4,489 research outputs found

    Controlled Cardiac Computed Tomography

    Get PDF
    Cardiac computed tomography (CT) has been a hot topic for years because of the clinical importance of cardiac diseases and the rapid evolution of CT systems. In this paper, we propose a novel strategy for controlled cardiac CT that may effectively reduce image artifacts due to cardiac and respiratory motions. Our approach is radically different from existing ones and is based on controlling the X-ray source rotation velocity and powering status in reference to the cardiac motion. We theoretically show that by such a control-based intervention the data acquisition process can be optimized for cardiac CT in the cases of periodic and quasiperiodic cardiac motions. Specifically, we formulate the corresponding coordination/control schemes for either exact or approximate matches between the ideal and actual source positions, and report representative simulation results that support our analytic findings

    Advances in Cardiac Computed Tomography

    Get PDF
    Coronary cardiac computed tomography (CCTA) has seen rapid improvements in technology including hardware and postprocessing techniques that have contributed to its rapid growth and enabled it to remain in the forefront on diagnostic imaging. Important technological advances include wider detectors for greater coverage with less gantry rotation times, dual-source computed tomography (CT) with improved temporal resolution, dual-energy CT where simultaneous imaging at different energies to increase the contrast difference between different tissues enhances diagnostic accuracy, and emergence of spectral CT to enhance atherosclerotic imaging through nanoparticle technology. Software advances include iterative reconstruction methodologies to reduce noise and radiation doses, plaque imaging and quantification tools to assess plaque morphology and stenosis severity. Processing advances using computational fluid dynamics now enables the determination of fractional flow reserve (FFR). Another important advancement in CCTA physiologic imaging is CCTA perfusion imaging to detect ischemia and compares favorably with myocardial perfusion imaging and coronary angiographic stenosis. Finally, large registry studies and single-center studies have now been published assessing the incremental value of coronary calcium score, CT plaque severity of disease and have demonstrated that the CCTA carries strong prognostic value over and above traditional risk assessment in predicting adverse outcomes

    Radiation Exposure From Cardiac Computed Tomography

    Get PDF

    Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves

    Get PDF
    To the Editor: Makkar et al. (Nov. 19 issue)(1) report possible subclinical leaflet thrombosis in up to 40% of patients involved in a clinical trial of transcatheter aortic-valve replacement (TAVR). In contrast, we found a relatively low incidence (7%) of possible subclinical valve leaflet thrombosis among patients in our series in which 255 patients underwent TAVR with the use of a CoreValve prosthesis. A retrospective review of our series (unpublished data) showed that in 104 patients, cardiac computed tomography (CT) at a median of 7 days after implantation (range, 3 to 87) (in 51 patients), transesophageal echocardiography at a median . . 

    Cardiac Computed Tomography: Application in Valvular Heart Disease

    Get PDF
    The incidence and prevalence of valvular heart disease (VHD) is increasing and has been described as the next cardiac epidemic. Advances in imaging and therapeutics have revolutionized how we assess and treat patients with VHD. Although echocardiography continues to be the first-line imaging modality to assess the severity and the effects of VHD, advances in cardiac computed tomography (CT) now provide novel insights into VHD. Transcatheter valvular interventions rely heavily on CT guidance for procedural planning, predicting and detecting complications, and monitoring prosthesis. This review focuses on the current role and future prospects of CT in the assessment of aortic and mitral valves for transcatheter interventions, prosthetic valve complications such as thrombosis and endocarditis, and assessment of the myocardium

    Progression of Coronary Artery Calcium and Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis.

