497 research outputs found

    Using Semantic Recommenders for Personalized Recommendations

    Get PDF
    With the ever increasing information overload on the internet, recommender systems have long become a necessity. The popularity of e-commerce sites is increasing by the day and an abundance of shopping sites are presenting users with an increasing number of choices. It has become a challenging task to meet expectations of customers to better understand their needs and provide them with information and suggestions of their interest. With the e-commerce field being fiercely competitive, businesses have started to feel the need of personalization which helps them in building customer loyalty [17]. Personalized recommendations can prove to be the most important aspect of the evolution of the recommender systems. Personalized recommendation services provide opportunities to promote new products, increase sales, click-through and conversion rates [18]. The use of semantic web technologies in recommender systems can effectively enhance the quality of recommendation. Semantic web has provided structured knowledge representation tools such as taxonomies, ontologies, powerful languages such as Resource Description Framework (RDF), Web Ontology Language (OWL), etc. which can be used to represent rich, complex knowledge about things and their relationships and query languages such as SPARQL, reasoning engines that can infer logical consequences from a set of assertions. Semantics enable machines to process natural languages in a manner close to human cognition and mimic human reasoning to a certain extent [12]. This can greatly help to generate personalized predictions in the recommender framework [6]

    Sequeval: an offline evaluation framework for sequence-based recommender systems

    Get PDF
    Recommender systems have gained a lot of popularity due to their large adoption in various industries such as entertainment and tourism. Numerous research efforts have focused on formulating and advancing state-of-the-art of systems that recommend the right set of items to the right person. However, these recommender systems are hard to compare since the published evaluation results are computed on diverse datasets and obtained using different methodologies. In this paper, we researched and prototyped an offline evaluation framework called Sequeval that is designed to evaluate recommender systems capable of suggesting sequences of items. We provide a mathematical definition of such sequence-based recommenders, a methodology for performing their evaluation, and the implementation details of eight metrics. We report the lessons learned using this framework for assessing the performance of four baselines and two recommender systems based on Conditional Random Fields (CRF) and Recurrent Neural Networks (RNN), considering two different datasets. Sequeval is publicly available and it aims to become a focal point for researchers and practitioners when experimenting with sequence-based recommender systems, providing comparable and objective evaluation results

    Visualizing recommendations to support exploration, transparency and controllability

    Get PDF
    Research on recommender systems has traditionally focused on the development of algorithms to improve accuracy of recommendations. So far, little research has been done to enable user interaction with such systems as a basis to support exploration and control by end users. In this paper, we present our research on the use of information visualization techniques to interact with recommender systems. We investigated how information visualization can improve user understanding of the typically black-box rationale behind recommendations in order to increase their perceived relevance and meaning and to support exploration and user involvement in the recommendation process. Our study has been performed using TalkExplorer, an interactive visualization tool developed for attendees of academic conferences. The results of user studies performed at two conferences allowed us to obtain interesting insights to enhance user interfaces that integrate recommendation technology. More specifically, effectiveness and probability of item selection both increase when users are able to explore and interrelate multiple entities - i.e. items bookmarked by users, recommendations and tags. Copyright © 2013 ACM

    Just browsing?:understanding user journeys in online TV

    Get PDF
    Understanding the dynamics of user interactions and the behaviour of users as they browse for content is vital for advancements in content discovery, service personalisation, and recommendation engines which ultimately improve quality of user experience. In this paper, we analyse how more than 1,100 users browse an online TV service over a period of six months. Through the use of model-based clustering, we identify distinctive groups of users with discernible browsing patterns that vary during the course of the day

    LLMRec: Large Language Models with Graph Augmentation for Recommendation

    Full text link
    The problem of data sparsity has long been a challenge in recommendation systems, and previous studies have attempted to address this issue by incorporating side information. However, this approach often introduces side effects such as noise, availability issues, and low data quality, which in turn hinder the accurate modeling of user preferences and adversely impact recommendation performance. In light of the recent advancements in large language models (LLMs), which possess extensive knowledge bases and strong reasoning capabilities, we propose a novel framework called LLMRec that enhances recommender systems by employing three simple yet effective LLM-based graph augmentation strategies. Our approach leverages the rich content available within online platforms (e.g., Netflix, MovieLens) to augment the interaction graph in three ways: (i) reinforcing user-item interaction egde, (ii) enhancing the understanding of item node attributes, and (iii) conducting user node profiling, intuitively from the natural language perspective. By employing these strategies, we address the challenges posed by sparse implicit feedback and low-quality side information in recommenders. Besides, to ensure the quality of the augmentation, we develop a denoised data robustification mechanism that includes techniques of noisy implicit feedback pruning and MAE-based feature enhancement that help refine the augmented data and improve its reliability. Furthermore, we provide theoretical analysis to support the effectiveness of LLMRec and clarify the benefits of our method in facilitating model optimization. Experimental results on benchmark datasets demonstrate the superiority of our LLM-based augmentation approach over state-of-the-art techniques. To ensure reproducibility, we have made our code and augmented data publicly available at: https://github.com/HKUDS/LLMRec.gitComment: WSDM 2024 Oral Presentatio
    • …
    corecore