39,714 research outputs found

    Multi-Kernel Capsule Network for Schizophrenia Identification

    Get PDF
    Schizophrenia seriously affects the quality of life. To date, both simple (e.g., linear discriminant analysis) and complex (e.g., deep neural network) machine learning methods have been utilized to identify schizophrenia based on functional connectivity features. The existing simple methods need two separate steps (i.e., feature extraction and classification) to achieve the identification, which disables simultaneous tuning for the best feature extraction and classifier training. The complex methods integrate two steps and can be simultaneously tuned to achieve optimal performance, but these methods require a much larger amount of data for model training. To overcome the aforementioned drawbacks, we proposed a multi-kernel capsule network (MKCapsnet), which was developed by considering the brain anatomical structure. Kernels were set to match with partition sizes of brain anatomical structure in order to capture interregional connectivities at the varying scales. With the inspiration of widely-used dropout strategy in deep learning, we developed capsule dropout in the capsule layer to prevent overfitting of the model. The comparison results showed that the proposed method outperformed the state-of-the-art methods. Besides, we compared performances using different parameters and illustrated the routing process to reveal characteristics of the proposed method. MKCapsnet is promising for schizophrenia identification. Our study first utilized capsule neural network for analyzing functional connectivity of magnetic resonance imaging (MRI) and proposed a novel multi-kernel capsule structure with consideration of brain anatomical parcellation, which could be a new way to reveal brain mechanisms. In addition, we provided useful information in the parameter setting, which is informative for further studies using a capsule network for other neurophysiological signal classification

    Morphological classification of radio galaxies: Capsule Networks versus Convolutional Neural Networks

    Get PDF
    Next-generation radio surveys will yield an unprecedented amount of data, warranting analysis by use of machine learning techniques. Convolutional neural networks are the deep learning technique that has proven to be the most successful in classifying image data. Capsule networks are a more recently developed technique that use capsules comprised of groups of neurons, that describe properties of an image including the relative spatial locations of features. The current work explores the performance of different capsule network architectures against simpler convolutional neural network architectures, in reproducing the classifications into the classes of unresolved, FRI and FRII morphologies. We utilise images from a LOFAR survey which is the deepest, wide-area radio survey to date, revealing more complex radio-source structures compared to previous surveys, presenting further challenges for machine learning algorithms. The 4- and 8-layer convolutional networks attain an average precision of 93.3% and 94.3% respectively, compared to 89.7% obtained with the capsule network, when training on original and augmented images. Implementing transfer learning achieves a precision of 94.4%, that is within the confidence interval of the 8-layer convolutional network. The convolutional networks always outperform any variation of the capsule network, as they prove to be more robust to the presence of noise in images. The use of pooling appears to allow more freedom for the intra-class variability of radio galaxy morphologies, as well as reducing the impact of noise

    A Hybrid Siamese Neural Network for Natural Language Inference in Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPS), as a multi-dimensional complex system that connects the physical world and the cyber world, has a strong demand for processing large amounts of heterogeneous data. These tasks also include Natural Language Inference (NLI) tasks based on text from different sources. However, the current research on natural language processing in CPS does not involve exploration in this field. Therefore, this study proposes a Siamese Network structure that combines Stacked Residual Long Short-Term Memory (bidirectional) with the Attention mechanism and Capsule Network for the NLI module in CPS, which is used to infer the relationship between text/language data from different sources. This model is mainly used to implement NLI tasks and conduct a detailed evaluation in three main NLI benchmarks as the basic semantic understanding module in CPS. Comparative experiments prove that the proposed method achieves competitive performance, has a certain generalization ability, and can balance the performance and the number of trained parameters
    corecore