    Get PDF
    BackgroundAlthough the association between coronary artery calcium (CAC) and future heart failure (HF) has been shown previously, the value of CAC progression in the prediction of HF has not been investigated. In this study, we investigated the association of CAC progression with subclinical left ventricular (LV) dysfunction and incident HF in the Multi-Ethnic Study of Atherosclerosis.Methods and resultsThe Multi-Ethnic Study of Atherosclerosis is a population-based study consisting of 6814 men and women aged 45 to 84, free of overt cardiovascular disease at enrollment, who were recruited from 4 ethnicities. We included 5644 Multi-Ethnic Study of Atherosclerosis participants who had baseline and follow-up cardiac computed tomography and were free of HF and coronary heart disease before the second cardiac computed tomography. Mean (±SD) age was 61.7±10.2 years and 47.2% were male. The Cox proportional hazard models and multivariable linear regression models were deployed to determine the association of CAC progression with incident HF and subclinical LV dysfunction, respectively. Over a median follow-up of 9.6 (interquartile range: 8.8-10.6) years, 182 participants developed incident HF. CAC progression of 10 units per year was associated with 3% of increased risk of HF independent of overt coronary heart disease (P=0.008). In 2818 participants with available cardiac magnetic resonance images, CAC progression was associated with increased LV end diastolic volume (β=0.16; P=0.03) and LV end systolic volume (β=0.12; P=0.006) after excluding participants with any coronary heart disease.ConclusionsCAC progression was associated with incident HF and modestly increased LV end diastolic volume and LV end systolic volume at follow-up exam independent of overt coronary heart disease

    Beam hardening artifact reduction using dual energy computed tomography: implications for myocardial perfusion studies

    Get PDF
    Background: Myocardial perfusion computed tomography (CTP) using conventional single energy (SE) imaging is influenced by the presence of beam hardening artifacts (BHA), occasionally resembling perfusion defects and commonly observed at the left ventricular posterobasal wall (PB). We therefore sought to explore the ability of dual energy (DE) CTP to attenuate the presence of BHA. Methods: Consecutive patients without history of coronary artery disease who were referred for computed tomography coronary angiography due to atypical chest pain and a normal stress-rest SPECT and had absence or mild coronary atherosclerosis constituted the study population. The study group was acquired using DE and the control group using SE imaging. Results: Demographical characteristics were similar between groups, as well as the heart rate and the effective radiation dose. Myocardial signal density (SD) levels were evaluated in 280 basal segments among the DE group (140 PB segments for each energy level from 40 keV to 100 keV; and 140 reference segments), and in 40 basal segments (at the same locations) among the SE group. Among the DE group, myocardial SD levels and myocardial SD ratio evaluated at the reference segment were higher at low energy levels, with significantly lower SD levels at increasing energy levels. Myocardial signal-to-noise ratio was not significantly influenced by the energy level applied, although 70 keV was identified as the energy level with the best overall signal-to-noise ratio. Significant differences were identified between the PB segment and the reference segment among the lower energy levels, whereas at ≥ 70 keV myocardial SD levels were similar. Compared to DE reconstructions at the best energy level (70 keV), SE acquisitions showed no significant differences overall regarding myocardial SD levels among the reference segments. Conclusions: Beam hardening artifacts that influence the assessment of myocardial perfusion can be attenuated using DE at 70 keV or higher.Fil: Rodriguez Granillo, Gaston Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentina. Diagnóstico Maipú; ArgentinaFil: Carrascosa, Patricia. Diagnóstico Maipú; ArgentinaFil: Cipriano, Silvia. Diagnóstico Maipú; ArgentinaFil: De Zan, Macarena. Diagnóstico Maipú; ArgentinaFil: Deviggiano, Alejandro. Diagnóstico Maipú; ArgentinaFil: Capunay, Carlos. Diagnóstico Maipú; ArgentinaFil: Cury, Ricardo C.. Miami Cardiac and Vascular Institute and Baptist Health; Estados Unido

    Effort angina in a patient with advanced coronary artery disease. Role played by coronary angiography, Ivus and cardiac CT: case report

    Get PDF
    Coronary angiography is considered to be the gold standard technique for assessing the severity of obstructive luminal narrowing; however, in a few circumstances it may be misleading. In these cases, cardiac computed tomography (CT) and intravascular ultrasound (IVUS) may help to give a correct interpretation
    corecore