68 research outputs found

    Prediction of Cardiovascular Diseases by Integrating Electrocardiogram (ECG) and Phonocardiogram (PCG) Multi-Modal Features using Hidden Semi Morkov Model

    Get PDF
    Because the health care field generates a large amount of data, we must employ modern ways to handle this data in order to give effective outcomes and make successful decisions based on data. Heart diseases are the major cause of mortality worldwide, accounting for 1/3th of all fatalities. Cardiovascular disease detection can be accomplished by the detection of disturbance in cardiac signals, one of which is known as phonocardiography. The aim of this project is for using machine learning to categorize cardiac illness based on electrocardiogram (ECG) and phonocardiogram (PCG) readings. The investigation began with signal preprocessing, which included cutting and normalizing the signal, and was accompanied by a continuous wavelet transformation utilizing a mother wavelet analytic morlet. The results of the decomposition are shown using a scalogram, and the outcomes are predicted using the Hidden semi morkov model (HSMM). In the first phase, we submit the dataset file and choose an algorithm to run on the chosen dataset. The accuracy of each selected method is then predicted, along with a graph, and a modal is built for the one with the max frequency by training the dataset to it. In the following step, input for each cardiac parameter is provided, and the sick stage of the heart is predicted based on the modal created. We then take measures based on the patient's condition. When compared to current approaches, the suggested HSMM has 0.952 sensitivity, 0.92 specificity, 0.94 F-score, 0.91 ACC, and 0.96 AUC

    GENERATYWNY MODEL Z DEEP FAKE AUGUMENTATION DLA SYGNAŁÓW Z FONOKARDIOGRAMU ORAZ ELEKTROKARDIOGRAMU W STRUKTURACH LSGAN ORAZ CYCLE GAN

    Get PDF
    In order to diagnose a range of cardiac conditions, it is important to conduct an accurate evaluation of either phonocardiogram (PCG) and electrocardiogram (ECG) data. Artificial intelligence and machine learning-based computer-assisted diagnostics are becoming increasingly commonplace in modern medicine, assisting clinicians in making life-or-death decisions. The requirement for an enormous amount of information for training to establish the framework for a deep learning-based technique is an empirical challenge in the field of medicine. This increases the risk of personal information being misused. As a direct result of this issue, there has been an explosion in the study of methods for creating synthetic patient data. Researchers have attempted to generate synthetic ECG or PCG readings. To balance the dataset, ECG data were first created on the MIT-BIH arrhythmia database using LS GAN and Cycle GAN. Next, using VGGNet, studies were conducted to classify arrhythmias for the synthesized ECG signals. The synthesized signals performed well and resembled the original signal and the obtained precision of 91.20%, recall of 89.52% and an F1 score of 90.35%.W celu zdiagnozowania szeregu chorób serca, istotne jest przeprowadzenie dokładnej oceny danych z fonokardiogramu (PCG) i elektrokardiogram (EKG). Sztuczna inteligencja i diagnostyka wspomagana komputerowo, oparta na uczeniu maszynowym stają się coraz bardziej powszechne we współczesnej medycynie, pomagając klinicystom w podejmowaniu krytycznych decyzji. Z kolei, Wymóg ogromnej ilości informacji do trenowania, w celu ustalenia platformy (ang. framework) techniki, opartej na głębokim uczeniu stanowi empiryczne wyzwanie w obszarze medycyny. Zwiększa to ryzyko niewłaściwego wykorzystania danych osobowych. Bezpośrednim skutkiem tego problemu był gwałtowny rozwój badań nad metodami tworzenia syntetycznych danych pacjentów. Badacze podjęli próbę wygenerowania syntetycznych odczytów diagramów EKG lub PCG. Stąd, w celu zrównoważenia zbioru danych, w pierwszej kolejności utworzono dane EKG w bazie danych arytmii MIT-BIH przy użyciu struktur sieci generatywnych LSGAN i Cycle GAN. Następnie, wykorzystując strukturę sieci VGGNet, przeprowadzono badania, mające na celu klasyfikację arytmii na potrzeby syntetyzowanych sygnałów EKG. Dla wygenerowanych sygnałów, przypominających sygnał oryginalny uzyskano dobre rezultaty. Należy podkreślić, że uzyskana dokładność wynosiła 91,20%, powtarzalność 89,52% i wynik F1 – odpowiednio 90,35%

    Detection of coronary artery disease with an electronic stethoscope

    Get PDF

    Automatic analysis and classification of cardiac acoustic signals for long term monitoring

