
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Sequeval: an offline evaluation framework for sequence-based recommender systems / Monti, Diego; Palumbo, Enrico;
Rizzo, Giuseppe; Morisio, Maurizio. - In: INFORMATION. - ISSN 2078-2489. - ELETTRONICO. - 10:5(2019), p. 174.

Original

Sequeval: an offline evaluation framework for sequence-based recommender systems

default

Publisher:

Published
DOI:10.3390/info10050174

Terms of use:
openAccess

Publisher copyright

No description

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2733409 since: 2019-05-15T14:33:53Z

MDPI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234928842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 information

Article

Sequeval: An Offline Evaluation Framework for
Sequence-Based Recommender Systems

Diego Monti 1,* , Enrico Palumbo 1,2,3 , Giuseppe Rizzo 4 and Maurizio Morisio 1

1 Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; enrico.palumbo@ismb.it (E.P.);
maurizio.morisio@polito.it (M.M.)

2 Istituto Superiore Mario Boella, Via Pier Carlo Boggio 61, 10138 Turin, Italy
3 EURECOM, Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France
4 LINKS Foundation, Via Pier Carlo Boggio 61, 10138 Turin, Italy; giuseppe.rizzo@linksfoundation.com
* Correspondence: diego.monti@polito.it; Tel.: +39-011-0907087

Received: 15 April 2019; Accepted: 7 May 2019; Published: 10 May 2019
����������
�������

Abstract: Recommender systems have gained a lot of popularity due to their large adoption in
various industries such as entertainment and tourism. Numerous research efforts have focused
on formulating and advancing state-of-the-art of systems that recommend the right set of items to
the right person. However, these recommender systems are hard to compare since the published
evaluation results are computed on diverse datasets and obtained using different methodologies.
In this paper, we researched and prototyped an offline evaluation framework called Sequeval that is
designed to evaluate recommender systems capable of suggesting sequences of items. We provide a
mathematical definition of such sequence-based recommenders, a methodology for performing their
evaluation, and the implementation details of eight metrics. We report the lessons learned using this
framework for assessing the performance of four baselines and two recommender systems based on
Conditional Random Fields (CRF) and Recurrent Neural Networks (RNN), considering two different
datasets. Sequeval is publicly available and it aims to become a focal point for researchers and
practitioners when experimenting with sequence-based recommender systems, providing comparable
and objective evaluation results.

Keywords: evaluation framework; offline evaluation; sequence; sequence-based recommender
systems; recommender systems; metrics

1. Introduction

Recommender Systems (RSs) are software tools capable of suggesting items to users according
to their preferences [1]. A popular recommendation technique, called Collaborative Filtering (CF),
consists of learning users’ preferences by only relying on their interactions with the items available in
a catalog. For example, using a nearest-neighbor search (memory-based CF) or a machine learning
model (model-based CF), it is possible to select the most relevant items for each user who has interacted
enough with the system [2]. An alternative approach to this problem is represented by content-based
RSs, which can generate suggestions by matching users’ profiles with the features of the items [3,4].
Another family of recommendation methods proposed in the literature is represented by hybrid
algorithms, capable of combining both collaborative and content-based filtering for mitigating the
individual weaknesses of the previous techniques [5].

While these recommendation approaches usually guarantee interesting results in traditional
domains, such as movie recommendation, they are not capable of capturing the temporal evolution of
users’ preferences [6]. For example, different authors [7–9] argue that movies watched recently provide

Information 2019, 10, 174; doi:10.3390/info10050174 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-3821-5379
https://orcid.org/0000-0003-3898-7480
https://orcid.org/0000-0003-0083-813X
https://orcid.org/0000-0001-7362-906X
http://dx.doi.org/10.3390/info10050174
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/5/174?type=check_update&version=2

Information 2019, 10, 174 2 of 22

more useful information about a certain user than those she consumed in a distant past. It is, in fact,
reasonable to assume that a recent item may have a high influence on the choice of the next one.

Therefore, a RS that exploits sequential data for predicting the sole next item that will be
consumed by a user can be defined as sequential recommender [10]. Several works related to sequential
recommenders are available in the literature. For example, Zhou et al. [11] exploited a sequential pattern
mining algorithm for recommending which page to visit next in a website, while Rendle et al. [8] relied
on Markov chains for suggesting products considering previous purchases. Recently, He et al. [9]
designed a recommender system capable of modeling how users’ interests evolve over time. While
all these methods usually consider user preferences observed during the training phase as sequences,
no temporal ordering is available at recommendation time, as only one item, or a list of items ranked
by relevance, is suggested to users. Because of the popularity of CF techniques, most of sequential
recommenders are based on such approaches [12], but in principle it is also possible to design systems
capable of analyzing sequences according to content-based methods.

In general, even if the problem of creating a sequence of words starting from an initial one
is a well-known task inside the natural language processing community [13], the idea of creating
personalized sequences of items is less widespread in the context of RSs [14]. For this reason, it would
be interesting to be able to exploit the temporal ordering not only during the training phase but also for
generating sequences of recommended items, such as in the task of language modeling. Some solutions
to this problem have already been proposed in industry, and also few researchers have discussed how
to automatically construct music playlists [15] or suggest sequences of points-of-interest to tourists [16]
starting from seed items.

However, early studies conducted in this field lack of a common definition of the problem that
they are trying to address. For example, session-based RSs only consider the last session of the current
user [17], while sequence-aware recommenders also exploit the history of past sessions [12] and they can
be considered equivalent to sequential recommenders. Furthermore, it is not clear if item repetitions
are allowed in the suggestions or not.

In this work, we argue that it is possible to consider RSs capable of creating personalized sequences
of an arbitrary length as a generalization of a sequential recommender because the latter is only able of
creating sequences of length one. In contrast to traditional RSs that usually create lists of items ranked
by relevance, in the following we will define a recommender that exploits a temporal dimension
both in the training and in the generation phase as a sequence-based recommender, as it observes and
suggests sequences of items meant be consumed in a particular order.

On the other side, several evaluation protocols and metrics for analyzing novel RSs via offline
experiments are available, to capture the different aspects of the recommendation algorithm [18].
However, the lack of a standardized way of performing such in vitro experiments leads to results that
are often incomparable [19]. To the best of our knowledge, no evaluation framework for sequence-based
RSs has already been proposed. The motivating hypothesis of this study is that in the context of
sequence-based RSs, traditional evaluation metrics need to be computed at the level of sequences
instead of the level of users.

In our view, an evaluation framework consists of a methodology for performing an experimental
comparison, a set of metrics, and a software tool that implements them. Therefore, the main aim of this
work is to address the following research questions and to introduce an offline evaluation framework
for sequence-based RSs that we called Sequeval.

RQ1 What is the formal definition of a sequence-based recommender system?
RQ2 How already established metrics can be extended and adapted for evaluating a sequence-based

recommender system?
RQ3 Against which baselines a sequence-based recommender system can be compared?

Because our evaluation approach is agnostic with respect to the implementation details of the
algorithms under analysis, it can be successfully exploited to also assess the performance of systems

Information 2019, 10, 174 3 of 22

based on alternative recommendation methods [20] or dealing with unconventional categories of
items, for example 3D movies [21] or cultural digital contents [22], especially if they are supposed to
be consumed by users in a sequential order.

Besides, by openly releasing a Python implementation of Sequeval, we aim to encourage the
use of the proposed framework as an attempt to standardize the evaluation of sequence-based RSs,
mitigating the comparability problem in RSs research.

The remainder of this paper is organized as follows: in Section 2 we review related works;
in Section 3 we present the mathematical definition of a sequence-based recommender system;
in Section 4 we introduce Sequeval by describing its evaluation protocol, metrics, and implementation
details; in Section 5 we perform an empirical analysis of the framework with two different datasets.
Finally, in Section 6, we formulate our conclusions and we outline future works.

2. Related Work

In this section, we distinguish among works related to RSs capable of exploiting sequences of
items (Section 2.1), evaluation protocols and metrics for performing an offline comparison (Section 2.2),
and their experimental reproducibility (Section 2.3).

2.1. Sequential Recommenders

Several examples of sequential recommenders are available in the literature [12]. Zhou et al. [11]
proposed a web recommender system based on a sequential pattern mining algorithm. The recommender
is trained with the access logs of a website and its goal is to predict the pages that are likely to be visited by
a certain user, given her previously visited pages. The authors proposed to store the model in a tree-like
structure, relying on a technique originally designed for matching substrings over a finite alphabet of
characters. A recommendation is then created by matching the sequence of pages already visited by the
target user with the sequences previously analyzed by the algorithm.

In the context of market basket analysis, it is also possible to exploit the sequence of previous
transactions to predict what a customer is going to buy next [23]. Rendle et al. [8] proposed a method
based on personalized transition graphs over Markov chains, while Wang et al. [10] designed a
recommender capable of modeling both the sequential information from previous purchases and the
overall preferences by a hybrid representation.

Bellogín and Sánchez [24] proposed a similarity metric designed to compare users in the context
of CF RSs. This metric takes into account the temporal sequence of users’ ratings to identify common
behaviors. The authors argue that it is possible to consider a sequence of items as a string, where each
character represents an item, and compare them using the longest common subsequence algorithm [25].

