5,416 research outputs found

    TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    Get PDF
    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system

    Diagnosing faults in autonomous robot plan execution

    Get PDF
    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF

    Expert system decision support for low-cost launch vehicle operations

    Get PDF
    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation

    A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter

    Get PDF
    The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations

    Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    Get PDF
    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space

    Advancing automation and robotics technology for the space station and for the US economy

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station

    PCDT: Power Cabinet Diagnosis Tool

    Get PDF

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers
    • …
    corecore