists a position, say k ∈ N, so
that every ≈-class contains a word satisfying ϕ(−, ~z) that coincides with one of the xi from
position k onwards. This additional condition can be expressed by

∃y1 · · · yC∀x∃y

(

ϕ(x, ~z)→ x ≈ y ∧
∨

i

π(y, yi, xi)

)

Consequently, ∃(r mod m)x . ϕ(x, ~z) can be eliminated since we can pick out unique rep-
resentatives of the ≈-classes as those x so that, writing i(w) for the smallest index i for
which w ∼e xi, for every y 6= x in the same ≈-class as x, either

• i(x) < i(y), or
• i(x) = i(y) and λ(x, y, xi(x)).

Now we can apply the construction of [9] or [8] for elimination of the ∃(r mod m) quantifier.

As a corollary of Proposition 3.1 we obtain that for every omega-regular equivalence
with countably many classes a set of unique representants is definable.

Corollary 4.1. Let ≈ be an ω-automatic equivalence relation on Σω. There is a constant
C, depending on the presentation, so that the following are equivalent:

(1) ≈ has countably many equivalence classes.
(2) there exist C many ∼e-classes so that every ≈-class has non-empty intersection with

at least one of these C.
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In this case there is an ω-regular set of representatives of ≈. Moreover an automaton for
this set can be effectively found given an automaton for ≈.

Proof. The first two items are simply a specialisation of Proposition 3.1. We get the repre-
sentatives as follows.

Write A for the domain of ≈ and consider the formula ψ(x1, · · · , xC) with free variables
x1, · · · , xC :

∧

i

xi ∈ A ∧ (∀x ∈ A)(∃y) [x ≈ y ∧
∨

i

y ∼e xi]

The relation defined by ψ is ω-regular since it is a first order formula over ω-regular
relations. By assumption it is non-empty. Thus it contains an ultimately periodic word of
the form ⊗(a1, · · · , aC). Thus each of these ais is ultimately periodic; say ai = vi(ui)

ω.
Then every x has an ≈-representative in B :=

⋃

i Σ∗(ui)
ω. It remains to prune B to

select unique representatives for each ≈-class.
It is easy to construct an ω-regular well-founded linear order on B. For every w ∈ B,

let p(w) ∈ Σ∗ be the length-lexicographically smallest word such that w has period p(w).
Also let t(w) ∈ Σ∗ be the length-lexicographically smallest word so that w = t(w) · p(w)ω .
Define an order ≺ on B by w ≺ w′ if p(w) is length-lexicographically smaller than p(w ′),
or otherwise if p(w) = p(w′) and t(w) is length-lexicographically smaller than t(w ′). The
ordering ≺ is ω-regular since it is FO-definable in terms of ω-regular relations. Finally, the
required set of representatives may be defined as the set of ≺-minimal elements of every
≈-class; and an automaton for this set can be constructed from an automaton for ≈.

This immediately yields an injective ω-automatic presentation from a given ω-automatic
presentation which by Proposition 2.7 can be transformed into an automatic presentation
of the structure. Thus we conclude that every countable ω-automatic structure is already
automatic.

Corollary 2.8 A countable structure is ω-automatic if and only if it is automatic. Trans-
forming a presentation of one type into the other can be done effectively.

Note that some of our technical results, in particular Lemmas 3.3 and 3.4, only require
transitivity of the relation ≈ and do not use symmetry. Applying them to an ω-automatic
linear order ≺ we get an interesting uncountable set of words of the form χS, S ⊆ N. For
any two such words with S 6∼e T , whether χS ≺ χT or not depends only on the first position
m ∈ S4T . Thus, ≺ behaves like the lexicographic order on such words.

4.1. Failure of Löwenheim-Skolem theorem for ω-automatic structures

While so far the area of automatic structures has mainly focused on individual struc-
tures, it is interesting to look at their theories as well. We note a consequence of our work
for ’automatic model theory’.

An automatic version of the Downward Löwenheim-Skolem Theorem would say that
every uncountable ω-automatic structure has a countable elementary substructure that is
also ω-automatic. Unfortunately this is false since there is a first-order theory with an
ω-automatic model but no countable ω-automatic model. Indeed, consider the first-order
theory of atomless Boolean Algebras. Kuske and Lohrey [9] have observed that it has
an uncountable ω-automatic model, namely (P(N),∩,∪,¬)/ ∼e. However, Khoussainov
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et al. [7] show that the countable atomless Boolean algebra is not automatic and so, by
Corollary 2.8, neither ω-automatic.

Here is the closest we can get to an automatic Downward Löwenheim-Skolem Theorem
for ω-automatic structures.

Proposition 4.2. Let (D,≈, {Ri}i≤ω) be an omega-automatic presentation of A and let Aup

be its restriction to the ultimately periodic words of D. Then Aup is a countable elementary
substructure of A.

Proof. Relying on the Tarski-Vaught criterion for elementary substructures we only need to

show that for all first-order formulas ϕ(~x, y) and elements ~b of Aup

A |= ∃yϕ(~b, y) ⇒ Aup |= ∃yϕ(~b, y) .

By Theorem 2.3 ϕ(~x, y) defines an omega-regular relation and, similarly, since the param-

eters ~b are all ultimately periodic the set defined by ϕ(~b, y) is omega-regular. Therefore, if
it is non-empty, then it also contains an ultimately periodic word, which is precisely what
we needed.

This proof can be viewed as a model construction akin to a classical compactness proof.
Indeed, starting with ultimately constant words and throwing in witnesses for all existential
formulas satisfied in A in each round one constructs an increasing sequence of substructures
comprising ultimately periodic words of increasing period lengths. The union of these is
closed under witnesses by construction. The argument is valid for relational structures with
constants assuming that every constant is represented by an ultimately periodic word.

Future work It remains to be seen whether statements analogous to Theorem 2.4 and
Corollary 2.8 also hold for automatic presentations over infinite trees.
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