Recently, He et al. [9] introduced the concept of translation-based recommendation. While a
traditional RS only considers the pairwise interactions between items and users, their idea is to model
a third-order relationship among a user, the items she interacted with in the past, and the item she is
going to visit next. Each user can be represented as a vector in a transition space: given the current
item, it is possible to compute where the next one will be located. At recommendation time, it is
possible to generate a list of suggested items by relying on a nearest-neighbor search.

On the other hand, the task of generating recommendations of sequences was already discussed
and presented in a seminal work by Herlocker et al. [14]. The authors suggested that it would be
intriguing to be able to suggest, in the music domain, not only the songs that will be probably liked by
a certain user, but also a playlist of songs that is globally pleasing. Moreover, they also proposed to
apply this recommendation methodology in the context of scientific literature, where it is necessary to
read a sequence of articles to become familiar with a certain topic of interest.

The former problem was later addressed by Chen et al. [15], who designed and implemented
a recommender system capable of generating personalized playlists by modeling them as Markov
chains. Their algorithm is capable of learning, from a set of training playlists, how to represent each
song as a point in a latent space. Then, starting from a seed song, it is possible to create a playlist

Information 2019, 10, 174 4 of 22

of an arbitrary length by repeatedly sampling the transition probabilities between adjacent songs.
The resulting playlist is personalized because of the chosen seed. Furthermore, each user can influence
the generation process by specifying some parameters: for example, a user might be more interested in
popular songs, while another one in songs that are strictly related to the given seed.

Another typical application for a sequence-based recommender is the next point-of-interest (POI)
prediction problem [12]. Given some training sequences of previously liked geographical locations,
this task consists of predicting a sequence of venues that is pleasing for a given user. Feng et al. [16]
proposed an algorithm capable of creating sequences of POIs that have not been already visited.
The authors developed a Metric Embedding algorithm that captures both the sequential information
and individual preference. Such metric is then exploited to create a Markov chain model capable
of representing the transition probabilities between a given POI and the next one. The key features
that are implicitly considered in the embedding creation phase are the conceptual similarity and the
geographical distance of the analyzed venues.

A different line of research is represented by recommenders capable of analyzing sequences of
multimedia objects. For example, Albanese et al. [26] proposed a hybrid recommender system for
retrieving multimedia content based on the theory of social choice and capable of exploiting, among
other signals, the implicit browsing preferences of its users. Later, the authors of [27] introduced a
multimedia recommendation algorithm capable of combining semantic descriptors and usage patterns.
The proposed approach can manage different media types and it enables users to explore several
multimedia channels at the same time. Possible applications of such technologies are represented by
browsing tools for virtual museums [28] and recommenders of cultural heritage sites [29].

Differently from the previously reported works, our main aim is not to propose a novel
recommendation algorithm, but a general method to standardize how the sequences of recommended
items are generated and evaluated in an offline setting.

2.2. Offline Evaluation

To the best of our knowledge, the first survey that deals with the problem of evaluating a
recommender system was conducted by Herlocker et al. [14]. In their work, the authors discuss
when it is appropriate to perform an offline evaluation and when it is necessary to carry on an online,
or in vivo, experiment. The former is particularly useful to select a small set of potentially good
candidates that will be further compared in a real scenario. However, to be complete and trustworthy,
such a evaluation needs to rely on a set of well-defined metrics, that should be able to capture all
characteristics of the recommended items.

They review several accuracy metrics usually exploited by different authors and they classify them
into three categories: predictive accuracy metrics, classification accuracy metrics, and rank accuracy
metrics. These groups are strictly related to the purpose of the recommender system: predicting a
rating for each user-item pair, identifying an item as appropriate or not for a user, and creating an
ordered list of recommended items for a user. Furthermore, the authors suggest that it is necessary
to avoid relying only on accuracy to draw a reliable conclusion: for this reason, they also review and
discuss the metrics of coverage, learning rate, novelty, serendipity, and confidence.

Gunawardana and Shani [18] proposed a set of general guidelines for designing experiments
with the purpose of evaluating RSs. Such experiments can be classified as offline trails, user studies,
or online analysis that involve a live system. Several properties of a recommender system can be
evaluated: for example, the most common ones are user preference, prediction accuracy, coverage, and
utility. The authors argue that the possibility of measuring these properties is strongly influenced by
the kind of study and, in the most extreme scenario, some of them cannot be obtained. For example,
it is very difficult to measure users’ preference in an offline setting.

For each property, different commonly exploited metrics are presented and discussed. Even if the
main metrics proposed for evaluating the most popular properties are widely known and understood,
usually there is little agreement about the most appropriate metrics for characterizing the least common

Information 2019, 10, 174 5 of 22

properties. For example, several definitions, and several metrics, related to the property of utility are
available in the literature. The authors also point out that a key decision of offline experiment design is
the splitting protocol because this choice will greatly influence the final outcome of the measures.

2.3. Experimental Reproducibility

Different authors analyzed the experimental reproducibility of offline evaluations. For example,
Jannach et al. [19] compared several recommendation algorithms in an offline experiment, analyzing
their performance by relying on a comprehensive evaluation framework. The authors considered
different splitting protocols and metrics, designed to characterize both the accuracy, in terms of rating
and ranking, and the coverage of the suggested items. The results of the experimental trails suggest
that some common algorithms, despite their high accuracy, tend to only recommend popular items
that are probably not very interesting for the users of a real system. This problem is related to the
popularity biases introduced by the offline evaluation protocol: for this reason, it is not advisable
to compare different algorithms by relying only on measures related to their accuracy. In addition,
different splitting protocols produce significantly different and non-comparable outcomes.

Bellogín et al. [30] proposed an evaluation framework designed following the methodologies of
the Information Retrieval (IR) field. They suggest that the evaluation procedures available in IR are
widespread: for this reason, they could be successfully exploited by the RS community to create a
shared evaluation protocol based on ranking, as this setting is more similar to the one of a live system.
Unfortunately, three different decisions need to be taken to achieve this goal.

The items considered for the evaluation could be all items available in the dataset, or only the
items available in the test set. The non-relevant items for a certain user could be represented by all
items in the test set not rated by that user, or by a subset of it with a fixed size. Finally, the global
metric could be computed by averaging its value on all users, or on all ratings available in the test
set. Different design choices will result in different evaluation protocols and results. The authors also
identify two sources of biases in offline evaluations protocols: the sparsity bias and the popularity bias.

Several software tools are available with the purpose of simplifying the process of comparing the
performance of recommendation algorithms. They typically include some evaluation protocols and a
reference implementation of well-known techniques. Said and Bellogín [31] compared several of these
tools to check if their results are consistent. They discovered that the values obtained with the same
dataset and algorithm may vary significantly among different frameworks. For this reason, it is not
feasible to directly compare the scores reported by these tools, because they are obtained relying on
several protocols. The discrepancies reported by the authors are mainly caused by the data splitting
protocol, the strategy used to generate the candidate items, and the implementation choices related to
the evaluation metrics.

3. Sequence-Based Recommender Systems

Before analyzing the evaluation framework, we introduce the problem of recommending
sequences and we provide an answer to RQ1. In a traditional recommender system, users express
positive or negative preferences about a certain item. An item may be, for example, a product,
a song, or a place. In contrast, we assume that when a user consumes or interacts with an item, she
expresses an implicit rating about it. This assumption in the literature goes under the name of implicit
feedback [14]. Because we are also considering the temporal dimension to build the sequences, each
rating is associated with a timestamp that represents the point in time when it was recorded.

Definition 1. Given the space of items I , the space of users U , the space of timestamps T , a rating r ∈ R is
a tuple r = (ι, υ, τ), where ι ∈ I is the item for which the user υ ∈ U expressed a positive preference at the
timestamp τ ∈ T .

Information 2019, 10, 174 6 of 22

By relying on the set of ratingsR available in the system, it is possible to construct the sequences
that will be used to train and to evaluate the recommender. Each sequence only includes the ratings
expressed by a single user. On the other hand, each user may produce several sequences.

The concept of sequence is similar to the concept of session in a traditional web interaction: if two
ratings are distant in time more than an interval δτ, then they belong to different sequences. Some
ratings may be isolated and, for this reason, not part of any sequence. The most appropriate value for
δτ depends on the domain: for example, in the POI recommendation scenario, it could be considered
of a few hours as reported in [16].

Definition 2. A sequence s ∈ S is a temporally ordered list of ratings 〈r1, r2, . . . , rn〉 created by a particular
user υ ∈ U , i.e., for each i, ri = (ιi, υ, τi) and τi < τi+1.

In Algorithm 1, we list the procedure for creating the set S , given the set of users U , the set of
ratingsR, and a time interval δτ. Please note that we do not allow the creation of sequences of length
one because they do not encode a meaningful temporal order.

Algorithm 1 Generation of the set S , given U ,R, and δτ.

