2,863 research outputs found

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Wi-PoS : a low-cost, open source ultra-wideband (UWB) hardware platform with long range sub-GHz backbone

    Get PDF
    Ultra-wideband (UWB) localization is one of the most promising approaches for indoor localization due to its accurate positioning capabilities, immunity against multipath fading, and excellent resilience against narrowband interference. However, UWB researchers are currently limited by the small amount of feasible open source hardware that is publicly available. We developed a new open source hardware platform, Wi-PoS, for precise UWB localization based on Decawave’s DW1000 UWB transceiver with several unique features: support of both long-range sub-GHz and 2.4 GHz back-end communication between nodes, flexible interfacing with external UWB antennas, and an easy implementation of the MAC layer with the Time-Annotated Instruction Set Computer (TAISC) framework. Both hardware and software are open source and all parameters of the UWB ranging can be adjusted, calibrated, and analyzed. This paper explains the main specifications of the hardware platform, illustrates design decisions, and evaluates the performance of the board in terms of range, accuracy, and energy consumption. The accuracy of the ranging system was below 10 cm in an indoor lab environment at distances up to 5 m, and accuracy smaller than 5 cm was obtained at 50 and 75 m in an outdoor environment. A theoretical model was derived for predicting the path loss and the influence of the most important ground reflection. At the same time, the average energy consumption of the hardware was very low with only 81 mA for a tag node and 63 mA for the active anchor nodes, permitting the system to run for several days on a mobile battery pack and allowing easy and fast deployment on sites without an accessible power supply or backbone network. The UWB hardware platform demonstrated flexibility, easy installation, and low power consumption

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    A Suboptimal Receiver with Turbo Block Coding for Ultra-Wideband Communications

    Get PDF
    In this paper, the performance of adaptive equalization and turbo product coding is investigated for pulse-based UWB communications in short-range indoor environments. The sensitivity of adaptive LMS linear and nonlinear (decision-feedback) equalizers with respect to the number of training symbols and number of taps is considered. To reduce the error performance variation with respect to changing channel conditions, a turbo product code (TPC) with two component (31,26,3) Hamming codes is proposed. We report simulation results showing that channel coding not only improves error performance, but also reduces significantly the sensitivity of UWB systems in short-range indoor wireless communications

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    Performance characterisation of MIMO-UWB systems for indoor environments

    Get PDF
    Although recent advances in wireless system technologies have provided ever increasing throughputs, end user demand continues to increase unabated. The research investigates the performance of a system harnessing two relatively new but powerful technologies, Multiple-Input and Multiple-Output (MIMO) and Ultra Wideband (UWB) transmission as a possible solution to meet the growing demand for capacity. Each of these technologies in its own right has been subject to a large volume of research and has been proven to bring an increase in throughput. Nevertheless the predicted future demand will outstrip what each strategy can provide individually. MIMO-UWB systems are thus an emerging wireless solution with, in particular, the potential to satisfy short distance, high speed transmission requirements within indoor environments. Before any system is deployed it is important to characterise performance within representative operating environments. The study therefore emulates appropriate indoor environments, defines an experimental protocol to execute a range of measurements that provide robust evidence of the behaviour of the combined system within indoor scenarios. The application scenario dictates that the transmitter represents a gateway device attached to the ceiling and the receiver, a user device set on a table. The sequence of measurements relate to different positioning of the user device, with different angles and ranges to the gateway device, the layout of antenna placements being important. The output of the study is an accurate model for engineers and, the foundation for the design of MIMO-UWB systems for indoor services.Although recent advances in wireless system technologies have provided ever increasing throughputs, end user demand continues to increase unabated. The research investigates the performance of a system harnessing two relatively new but powerful technologies, Multiple-Input and Multiple-Output (MIMO) and Ultra Wideband (UWB) transmission as a possible solution to meet the growing demand for capacity. Each of these technologies in its own right has been subject to a large volume of research and has been proven to bring an increase in throughput. Nevertheless the predicted future demand will outstrip what each strategy can provide individually. MIMO-UWB systems are thus an emerging wireless solution with, in particular, the potential to satisfy short distance, high speed transmission requirements within indoor environments. Before any system is deployed it is important to characterise performance within representative operating environments. The study therefore emulates appropriate indoor environments, defines an experimental protocol to execute a range of measurements that provide robust evidence of the behaviour of the combined system within indoor scenarios. The application scenario dictates that the transmitter represents a gateway device attached to the ceiling and the receiver, a user device set on a table. The sequence of measurements relate to different positioning of the user device, with different angles and ranges to the gateway device, the layout of antenna placements being important. The output of the study is an accurate model for engineers and, the foundation for the design of MIMO-UWB systems for indoor services

    Hard-input-hard-output capacity analysis of UWB BPSK systems with timing errors

    Get PDF
    The hard-input-hard-output capacity of a binary phase-shift keying (BPSK) ultrawideband system is analyzed for both additive white Gaussian noise and multipath fading channels with timing errors. Unlike previous works that calculate the capacity with perfect synchronization and/or multiple-access interference only, our analysis considers timing errors with different distributions, as well as the interpath (IPI), interchip (ICI), and intersymbol (ISI) interferences, as in practical systems. The sensitivity of the channel capacity to the timing error is examined. The effects of pulse shape, the multiple-access technique, the number of users, and the number of chips are studied. It is found that time hopping is less sensitive to the pulse shape and that the timing error has higher capacity than direct sequence due to its low duty of cycle. Using these results, one can choose appropriate system parameters for different applications
    • 

    corecore