5,648 research outputs found

    Wireless information and power transfer: from scientific hypothesis to engineering practice

    No full text
    Recently, there has been substantial research interest in the subject of Simultaneous Wireless Information andPower Transfer (SWIPT) owing to its cross-disciplinary appeal and its wide-ranging application potential, whichmotivates this overview. More explicitly, we provide a brief survey of the state-of-the-art and introduce severalpractical transceiver architectures that may facilitate its implementation. Moreover, the most important link-levelas well as system-level design aspects are elaborated on, along with a variety of potential solutions and researchideas. We envision that the dual interpretation of Radio Frequency (RF) signals creates new opportunities as wellas challenges requiring substantial research, innovation and engineering efforts

    Langley aerospace test highlights, 1985

    Get PDF
    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center

    Measurement and modeling of interference for multiple antenna system

    Get PDF
    Journal ArticleThis paper provides a detailed signal model based on network theory to predict the multi-antenna capacity in the presence of co- and adjacent channel interference. This model expands on previous channel models by including the simultaneous effects of interference, antenna matching, efficiency, directivity and polarization. Single and multi-antenna interference are modeled using both a statistical channel model and a site-specific 3D ray tracer. The network theory based detailed signal model was obtained by adding antenna front end effects at both the transmitter and receiver to the channel models. This model was validated with measurements performed in two underground tunnels. The site-specific model predicted the capacity to within 1 bit/sec/Hz of the measurements while the statistical model was within 1-2 bits/sec/Hz except for a few locations. It was also observed that for small antenna spacing the conjugate match provides higher capacity than the self match

    Building an end user focused THz based ultra high bandwidth wireless access network: The TERAPOD approach

    Get PDF
    The TERAPOD project aims to investigate and demonstrate the feasibility of ultra high bandwidth wireless access networks operating in the Terahertz (THz) band. The proposed TERAPOD THz communication system will be developed, driven by end user usage scenario requirements and will be demonstrated within a first adopter operational setting of a Data Centre. In this article, we define the full communications stack approach that will be taken in TERAPOD, highlighting the specific challenges and aimed innovations that are targeted

    Experimental characterization of the radio channel for systems with large bandwidth and multiple antennas

    Get PDF
    [SPA] Cada día son necesarias comunicaciones mejores y más eficientes, con mayores anchos de banda y mayores tasas de transferencias de datos. Por un lado los sistemas de múltiples antenas, MIMO, surgieron como una técnica para optimizar el uso de la potencia y el espectro. Por otro lado, los sistemas Ultra-Wideband, UWB, han ganado recientemente el interés de la comunidad científica por su gran ancho de banda combinado con su baja potencia de transmisión. A la hora de diseñar y testear nuevos dispositivos de comunicaciones inalámbricas, es esencial poseer un conocimiento preciso del canal de propagación por el que se propagan dichas señales. Esta tesis, se basa en el modelado del canal de propagación para sistemas de gran ancho de banda y múltiples antenas desde un punto de vista experimental. Primeramente se presentan las mejoras y desarrollos realizados en el ámbito de los sistemas de medida del canal, dado que es necesario disponer de equipos adecuados y precisos para realizar adecuadas medidas del canal. Seguidamente, se analiza el canal MIMO-UWB en interiores. Se realiza un análisis en profundidad de varios parámetros, especialmente parámetros de una antena como las pérdidas de propagación, el factor de polarización cruzada o la dispersión del retardo. Finalmente, la tesis particulariza el análisis del canal en un entorno especial como es el caso de túneles. Se realiza un análisis experimental de parámetros de una antena como multi antena para luego evaluar las prestaciones que pueden brindar varias técnicas de diversidad como es en el dominio de la frecuencia, la polarización, el espacio o el tiempo.[ENG] Wireless communications have become essential in our society [Rappaport, 1996], [Parsons, 2000]. Nowadays, people need to be connected everywhere and at any time, and demand faster and enhanced communications every day. New applications requires higher data rates and, therefore, higher bandwidths. On the one hand, Multiple-Input Multiple-Output (MIMO) systems were proposed as one solution to achieve higher data rates and optimize the use of the spectrum. On the other hand, more recently, systems with an ultra large bandwidth, and particularly Ultra-Wideband (UWB) systems, have gained the interest of the scientific community. Such interest is owing to the extremely high data rates offered and its possible coexistence with existing systems due to the its low transmitted power. However, this improvement in mobile communications involves the development and testing of new wireless communications systems. Precise knowledge of the radio channel is an essential issue to design this new devices and, thus, reach such improvement in wireless communications. In general, the modeling of the radio channel can be undertaken in two main ways: Theoretically, where the channel is characterized by means of simulations and theoretical approaches. - Experimentally, where the radio channel is characterized by means of the analysis of measurements carried out in real scenarios. This thesis is mainly focused on the experimental characterization of the radio channel for systems with large bandwidth and multiple antennas (MIMO). However, characterizing experimentally the MIMO wideband channel implies the availability of adequate and accurate channel sounders.Universidad Politécnica de CartagenaUniversité des Sciences et Technologies de Lille (USTL)Programa de doctorado en Tecnologías de la Información y Comunicacione

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected
    corecore