Require: U 6= {∅} ∧R 6= {∅} ∧ δτ
.
= τi − τj

1: S ← {∅}
2: for all υ ∈ U do

3: s← ∅
4: for all ri ∈ Rυ : τi−1 < τi ∧ i > 1 do

5: if τi < τi−1 + δτ then

6: if s is ∅ then

7: s← 〈ri−1〉
8: end if
9: s← s + 〈ri〉

10: else

11: if |Rs| > 1 then

12: S ← S ∪ {s}
13: s← ∅
14: end if
15: end if
16: end for
17: end for
18: return S

A sequence-based recommender is an RS capable of suggesting a personalized sequence that is
built starting from a seed rating r0, considering the example sequences already available in the system
and the specific behavior of a certain user. The seed rating is characterized by a seed item ι0, a target
user υ, and an initial timestamp τ0. The seed item can be represented by any item that belongs to the
catalog, but, more in general, it is a point in the space of items I . For example, in the music domain,
it could identify not only a particular song, but also an artist, a genre, or a mood. The target user is the
user to whom the sequence is recommended, while the initial timestamp represents the point in time
in which the recommendation is created. The generated sequence is of a fixed length and it contains
exactly k ratings. Please note that if k = 1, we are dealing with a sequential RS as defined in [10].

Definition 3. Given a seed rating r0 ∈ R : r0 = (ι0, υ, τ0), and a length k ∈ N, a sequence-based recommender
is the function sequence : R×N→ S , i.e., sequence(r0, k) = 〈r1, r2, . . . , rk〉 : ri = (ιi, υ, τi).

Most sequence-based recommenders are based on probability models, and therefore they can be
interpreted as a sampling function σ applied to the conditional probability P(〈r1, r2, . . . , rk〉|r0):

Information 2019, 10, 174 7 of 22

sequence(r0, k) = σ(P(〈r1, r2, . . . , rk〉|r0)) (1)

Using the chain rule, the sequence probability P(〈r1, r2, . . . , rk〉|r0) can be written as:

P(〈r1, r2, . . . , rk〉|r0) =P(rk|〈r0, . . . , rk−1〉)·
P(rk−1|〈r0, . . . , rk−2〉) · · · P(r1|〈r0〉)

(2)

For example, in the case of a Markov chain, each rating depends on the previous one, i.e.,
P(rk|〈r0, . . . , rk−1〉) = P(rk|rk−1):

P(〈r1, r2, . . . , rk〉|r0) = P(rk|rk−1)P(rk−1|rk−2) · · · P(r1|r0) (3)

Thus, a sequence-based recommender system typically works by learning from a set of
sequences Straining the conditional probability of the next rating rk to the sequence of previous ones
〈r0, r1, . . . , rk−1〉, i.e., the factors of the right-hand side of Equation (2). Sampling sequences directly
from Equation (2) would require computing the probabilities of all the |I|k possible sequences, where
|I| is the size of the vocabulary of items and k is the length of the sequences. Since this becomes easily
computationally unfeasible, we opt for a greedy approach, in which at each step we sample the next
most likely item. A sampling function ρ is defined to select a particular next rating from the previous
ones at each step:

r̂k = ρ(P(rk|〈r0, r1, . . . , rk−1〉)) (4)

A trivial example of ρ is the argmax function, which simply selects the most probable next rating.
In the following, we will assume that ρ is implemented by a weighted random sampling function.

Algorithm 2 formalizes the procedure for generating a personalized sequence, given a seed
rating r0, and a length k, i.e., it describes the sampling function σ. For k times, the next rating of
the recommended sequence is generated using the function predict. The function predict : S → R
implements the sampling function ρ and it returns the most probable next rating for the current input
sequence. In practice, the sequence-based recommender system can estimate the probability that the
next rating of the current sequence will include a particular item at a certain timestamp.

Please note that the greedy procedure described in Algorithm 2 is not the only way to create
samples of sequences, and thus, the user of the evaluation framework or the designer of the
recommendation method are free to define other ways and strategies for that end.

Algorithm 2 Recommendation of a sequence of length k.

Require: r0 ∈ R∧ k > 0
1: s← 〈r0〉
2: for i = 1 to k do

3: ri ← predict(s)
4: s← s + 〈ri〉
5: end for
6: return s− 〈r0〉

To compute some metrics that are part of the evaluation framework, it is necessary to know the
number of items that are associated with a certain sequence. For this reason, we define the set Is as
the set of items that are part of the sequence s, and the setRs as the set of ratings that are part of the
sequence s. Therefore, |Is| is the number of distinct items available in s, while |Rs| represents the
length of s, i.e., the number of ratings available in s.

For instance, we can suppose that the set of ratingsR is equal to {(ι1, υ1, τ1), (ι2, υ1, τ2), (ι3, υ2, τ3),
(ι1, υ1, τ4), (ι2, υ2, τ5), (ι3, υ1, τ6)}. Then, if we assume that the only pair of timestamps that violates

Information 2019, 10, 174 8 of 22

the δτ constraint is (τ4, τ6), we can create two sequences: s1 = 〈(ι1, υ1, τ1), (ι2, υ1, τ2), (ι1, υ1, τ4)〉, and
s2 = 〈(ι3, υ2, τ3), (ι2, υ2, τ5)〉. The rating (ι3, υ1, τ6) is not part of any sequence because it was created
at some point in time later than τ4 + δτ and we do not have any subsequent rating expressed by
υ1. We also observe that |Is1 | = 2 and |Rs1 | = 3. We would like to recommend a sequence s of
length two to user υ1 starting from item ι3 at timestamp τs,0. In fact, it is not required that the item ι3
already appeared in the sequences related to user υ1. A possible solution to this problem is to define
rs,0 = (ι3, υ1, τs,0) and then to recommend s = sequence(rs,0, 2) = 〈(ι2, υ1, τs,1), (ι1, υ1, τs,2)〉, where
τs,1 and τs,2 may be used to suggest when consuming the items.

4. Sequeval

Comparing the performance of several recommenders with an experiment that involves a live
system is not always feasible or appropriate. For this reason, it is necessary to first perform a
preliminary evaluation in an offline scenario [18]. In such a setting, we can assess the performance of
the algorithms by comparing with baselines, understanding the strengths and weaknesses of those,
and thus avoiding affecting real users negatively in their experience with the system. The results of
an offline experiment will be less trustworthy than the ones obtained from an online study because
there was no real interaction with the system [32], but they are usually exploited as the first stage in
the preparation of the in vivo experimentation.

Even if an offline study is only the first step in the process of evaluating a recommender, it is
necessary to rely on a solid evaluation protocol and a set of well-defined metrics that are able to capture
all the characteristics of the analyzed algorithm [33]. In the following, we will introduce an offline
evaluation framework for sequence-based RSs that we called Sequeval.

Our framework is based on the concept of sequence as formalized in Section 3. First, an initial
dataset is transformed into a set of sequences following Algorithm 1. Then, the sequences are split
between training and test sets. At this point, one or more external recommenders are plugged into
the framework: they are exposed to the training sequences and they are asked to create suggested
sequences starting from the same seeds of the test ones. A possible strategy for suggesting additional
sequences is described in Algorithm 2, but the user can define other approaches. Finally, considering
the recommendations available, the framework can compute different evaluation metrics.

In details, Sequeval is made of an evaluation protocol, presented in Section 4.1, a set of evaluation
metrics, described in Section 4.2, and a software implementation that is introduced in Section 4.3.

4.1. Evaluation Protocol

One of the first problems that an evaluation framework should consider is how to split the dataset
between the training set and the test set. This task is not trivial, as it will deeply influence the outcome
of the experimentation [31]. Since we are dealing with sequences, we need to split the set of sequences
S in a training and test set such that S = Straining ∪ Stest.

Several solutions to this problem are possible: a simple but effective one is to perform the splitting
by randomly assigning sequences to these sets according to a certain ratio, typically the 80% for training
and the 20% for testing. If the number of sequences available is limited, it is necessary to perform a
cross-validation. Another possibility is to identify an appropriate point in time and to consider all the
sequences created before it as part of the training set, and after it as part of the test set. This protocol
simulates the behavior of a recommender introduced at that point in time and it avoids too optimistic
results caused by the knowledge of future events [34]. The latter solution can be considered the most
reliable one, but if we do not have any temporal information because the sequences have already been
created, it is necessary to adopt a random protocol.

More in general, it is impossible to identify a splitting method that is appropriate for every
experiment, as it depends on the domain and on the dataset available. For this reason, Sequeval does
not impose the adoption of a particular splitting protocol, but the experimenter can choose the most
appropriate one.

Information 2019, 10, 174 9 of 22

To compute the metrics that are part of the evaluation framework, the sequence-based
recommender is trained with all the sequences s ∈ Straining. Then, for each test sequence s ∈ Stest :
s = 〈r1, r2, . . . , rn〉, we predict a recommended sequence s of length k using r1 = (ι1, υ, τ1) as seed
rating, i.e., s = sequence(r1, k). Therefore, s is a sequence suggested by the recommender, for the
same user and starting from the same item of s. We also define s′ as the reference sequence, i.e.,
s′ = 〈r2, r3, . . . , rn〉 or s′ = s − 〈r1〉. The reference sequence is equal to the original sequence, but
the first rating is omitted, as it was already exploited for creating the recommended sequence. This
procedure is graphically illustrated in Figure 1.