    Get PDF
    Objective: Cardiovascular diseases are the leading cause of death worldwide resulting in over 17.9 million deaths each year. Most of these diseases are preventable and treatable, but their progression and outcomes are significantly more positive with early-stage diagnosis and proper disease management. Among the approaches available to assist with the task of early-stage diagnosis and management of cardiac conditions, automatic analysis of auscultatory recordings is one of the most promising ones, since it could be particularly suitable for ambulatory/wearable monitoring. Thus, proper investigation of abnormalities present in cardiac acoustic signals can provide vital clinical information to assist long term monitoring. Cardiac acoustic signals, however, are very susceptible to noise and artifacts, and their characteristics vary largely with the recording conditions which makes the analysis challenging. Additionally, there are challenges in the steps used for automatic analysis and classification of cardiac acoustic signals. Broadly, these steps are the segmentation, feature extraction and subsequent classification of recorded signals using selected features. This thesis presents approaches using novel features with the aim to assist the automatic early-stage detection of cardiovascular diseases with improved performance, using cardiac acoustic signals collected in real-world conditions. Methods: Cardiac auscultatory recordings were studied to identify potential features to help in the classification of recordings from subjects with and without cardiac diseases. The diseases considered in this study for the identification of the symptoms and characteristics are the valvular heart diseases due to stenosis and regurgitation, atrial fibrillation, and splitting of fundamental heart sounds leading to additional lub/dub sounds in the systole or diastole interval of a cardiac cycle. The localisation of cardiac sounds of interest was performed using an adaptive wavelet-based filtering in combination with the Shannon energy envelope and prior information of fundamental heart sounds. This is a prerequisite step for the feature extraction and subsequent classification of recordings, leading to a more precise diagnosis. Localised segments of S1 and S2 sounds, and artifacts, were used to extract a set of perceptual and statistical features using wavelet transform, homomorphic filtering, Hilbert transform and mel-scale filtering, which were then fed to train an ensemble classifier to interpret S1 and S2 sounds. Once sound peaks of interest were identified, features extracted from these peaks, together with the features used for the identification of S1 and S2 sounds, were used to develop an algorithm to classify recorded signals. Overall, 99 features were extracted and statistically analysed using neighborhood component analysis (NCA) to identify the features which showed the greatest ability in classifying recordings. Selected features were then fed to train an ensemble classifier to classify abnormal recordings, and hyperparameters were optimized to evaluate the performance of the trained classifier. Thus, a machine learning-based approach for the automatic identification and classification of S1 and S2, and normal and abnormal recordings, in real-world noisy recordings using a novel feature set is presented. The validity of the proposed algorithm was tested using acoustic signals recorded in real-world, non-controlled environments at four auscultation sites (aortic valve, tricuspid valve, mitral valve, and pulmonary valve), from the subjects with and without cardiac diseases; together with recordings from the three large public databases. The performance metrics of the methodology in relation to classification accuracy (CA), sensitivity (SE), precision (P+), and F1 score, were evaluated. Results: This thesis proposes four different algorithms to automatically classify fundamental heart sounds – S1 and S2; normal fundamental sounds and abnormal additional lub/dub sounds recordings; normal and abnormal recordings; and recordings with heart valve disorders, namely the mitral stenosis (MS), mitral regurgitation (MR), mitral valve prolapse (MVP), aortic stenosis (AS) and murmurs, using cardiac acoustic signals. The results obtained from these algorithms were as follows: • The algorithm to classify S1 and S2 sounds achieved an average SE of 91.59% and 89.78%, and F1 score of 90.65% and 89.42%, in classifying S1 and S2, respectively. 87 features were extracted and statistically studied to identify the top 14 features which showed the best capabilities in classifying S1 and S2, and artifacts. The analysis showed that the most relevant features were those extracted using Maximum Overlap Discrete Wavelet Transform (MODWT) and Hilbert transform. • The algorithm to classify normal fundamental heart sounds and abnormal additional lub/dub sounds in the systole or diastole intervals of a cardiac cycle, achieved an average SE of 89.15%, P+ of 89.71%, F1 of 89.41%, and CA of 95.11% using the test dataset from the PASCAL database. The top 10 features that achieved the highest weights in classifying these recordings were also identified. • Normal and abnormal classification of recordings using the proposed algorithm achieved a mean CA of 94.172%, and SE of 92.38%, in classifying recordings from the different databases. Among the top 10 acoustic features identified, the deterministic energy of the sound peaks of interest and the instantaneous frequency extracted using the Hilbert Huang-transform, achieved the highest weights. • The machine learning-based approach proposed to classify recordings of heart valve disorders (AS, MS, MR, and MVP) achieved an average CA of 98.26% and SE of 95.83%. 99 acoustic features were extracted and their abilities to differentiate these abnormalities were examined using weights obtained from the neighborhood component analysis (NCA). The top 10 features which showed the greatest abilities in classifying these abnormalities using recordings from the different databases were also identified. The achieved results demonstrate the ability of the algorithms to automatically identify and classify cardiac sounds. This work provides the basis for measurements of many useful clinical attributes of cardiac acoustic signals and can potentially help in monitoring the overall cardiac health for longer duration. The work presented in this thesis is the first-of-its-kind to validate the results using both, normal and pathological cardiac acoustic signals, recorded for a long continuous duration of 5 minutes at four different auscultation sites in non-controlled real-world conditions.Open Acces

    A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation

    Full text link
    Traditionally, abnormal heart sound classification is framed as a three-stage process. The first stage involves segmenting the phonocardiogram to detect fundamental heart sounds; after which features are extracted and classification is performed. Some researchers in the field argue the segmentation step is an unwanted computational burden, whereas others embrace it as a prior step to feature extraction. When comparing accuracies achieved by studies that have segmented heart sounds before analysis with those who have overlooked that step, the question of whether to segment heart sounds before feature extraction is still open. In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection. Furthermore, recognizing the pressing need for explainable Artificial Intelligence (AI) models in the medical domain, we also unveil hidden representations learned by the classifier using model interpretation techniques. Experimental results demonstrate that the segmentation plays an essential role in abnormal heart sound classification. Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset
    corecore