Seed

Seed

Sequences

Train Test

Evaluator

Recommender

Reference

Figure 1. An illustration of the evaluation procedure. First, the set of sequences is split between training
and test set. Then, the recommender is trained with the sequences available in the training set. Finally,
the recommender is asked to generate a sequence for each seed from the test set; such sequences are
compared with the corresponding reference sequences.

4.2. Evaluation Metrics

The second component of Sequeval is a set of eight metrics that we present in the following.
In order to address RQ2, we include in such set not only classic metrics such as coverage and precision
but also less widespread ones such as novelty, diversity, and serendipity. Furthermore, we introduce
the metric of perplexity, as it is explicitly designed for characterizing sequences [35]. In contrast, we
decided to avoid measuring recall because it is clear that the number of recommended items is often
likely to be much lower than the total number of relevant items.

4.2.1. Coverage

In general, the coverage of a recommender is a measure that captures the number of items in the
catalog over which the system can make suggestions [18]. For example, in an online store scenario,
it could represent the percentage of products that are recommended to users in a certain period of time.
An algorithm with a higher coverage is generally considered more useful because it better helps users
to explore the catalog.

We generate a set of recommended sequences considering as seed the first rating of all sequences
in the test set Stest for a recommender that suggests sequences of length k. Afterward, we compute the

Information 2019, 10, 174 10 of 22

distinct number of items available in the sequences created and we divide the result by the cardinality
of the set I .

coverage(k) =
|⋃s∈Stest Isequence(r1,k)|

|I| (5)

This metric expresses the percentage of items that the sequence-based recommender can suggest
when generating sequences similar to the ones available in the test set and it is strictly related to its
cardinality. This approach is similar to the metric of prediction coverage described by Herlocker et al. [14].

4.2.2. Precision

Precision is a widespread metric in the context of IR evaluation [36] and it represents the fraction
of retrieved documents that are relevant. For a traditional recommender system, precision measures the
fraction of recommended items that are relevant for a certain user [37]. If we consider a sequence-based
recommender, it is necessary to compute this metric for each sequence s ∈ Stest, instead of each user.

precision(k) =
1
|Stest|

· ∑
s∈Stest

hit(s′, s)
min(|Rs′ |, k)

(6)

The function hit : S × S → N returns the number of items in s that are also available in s′. If the
same item is present in s multiple times, it is considered a hit only if it is repeated also in s′. This is an
extension to the traditional definition of precision that also considers the fact that an item may appear
multiple times inside a sequence.

The number of relevant items is divided by the minimum number between the length of the
reference sequence |Rs′ | and the length of the recommended sequence k. We decided to adopt this
solution to avoid penalizing an algorithm that is evaluated considering reference sequences shorter
than the recommended sequences.

4.2.3. nDPM

The Normalized Distance-based Performance Metric (nDPM) was originally proposed by Yao
in the context of information retrieval [38]. The intuition of the author is that in order to compare a
system ranking with a reference user ranking, it is necessary to consider all the possible pairs of items
available in the system ranking: they can be agreeing, contradictory, or compatible with respect to the
user ranking. We decided to adopt such a metric instead of the Normalized Discounted Cumulative
Gain (nDCG) [39] because, in a sequence of recommendations, it is not necessarily true that the first
items are more important than the last ones.

nDPM(k) =
1
|Stest|

· ∑
s∈Stest

2 pairs−(s′, s) + pairsu(s′, s)
2 pairs(s)

(7)

The function pairs− : S × S → N returns the number of pairs in the sequence s that are in the
opposite order with respect to the reference sequence s′. The function pairsu : S × S → N returns the
number of pairs in the sequence s for which the ordering is irrelevant, i.e., when at least one of the
items is not available in s′ or when at least one of the items is available multiple times in s′. Finally,
the function pairs : S → N returns the number of all possible pairs available in the recommended
sequence s. The pairs are created without considering the ordering of the items inside a pair: for
example, if we have the sequence 〈a, b, c〉, the possible pairs are (a, b), (a, c), (b, c).

The value of this metric will result close to 1 when the sequences generated by the recommender
are contradictory, to 0 when they have the same ranking, and to 0.5 when the ordering is irrelevant
because they contain different items. A low precision will imply a nDPM very close to 0.5.

Information 2019, 10, 174 11 of 22

4.2.4. Diversity

The metric of sequence diversity included in this framework is inspired by the metric of Intra-List
Similarity proposed by Ziegler et al. [40]. The recommended sequences are considered to be lists of
items and the obtained value is not related to their internal ordering. The purpose of this metric is
understanding if the sequences contain items that are sufficiently diverse. A higher diversity may be
beneficial for the users, as they are encouraged to better explore the catalog [41].

diversity(k) =
1
|Stest|

· ∑
s∈Stest

∑k
∀i,∀j:0<i<j 1− sim(ιi, ιj)

k× (k− 1)
(8)

The function sim : I × I → [−1, 1] is a generic similarity measure between two items. This
measure may be taxonomy-driven or content-based: for example, a possible content-based similarity
measure is the cosine similarity. The resulting value is a number in the interval [0, 2]: higher values
represent a higher diversity.

4.2.5. Novelty

Vargas et al. [42] suggested that it would be useful to be able to characterize the novelty of the
recommendations. They proposed a metric that rewards algorithms capable of identifying items that
have a low probability of being already known by a specific user because they belong to the long-tail
of the catalog. We have included such metric in our framework to assess whether the items available
in the suggested sequences are not too obvious.

novelty(k) = − 1
|Stest| × k

· ∑
s∈Stest

k

∑
i=1

log2 freq(ιi) (9)

The function f req : I → [0, 1] returns the normalized frequency of a certain item ι ∈ I , i.e., the
probability of observing that item in a given sequence s ∈ Straining. We can define the probability of
observing the item ι as the number of ratings related to ι in the training sequences divided by the
total number of ratings available. We also assume that log2(0)

.
= 0 by definition, to avoid considering

as novel items for which we do not have any information, i.e., the items that do not appear in the
training sequences.

4.2.6. Serendipity

Serendipity can be defined as the capability of identifying items that are both attractive and
unexpected [43]. Ge et al. proposed to measure the serendipity of a recommender by relying on the
precision of the generated lists after having discarded the items that are too obvious [33].

To create a list of obvious items, it is possible to exploit a primitive recommender that is a
recommender only capable of making obvious suggestions. For example, a primitive recommender
could be implemented using the Most Popular (MP) baseline, which is defined in Section 4.3. It is
reasonable to assume that popular items do not contribute to the serendipity of the recommendations
because they are already well known by many users.

By modifying the metric of precision described in Section 4.2.2, it is possible to introduce the
concept of serendipity in the evaluation of a sequence-based recommender. In this case, the primitive
recommender will always create a sequence of length k that contains the items that are have been
observed with the highest frequency in the training set.

serendipity(k) =
1
|Stest|

· ∑
s∈Stest

hit(s′, s− ŝ)
min(|Rs′ |, k)

(10)

We define ŝ as the sequence generated by the primitive recommender from the same seed of s, i.e.,
ŝ = primitive(r1, k). Moreover, the sequence s− ŝ contains all the ratings related to the items available

Information 2019, 10, 174 12 of 22

in s that are not present in ŝ. The resulting value will be a number in the interval [0, 1], lower than
or equal to precision. The difference between precision and serendipity represents the percentage of
obvious items that are correctly suggested.

4.2.7. Confidence

The metric of confidence reflects how much the system trusts its own suggestions and it is
useful for understanding how robust the learned model is [44]. It is usually computed as the average
probability that the suggested items are correct. This metric expresses the point of view of the
recommender, as the probability is reported by the model. Therefore, the metric is always equal to 1
with the MP recommender, as it is certain of the predictions.

A sequence-based recommender generates the next item of the sequence by considering all the
previous items. For this reason, we can interpret the conditional probability of obtaining a certain item,
given the sequence of previous ones, as the confidence that the system has in that suggestion.

confidence(k) =
1

|Stest| × k
· ∑

s∈Stest

k

∑
i=1

P(ιi|ιi−1, ιi−2, . . .) (11)

We also define ι0
.
= ι1, i.e., the zero-th item of the recommended sequence is its seed item.

Therefore, this metric is computed by also considering the probability of obtaining the first item ι1,
given the seed item of s.

4.2.8. Perplexity

Perplexity is a widespread metric in the context of neural language modeling evaluation [35],
typically used to measure the quality of the generated phrases. Because there is a strong similarity
between creating a sequence of natural language words and sequence of recommended items given an
initial seed, perplexity can be also successfully exploited in this context.

This metric can be defined as the exponential in base 2 of the average negative log-likelihood of
the model, i.e., the cross-entropy of the model. For models based on the cross-entropy loss function
such as neural networks, the perplexity can also be seen as a measure of convergence of the learning
algorithm. Differently from the metric of confidence, the conditional probability P(ιi+1|ιi, ιi−1, . . .) is
computed considering the items of the test sequence s, and not of the recommended sequence s. For
this reason, it does not express the point of view of the recommender.

perplexity = 2
− 1

∑s∈Stest
|Rs |−1 ·∑s∈Stest ∑

|Rs |−1
i=0 log2 P(ιi+1|ιi ,ιi−1,...)

(12)

Intuitively, the obtained value represents the number of items from which an equivalent random
recommender should choose to obtain a similar sequence. The lower is the perplexity, the better is the
system under evaluation. Therefore, the perplexity of a random recommender is equal to |I|. If the
performance of the recommender is worse than a random one, the perplexity will be higher than |I|:
for example, if only one conditional probability is equal to zero, then perplexity = +∞.

4.3. Implementation

The third component of Sequeval is sequeval [45], a Python implementation of the evaluation
framework which is publicly available on GitHub (https://github.com/D2KLab/sequeval). This
implementation is based on the protocol presented in Section 4.1 and it includes the metrics described
in Section 4.2.

In details, sequeval is a Python package designed following a modular structure. For each
component, we defined an abstract class and then we realized one or more possible implementations
to enable software extensibility. For example, we have implemented an input module capable of
processing a textual file in a MovieLens-like format (UIRT), but the support to other dataset formats

https://github.com/D2KLab/sequeval

Information 2019, 10, 174 13 of 22

can be easily added. The module representing the recommender system under analysis includes an
abstract class that is based on the sequence generation logic formalized in Algorithm 2.

To exploit the proposed framework, it is necessary to realize an implementation of the abstract
recommender that must be capable, given the user and the current item of the sequence, of predicting
the probabilities for the possible items of being the next one inside the recommended sequence. If the
weighted random sampling generation logic is not appropriate, it is possible to override the relative
method and to define an alternative recommendation approach.

For obtaining the experimental results, it is necessary to write an evaluation script that relies on
this library. We provide a simple evaluation script which can be used to perform different experiments.
This script can be easily modified to accommodate novel recommendation techniques.

We also created an extensive test suite achieving the 98% of code coverage for validating
the robustness of our implementation and for better supporting future improvements. The total
development cost of this Python library could be estimated around 40 h.

For demonstrative purposes, we have implemented four baseline recommenders, which are
illustrated in the following and represent our answer to RQ3. These baselines can be interpreted as an
adaptation of classic non-personalized recommendation techniques to our sequence-based scenario.

Most Popular The MP recommender analyzes the sequences available in the training set to
compute the popularity of each item, i.e., the number of times an item appears in the training
sequences. Then, at recommendation time, it ignores the seed rating, and it always creates a
sequence that contains the MP item as the first rating, the second MP item as the second rating,
and so on. More formally, the probability that the item ιi will appear in the i-th rating of the
sequence is P(ιi) = 1, where i also represents the position of the item in the ranking of the
MP ones.
Random The random recommender simply creates sequences composed of ratings that contain
an item randomly sampled from a uniform probability distribution. The seed rating is discarded
and the probability of observing the item ιi is P(ιi) = 1/|I|, where |I| represents the number
of items available in the system.
Unigram The unigram recommender can generate sequences that contain ratings with items
sampled with a probability proportional to the number of times they were observed in the
training sequences. In particular, the probability of observing the item ιi is equal to the number
of ratings containing ιi divided by the total number of ratings available in the training sequences.
As with the previous baselines, the seed rating is ignored during the recommendation phase.
Bigram The bigram recommender estimates the 1-st order transition probabilities among all
possible pair of items available in the training sequences. The add-one smoothing technique
is exploited to avoid the attribution of a strict zero probability to the pairs that were not
observed during the training phase [46]. At recommendation time, the seed rating is exploited
for selecting the first item, and then each item will influence the choice of the next one. The
probability of sampling item ιi after item ιi−1 is equal to the number of times this transition
occurred in the training sequences plus one divided by the total number of transitions available.

5. Experimental Analysis

In this section, we perform an experimental analysis of Sequeval by relying on its implementation
described in Section 4.3 for comparing the behavior of the four baselines with a recommender system
based on Conditional Random Fields (CRF) [47] and another one that exploits Recurrent Neural
Networks (RNN) [48]. The purpose of this comparison is to assess the validity of the framework by
conducting an offline evaluation in a realistic scenario. Furthermore, we aim to investigate the efficiency
of the proposed approach by analyzing the amount of time required to compute the numerical scores
per each recommender system, considering datasets of different sizes.

Information 2019, 10, 174 14 of 22

5.1. Experimental Setup

The main parameters that need to be specified according to our evaluation framework are the
δτ value used to generate the sequences, the splitting protocol, and the length of the recommended
sequences k. The δτ value and the splitting protocol depend on the dataset and they are reported
in Section 5.2. For performing this empirical analysis, we have decided to exploit the 80% of the
dataset for training the recommenders and the remaining 20% for testing purposes. The length of the
recommended sequences depends on the specifications of the target application: for this evaluation,
we have chosen to set k = 5.

To compute the metric of diversity, we have selected the cosine similarity among the training
sequences as the proximity measure between two items. In fact, we assume that two items are similar
if they appear the same number of times inside the same training sequences. Furthermore, we have
assumed that if an item is unknown, its similarity with another one is zero by definition.

In the following, we provide the rationale for the usage and the implementation details of the two
RSs based on CRF and RNN.

CRF We have implemented a CRF-based recommender system using the CRFsuite software package
(http://www.chokkan.org/software/crfsuite). Since we are interested in predicting an item
given the previous one, we have considered to be feature vectors the training sequences without
their last rating and as corresponding output vectors the same sequences without their first
rating. We have used the gradient descent algorithm with the L-BFGS method [49] as the
training technique. We have chosen to generate both the state and the transition features that
do not occur in the dataset and we have set the maximum number of iterations allowed for the
optimization algorithm to 100.

RNN We have also experimented with a sequence recommender, originally designed for the
tourism domain, based on RNN [50] that are specifically meant to deal with sequential data.
The hyper-parameters of the network have been optimized through a manual search on
the validation set in [50], obtaining: n_layers = 3, dropout = 0.2, learning_rate = 0.0001,
n_hidden = 64, and n_epochs = 10. The main difference of RNNs with respect to standard
feed-forward neural networks is the presence of a hidden state variable ht, whose value depends
both on the input data presented at time xt and on the previously hidden state ht−1 [48] using
loop connections. A typical application of RNNs in neural language modeling is the generation
of text by recursively applying a “next word prediction” [51]. In the same spirit, we address
the problem of next item prediction. The probability of the next rating given the previous ones
P(rk|〈r0, r1, . . . , rk−1〉) is learned during the training process of the neural network without the
need for specifying a particular memory window as in Markov models.

For conducting this experimental campaign, we relied on a machine equipped with two 12-cores
Intel Xeon processors (E5-2680 v3 at 2.50 GHz) and 128 GB of RAM. However, note that sequeval is
a single-threaded application and its memory requirements are actually much lower, around 2.5 GB
with the most demanding dataset at our disposal.

5.2. Datasets

We have performed the experimental analysis considering two different datasets, namely Yes.com
and Foursquare. The former is related to the musical domain, while the latter deals with check-ins
performed at specific POIs.

Because we are interested in modeling sequences, it is important that the temporal information
available is actually meaningful. For example, the popular MovieLens datasets [52] cannot be exploited
for our purposes because the timestamps are associated with the action of assigning a rating on the
platform and not with the action of watching a movie. This hypothesis is supported by the fact that,
if we apply Algorithm 1 to the MovieLens 1M dataset with δτ = 1 h, we obtain unrealistic sequences
with an average length of about 56 movies.

http://www.chokkan.org/software/crfsuite

Information 2019, 10, 174 15 of 22

The Yes.com and Foursquare datasets are characterized by a different distribution of their items,
i.e., songs and venue categories, as it can be observed from Figure 2. In particular, Foursquare contains
few items that are extremely popular, while Yes.com presents a plot that is smoother. This conclusion is
numerically supported by the values of entropy [53] obtained for the two distributions, which are 4.95
for Foursquare and 6.75 for Yes.com. Furthermore, the number of sequences available in Foursquare is
about 40 times higher with respect to Yes.com. Table 1 summarizes the number of users, items, ratings,
and sequences available in these datasets, which are described in detail in the following sections.

0 200 400 600 800 1000
Item by popularity

102

103

104

105

Nu
m

be
r o

f r
at

in
gs

Foursquare
Yes.com

Figure 2. A stacked bar plot with a logarithmic scale representing the number of ratings for each item.
Note the different shapes of their long-tail distributions: it is possible to observe that Foursquare has
more popular items than Yes.com.

Table 1. The number of users, items, ratings, and sequences after the preprocessing steps.

Dataset |U| |I| |R| |S|
Yes.com 1 1089 118,022 10,551

Foursquare 44,319 651 1,047,429 400,261

5.2.1. Yes.com

This dataset contains several playlists originally collected by Shuo Chen from Yes.com in the
context of his research on Metric Embedding [15]. Such website provided a set of APIs (http://web.
archive.org/web/20150316134941/http://api.yes.com) for programmatically retrieving songs aired
by different radio stations in the United States. By crawling them in the period from December 2010 to
May 2011, he managed to obtain 2, 840, 553 transitions. Even if Yes.com is no longer active, the playlist
dataset is publicly available (https://www.cs.cornell.edu/~shuochen/lme/data_page.html).

Yes.com does not include the timestamps, but only the playlists. Therefore, we have assumed
that each playlist represents a sequence, as defined in our evaluation framework. In this case, it is not
necessary to apply Algorithm 1 because the sequences are already available in the dataset in an explicit
form. Because a timestamp-based splitting is not feasible, we have selected, for this dataset, a random
splitting protocol for dividing the sequences between training and test set.

Since we do not have any information regarding the radio stations, it is necessary to consider the
playlists as if they were created by the same user. This approximation is acceptable in the context of
sequence recommendation and it is allowed by the evaluation framework. In fact, differently from
traditional evaluation approaches, all the metrics that we propose are averaged over the sequences
and not over the users.

Because of the computational complexity of the task, we have randomly reduced the complete
dataset 10 times its original size and we have pruned the songs that appear less than 50 times.

http://web.archive.org/web/20150316134941/http://api.yes.com
http://web.archive.org/web/20150316134941/http://api.yes.com
https://www.cs.cornell.edu/~shuochen/lme/data_page.html

Information 2019, 10, 174 16 of 22

5.2.2. Foursquare

The second dataset that we have selected for performing the experimental evaluation of the
framework is similar to the one described in [50] and it was created following the same protocol.

We collected the check-ins performed by the users of the Foursquare Swarm mobile application
(https://www.swarmapp.com) and publicly shared on Twitter from the Twitter API. Then, we
retrieved the category of the place associated with the check-in thanks to the Foursquare API. For this
reason, the items of the dataset are represented by the venue categories available in the Foursquare
taxonomy (https://developer.foursquare.com/docs/resources/categories). The collection phase
lasted from October to December 2017.

To avoid exploiting the interactions generated by automated scripts, we have discarded the
users that performed multiple check-ins in less than one minute. We have also pruned the check-ins
associated with the venue categories that are usually not of interest for a tourist, for example the ones
related to workplaces. For generating the sequences more efficiently, we decided to also remove the
users that have performed less than 10 check-ins in total.

We have set the δτ parameter of the evaluation framework to 8 h. Regarding the splitting protocol,
we have selected the timestamp-based one, considering the timestamp associated with the first rating
as the timestamp of the sequence.

5.3. Results

Table 2 summarizes the figures of the evaluation conducted with Yes.com. The MP recommender
achieved a fair precision, but at the price of a very low coverage, because its predictions are
deterministic. Unsurprisingly, the lowest precision and the highest novelty and diversity are associated
with the random recommender. In contrast, the unigram, the bigram, and the CRF recommenders
obtained comparable scores of precision, but the bigram is the most appealing of these three techniques,
because of its lower perplexity and higher novelty.

Table 2. Overview of the results of the baselines and both CRF and RNN with Yes.com.

Metric MP Random Unigram Bigram CRF RNN

Coverage 0.0046 1.0000 0.9945 1.0000 0.9991 0.9458
Precision 0.0503 0.0090 0.0127 0.0103 0.0190 0.0782

nDPM 0.5007 0.5000 0.5000 0.5000 0.5000 0.4986
Diversity 0.6925 0.9900 0.9815 0.9854 0.9788 0.9052
Novelty 7.2383 10.380 9.7349 10.315 9.8449 9.5762

Serendipity 0.0000 0.0089 0.0107 0.0095 0.0179 0.0706
Confidence 1.0000 0.0009 0.0016 0.0011 0.0020 0.0123
Perplexity +∞ 1089.0 848.96 637.53 747.33 183.49

We can observe that the RNN recommender achieved the highest precision and the lowest
perplexity, resulting in be the most promising algorithm for future online experimentations. Its nDPM
is slightly lower than 0.5, meaning that the items are usually predicted in the correct order. We can also
observe that its serendipity is close to the value of precision: for this reason, it is possible to assume
that most of the sequences are not obvious.

Table 3 lists, instead, the results obtained with Foursquare. In this case, the MP recommender
system accounted for the highest precision, meaning that the top-5 items are extremely widespread,
but, as usual, its coverage is very limited, and it achieved the lowest novelty. On the other hand,
the random recommender scored the lowest precision, and the highest coverage and novelty. The
differences among the unigram, the bigram, and the CRF recommenders are more striking than in the
previous experiment: with this dataset, the unigram accounted for higher precision because of the
popularity of some items, while the bigram for the lowest perplexity.

https://www.swarmapp.com
https://developer.foursquare.com/docs/resources/categories

Information 2019, 10, 174 17 of 22

Table 3. Overview of the results of the baselines and both CRF and RNN with Foursquare.

Metric MP Random Unigram Bigram CRF RNN

Coverage 0.0077 1.0000 0.9616 1.0000 0.9677 0.5069
Precision 0.2259 0.0080 0.0774 0.0607 0.0754 0.0962

nDPM 0.4998 0.5000 0.4994 0.4998 0.4993 0.4991
Diversity 0.9194 0.9971 0.9616 0.9777 0.9621 0.9469
Novelty 4.6056 12.300 7.1421 9.0216 7.3710 6.8374

Serendipity 0.0000 0.0060 0.0256 0.0230 0.0252 0.0365
Confidence 1.0000 0.0015 0.0171 0.0140 0.0179 0.0264
Perplexity +∞ 651.00 141.41 122.99 147.49 140.39

The RNN recommender system obtained the second-best precision and perplexity, resulting in a
good compromise if we are interested in optimizing both these metrics. Its fair coverage and the low
value of serendipity are other hints of the fact that the Foursquare dataset contains few items that are
very popular: this characteristic was, in fact, learned and exploited by the recommender.

Finally, we report in Table 4 the amount of time needed for computing the previously described
evaluation metrics per recommendation algorithm with the Foursquare and Yes.com datasets.
We observe that in the worst case, the evaluation framework was able to conduct an experimental
campaign in a few hours. The metric of diversity was the most computationally expensive one because
of the time needed to compute the cosine similarity. This fact is particularly evident if we consider the
seconds spent to evaluate the random recommender with the Foursquare dataset.

Table 4. The time in seconds required to evaluate different algorithms with our framework. We do not
consider the time for training the CRF and RNN models. To improve the efficiency of the framework it
is possible to avoid computing the computationally expensive metric of diversity.

Dataset Diversity MP Random Unigram Bigram CRF RNN

Yes.com Yes 0.84 4.25 3.97 4.05 963.65 66.04
Yes.com No 0.78 1.14 0.98 1.05 865.17 60.68

Foursquare Yes 15.88 1326.31 58.64 101.73 4096.78 1223.26
Foursquare No 13.75 24.63 13.05 16.78 3989.17 1194.52

As expected, the baseline recommenders are less demanding with respect to the CRF and RNN
models. However, this analysis is beyond the scope of this work, as we are only interested in optimizing
the evaluation framework. If we do not consider the metric of diversity, we observe that the time
required for the evaluation phase is linear with respect to the size of the dataset.

5.4. Discussion

In the following, we will analyze the results of the empirical analysis to justify the answers to
the research questions that were provided in Section 3 and in Section 4. In particular, our main aim
is to explain why it is necessary to rely on a framework that includes several metrics to evaluate a
sequence-based recommender system.

In Section 3 we have introduced the concept of rating and we have defined it considering three
different elements: an item, a user, and a timestamp. The idea of associating a user with an item is the
basic principle of almost every recommender, while the timestamp is necessary in order to introduce a
temporal dimension, and, therefore, the possibility of creating and suggesting sequences, as proposed
in RQ1. Nevertheless, we have successfully applied our evaluation framework in an experiment
based on the Yes.com dataset, which does not include any user. Even though a more general use case
has been considered during its formalization, it is possible to also exploit it in other scenarios, still
obtaining an interesting picture of the recommenders.

As described in Section 4.2, our answer to RQ2 is an evaluation framework that includes
eight different metrics, capable of capturing the various characteristics of the algorithms available.

Information 2019, 10, 174 18 of 22

For example, even if the precision of the MP recommender system is very high when tested with
Foursquare, we can immediately discard it because of its low coverage. In the same way, the
interesting values of diversity and novelty achieved by the random recommender are associated
with an unacceptable score of perplexity.

In Table 5 we present an interpretation of the metrics available in the framework. These descriptions
are meant to offer a human understanding of the results of the offline evaluation. It is worth noticing
that these metrics consider only some of the properties of a recommender system [18]. However, it is
our opinion that those properties are the most salient ones that can be analyzed in our context, without
realizing a live system.

Table 5. A human readable interpretation of the metrics.

Metric Interpretation

Coverage The percentage of items that are recommended in the evaluation
Precision The percentage of items that are correctly recommended
nDPM The correctness of the ordering inside the sequences
Diversity How diverse are the items inside the sequences
Novelty How unexpected are the recommended items
Serendipity The percentage of non-obvious items that are correct
Confidence The confidence that the recommender has about its predictions
Perplexity How much the recommender is “surprised” by the test sequences

The different characteristics of the datasets exploited during the empirical analysis are reflected
in their respective figures. In particular, while the values of precision obtained by the random
recommender in the two experiments are comparable, the figures associated with both MP and
unigram methods are dramatically different. This fact suggests that Foursquare contains a few items
that are extremely popular, as it was already clear from Figure 2.

On the other hand, the RNN recommender obtained, with both datasets, comparable values of
precision, but a very different coverage. For this reason, we can suppose that this approach, differently
from the CRF recommender, is capable of better adapting itself to the characteristics of the dataset.
The fact that we can draw such a conclusion supports the validity of Sequeval.

Furthermore, we have observed that the amount of time required to compute the evaluation
metrics is linear with respect to the dataset size, if we do not consider the metric of diversity. In fact,
the computational cost of the cosine similarity was too elevated when we analyzed the behavior of the
random recommender with a more demanding dataset. However, because of the modular structure of
sequeval, it is easy to avoid computing the metric of diversity for such a recommender.

In line with RQ3, we have described in Section 4.3 four different baseline recommenders. From the
results of the experiments, it is possible to observe that the values obtained by some of them are fixed.
For example, the MP recommender will always achieve a serendipity equal to 0, and a confidence
equal to 1. Its perplexity is usually +∞, if at least one of the recommended sequences is incorrect.
The items suggested are, in fact, considered obvious by definition, and the algorithm is certain of the
recommendation because its behavior is deterministic. In a similar way, the perplexity of the random
recommender is equal to the total number of items available, i.e., |I|, because of the definition of
perplexity provided in Section 4.2.8.

These two baselines are methods commonly exploited in the literature for evaluating RSs.
Additionally, we have proposed two techniques better suited for the sequence recommendation
problem. The unigram recommender is similar to the MP one, but it is non-deterministic, and it
obtained a higher novelty. In contrast, the bigram recommender is the most complex baseline, because
it considers the previous item to suggest the next one. For this reason, it always achieved the lowest
perplexity among the baselines considered.

Information 2019, 10, 174 19 of 22

6. Conclusions

In this paper, we have discussed the problem of recommending sequences of items tailored to the
needs of a certain user. We have introduced an offline evaluation framework, called Sequeval, capable
of handling this novel family of RSs in an offline scenario and we have developed an implementation of
it that is publicly available on GitHub. We have included in such a framework an evaluation protocol
and eight different metrics, to better capture the characteristics of the algorithms considered.

We have performed an empirical analysis of Sequeval by relying on it for conducting a comparison
among four baselines, a CRF recommender, and an RNN-based one. The results have highlighted the
fact that this framework is flexible, as it can be successfully applied in non-standard recommendation
scenarios, such as with Yes.com, and complete, because of the different metrics included that consider
several dimensions of the recommended sequences. In addition, we have observed that the RNN
recommender system can effectively adapt itself to the characteristics of the training dataset. This
conclusion supports the validity of Sequeval as a tool for conducting an offline experimentation.

Nevertheless, it is important being aware of the limitations of such a framework. The availability
of many metrics may produce results which are difficult to interpret, especially if we are uncertain
of what are the most relevant dimensions in our recommendation scenario. More in general, this is
a common limitation of offline experiments, and it needs to be addressed by comparing the most
promising algorithms in a subsequent online trail.

The formal definitions provided in Section 3 have been conceived as an extension of the seminal
works on RSs capable of recommending sequences. For this reason, it is possible to set the length of
the recommended sequences to 1 if we are interested in obtaining a single item. In a similar way, the
item included in the seed rating can be exploited in order to set the context of the recommendation,
but it can also be ignored if we want a sequence only based on the target user.

As future work, we plan to study in more depth what are the relationships among the different
metrics included in the framework, with the purpose of integrating them in a final value that expresses
the overall quality of the recommender. Such global score should be related to the recommendation
scenario: for example, diversity may be important when recommending POIs to a tourist, but less
useful in the musical domain.

Furthermore, it would be desirable to be able to create an evaluation framework that is adopted
by a community of researcher when testing their algorithms, harmonizing the evaluation protocols and
the interpretation of the performance of sequence-based RSs. For this reason, it is necessary to identify
and to include in it some meaningful datasets, related to different domains that could be exploited
during the evaluation phase, as well as other baselines and new RSs. The strategic choice of publicly
releasing sequeval fosters further reuse and extension.

Finally, we would like to expand our evaluation framework to also support the online
experimentation that should be performed after the offline analysis. The final goal of this work
is, in fact, to enable researchers to spend more time in realizing the recommendation algorithm as they
can rely on an evaluation framework that has already been designed and validated.

Author Contributions: conceptualization, D.M. and E.P.; methodology, G.R.; software, D.M.; validation, G.R. and
M.M.; data curation, E.P.; writing—original draft preparation, D.M.; writing—review and editing, E.P., G.R. and
M.M.; visualization, D.M.; supervision, M.M.

Funding: This work has been partially supported by the innovation activity PasTime (no. 17164) of EIT Digital.

Acknowledgments: Computational resources were provided by HPC@POLITO (http://hpc.polito.it).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ricci, F.; Rokach, L.; Shapira, B. Recommender Systems: Introduction and Challenges. In Recommender
Systems Handbook, 2nd ed.; Springer: New York, NY, USA, 2015; Chapter 1, pp. 1–34.

http://hpc.polito.it

Information 2019, 10, 174 20 of 22

2. Su, X.; Khoshgoftaar, T.M. A Survey of Collaborative Filtering Techniques. Adv. Artif. Intell. 2009, 1–19.
[CrossRef]

3. Balabanović, M.; Shoham, Y. Fab: Content-based, collaborative recommendation. ACM Commun. 1997,
40, 66–72. [CrossRef]

4. Basu, C.; Hirsh, H.; Cohen, W. Recommendation As Classification: Using Social and Content-based
Information in Recommendation. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, Madison, WI, USA, 26–30 July 1998; AAAI Press: Menlo Park, CA, USA, 1998; pp. 714–720.

5. Stai, E.; Kafetzoglou, S.; Tsiropoulou, E.E.; Papavassiliou, S. A holistic approach for personalization, relevance
feedback & recommendation in enriched multimedia content. Multimed. Tools Appl. 2016, 77, 283–326.
[CrossRef]

6. Campos, P.G.; Díez, F.; Cantador, I. Time-aware recommender systems: A comprehensive survey and
analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 2013, 24, 67–119. [CrossRef]

7. Ding, Y.; Li, X. Time weight collaborative filtering. In Proceedings of the 14th ACM International Conference
on Information and Knowledge Management, Bremen, Germany, 31 October–5 November 2005; ACM Press:
New York, NY, USA, 2005; pp. 485–492. [CrossRef]

8. Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing personalized Markov chains for next-basket
recommendation. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC,
USA, 26–30 April 2010; ACM Press: New York, NY, USA, 2010; pp. 811–820. [CrossRef]

9. He, R.; Kang, W.C.; McAuley, J. Translation-based Recommendation. In Proceedings of the Eleventh ACM
Conference on Recommender Systems, Como, Italy, 27–31 August 2017; ACM Press: New York, NY, USA,
2017; pp. 161–169. [CrossRef]

10. Wang, P.; Guo, J.; Lan, Y.; Xu, J.; Wan, S.; Cheng, X. Learning Hierarchical Representation Model for Next
Basket Recommendation. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Santiago, Chile, 9–13 August 2015; ACM Press: New York, NY, USA,
2015; pp. 403–412. [CrossRef]

11. Zhou, B.; Hui, S.; Chang, K. An intelligent recommender system using sequential Web access
patterns. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore,
1–3 December 2004; pp. 393–398. [CrossRef]

12. Quadrana, M.; Cremonesi, P.; Jannach, D. Sequence-Aware Recommender Systems. ACM Comput. Surv.
2018, 51, 1–36. [CrossRef]

13. Jurafsky, D.; Martin, J.H. Speech and Language Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2008.
14. Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating collaborative filtering recommender

systems. ACM Trans. Inf. Syst. 2004, 22, 5–53. [CrossRef]
15. Chen, S.; Moore, J.L.; Turnbull, D.; Joachims, T. Playlist prediction via metric embedding. In Proceedings of

the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China,
12–16 August 2012; ACM Press: New York, NY, USA, 2012; pp. 714–722. [CrossRef]

16. Feng, S.; Li, X.; Zeng, Y.; Cong, G.; Chee, Y.M.; Yuan, Q. Personalized Ranking Metric Embedding for Next
New POI Recommendation. In Proceedings of the 24th International Conference on Artificial Intelligence,
Buenos Aires, Argentina, 25–31 July 2015; AAAI Press: Menlo Park, CA, USA, 2015; pp. 2069–2075.

17. Ludewig, M.; Jannach, D. Evaluation of session-based recommendation algorithms. User Model. User-Adapt.
Interact. 2018, 28, 331–390. [CrossRef]

18. Gunawardana, A.; Shani, G. Evaluating Recommender Systems. In Recommender Systems Handbook, 2nd ed.;
Springer: New York, NY, USA, 2015; Chapter 8, pp. 265–308.

19. Jannach, D.; Lerche, L.; Kamehkhosh, I.; Jugovac, M. What recommenders recommend: An analysis of
recommendation biases and possible countermeasures. User Model. User-Adapt. Interact. 2015, 25, 427–491.
[CrossRef]

20. Costa, A.; Roda, F. Recommender systems by means of information retrieval. In Proceedings of the
International Conference on Web Intelligence, Mining and Semantics, Sogndal, Norway, 25–27 May 2011;
ACM Press: New York, NY, USA, 2011.

21. Pouli, V.; Kafetzoglou, S.; Tsiropoulou, E.E.; Dimitriou, A.; Papavassiliou, S. Personalized multimedia
content retrieval through relevance feedback techniques for enhanced user experience. In Proceedings of the
IEEE 13th International Conference on Telecommunications, Graz, Austria, 13–15 July 2015.

http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1145/245108.245124
http://dx.doi.org/10.1007/s11042-016-4209-1
http://dx.doi.org/10.1007/s11257-012-9136-x
http://dx.doi.org/10.1145/1099554.1099689
http://dx.doi.org/10.1145/1772690.1772773
http://dx.doi.org/10.1145/3109859.3109882
http://dx.doi.org/10.1145/2766462.2767694
http://dx.doi.org/10.1109/iccis.2004.1460447
http://dx.doi.org/10.1145/3190616
http://dx.doi.org/10.1145/963770.963772
http://dx.doi.org/10.1145/2339530.2339643
http://dx.doi.org/10.1007/s11257-018-9209-6
http://dx.doi.org/10.1007/s11257-015-9165-3

Information 2019, 10, 174 21 of 22

22. Albanese, M.; d’Acierno, A.; Moscato, V.; Persia, F.; Picariello, A. A Multimedia Semantic Recommender
System for Cultural Heritage Applications. In Proceedings of the IEEE Fifth International Conference on
Semantic Computing, Palo Alto, CA, USA, 18–21 September 2011.

23. Aggarwal, C.C. Mining Discrete Sequences. In Data Mining; Springer International Publishing: New York,
NY, USA, 2015; Chapter 15, pp. 493–529.

24. Bellogín, A.; Sánchez, P. Collaborative filtering based on subsequence matching: A new approach. Inf. Sci.
2017, 418–419, 432–446. [CrossRef]

25. Hirschberg, D.S. A linear space algorithm for computing maximal common subsequences. ACM Commun.
1975, 18, 341–343. [CrossRef]

26. Albanese, M.; Chianese, A.; d’Acierno, A.; Moscato, V.; Picariello, A. A multimedia recommender integrating
object features and user behavior. Multimed. Tools Appl. 2010, 50, 563–585. [CrossRef]

27. Albanese, M.; d’Acierno, A.; Moscato, V.; Persia, F.; Picariello, A. A Multimedia Recommender System.
ACM Trans. Internet Technol. 2013, 13, 1–32. [CrossRef]

28. Amato, F.; Moscato, V.; Picariello, A.; Sperli, G. KIRA: A System for Knowledge-Based Access to Multimedia
Art Collections. In Proceedings of the IEEE 11th International Conference on Semantic Computing, San Diego,
CA, USA, 30 January–1 February 2017.

29. Su, X.; Sperli, G.; Moscato, V.; Picariello, A.; Esposito, C.; Choi, C. An Edge Intelligence Empowered
Recommender System Enabling Cultural Heritage Applications. IEEE Trans. Ind. Inform. 2019, 1. [CrossRef]

30. Bellogín, A.; Castells, P.; Cantador, I. Statistical biases in Information Retrieval metrics for recommender
systems. Inf. Retr. J. 2017, 20, 606–634. [CrossRef]

31. Said, A.; Bellogín, A. Comparative recommender system evaluation. In Proceedings of the 8th ACM
Conference on Recommender Systems, Foster City, CA, USA, 6–10 October 2014; ACM Press: New York, NY,
USA, 2014; pp. 129–136. [CrossRef]

32. Turpin, A.H.; Hersh, W. Why batch and user evaluations do not give the same results. In Proceedings
of the 24th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, New Orleans, LA, USA, 9–12 September 2001; ACM Press: New York, NY, USA, 2001; pp. 225–231.
[CrossRef]

33. Ge, M.; Delgado-Battenfeld, C.; Jannach, D. Beyond Accuracy: Evaluating Recommender Systems by
Coverage and Serendipity. In Proceedings of the Fourth ACM Conference on Recommender Systems,
Barcelona, Spain, 26–30 September 2010; ACM Press: New York, NY, USA, 2010; pp. 257–260. [CrossRef]

34. Paraschakis, D.; Nilsson, B.J.; Hollander, J. Comparative Evaluation of Top-N Recommenders in e-Commerce:
An Industrial Perspective. In Proceedings of the IEEE 14th International Conference on Machine Learning
and Applications, Miami, FL, USA, 9–11 December 2015; pp. 1024–1031. [CrossRef]

35. Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A Neural Probabilistic Language Model. J. Mach. Learn. Res.
2003, 3, 1137–1155.

36. Rijsbergen, C.J.V. Information Retrieval; Butterworth-Heinemann: Oxford, UK, 1979.
37. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Analysis of recommendation algorithms for e-commerce.

In Proceedings of the 2nd ACM Conference on Electronic Commerce, Minneapolis, MN, USA,
17–20 October 2000; ACM Press: New York, NY, USA, 2000; pp. 158–167. [CrossRef]

38. Yao, Y. Measuring retrieval effectiveness based on user preference of documents. J. Am. Soc. Inf. Sci. 1995,
46, 133–145. [CrossRef]

39. Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 2002,
20, 422–446. [CrossRef]

40. Ziegler, C.N.; McNee, S.M.; Konstan, J.A.; Lausen, G. Improving recommendation lists through topic
diversification. In Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan,
10–14 May 2005; ACM Press: New York, NY, USA, 2005; pp. 22–32. [CrossRef]

41. Noia, T.D.; Ostuni, V.C.; Rosati, J.; Tomeo, P.; Sciascio, E.D. An analysis of users’ propensity toward diversity
in recommendations. In Proceedings of the 8th ACM Conference on Recommender Systems, Foster City,
CA, USA, 6–10 October 2014; ACM Press: New York, NY, USA, 2014; pp. 285–288. [CrossRef]

42. Vargas, S.; Castells, P. Rank and relevance in novelty and diversity metrics for recommender systems.
In Proceedings of the Fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October
2011; ACM Press: New York, NY, USA, 2011; pp. 109–116. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2017.08.016
http://dx.doi.org/10.1145/360825.360861
http://dx.doi.org/10.1007/s11042-010-0480-8
http://dx.doi.org/10.1145/2532640
http://dx.doi.org/10.1109/TII.2019.2908056
http://dx.doi.org/10.1007/s10791-017-9312-z
http://dx.doi.org/10.1145/2645710.2645746
http://dx.doi.org/10.1145/383952.383992
http://dx.doi.org/10.1145/1864708.1864761
http://dx.doi.org/10.1109/icmla.2015.183
http://dx.doi.org/10.1145/352871.352887
http://dx.doi.org/10.1002/(SICI)1097-4571(199503)46:2<133::AID-ASI6>3.0.CO;2-Z
http://dx.doi.org/10.1145/582415.582418
http://dx.doi.org/10.1145/1060745.1060754
http://dx.doi.org/10.1145/2645710.2645774
http://dx.doi.org/10.1145/2043932.2043955

Information 2019, 10, 174 22 of 22

43. de Gemmis, M.; Lops, P.; Semeraro, G.; Musto, C. An investigation on the serendipity problem in
recommender systems. Inf. Process. Manag. 2015, 51, 695–717. [CrossRef]

44. Herlocker, J.L.; Konstan, J.A.; Riedl, J. Explaining collaborative filtering recommendations. In Proceedings of
the 2000 ACM Conference on Computer Supported Cooperative Work, Philadelphia, PA, USA, 2–6 December
2000; ACM Press: New York, NY, USA, 2000; pp. 241–250. [CrossRef]

45. Monti, D.; Palumbo, E.; Rizzo, G.; Morisio, M. Sequeval: A framework to assess and benchmark
sequence-based recommender systems. In Proceedings of the Workshop on Offline Evaluation for
Recommender Systems at the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada,
2 October 2018.

46. Chen, S.F.; Goodman, J. An empirical study of smoothing techniques for language modeling. Comput. Speech
Lang. 1999, 13, 359–393. [CrossRef]

47. Sutton, C.; McCallum, A. An Introduction to Conditional Random Fields. Found. Trends Mach. Learn. 2011,
4, 267–373. [CrossRef]

48. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available
online: http://www.deeplearningbook.org (accessed on 8 May 2019).

49. Nocedal, J. Updating quasi-Newton matrices with limited storage. Math. Comput. 1980, 35, 773–782.
[CrossRef]

50. Palumbo, E.; Rizzo, G.; Troncy, R.; Baralis, E. Predicting Your Next Stop-over from Location-based Social
Network Data with Recurrent Neural Networks. In Proceedings of the 2nd Workshop on Recommenders in
Tourism Co-Located with 11th ACM Conference on Recommender Systems, Como, Italy, 27 August 2017;
pp. 1–8.

51. Sutskever, I.; Martens, J.; Hinton, G. Generating text with recurrent neural networks. In Proceedings of the
28th International Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011; pp. 1017–1024.

52. Harper, F.M.; Konstan, J.A. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst.
2015, 5, 1–19. [CrossRef]

53. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ipm.2015.06.008
http://dx.doi.org/10.1145/358916.358995
http://dx.doi.org/10.1006/csla.1999.0128
http://dx.doi.org/10.1561/2200000013
http://www.deeplearningbook.org
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

