4,771 research outputs found

    Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services with Smart Charging Mechanism

    Get PDF
    Due to various green initiatives, renewable energy will be massively incorporated into the future smart grid. However, the intermittency of the renewables may result in power imbalance, thus adversely affecting the stability of a power system. Frequency regulation may be used to maintain the power balance at all times. As electric vehicles (EVs) become popular, they may be connected to the grid to form a vehicle-to-grid (V2G) system. An aggregation of EVs can be coordinated to provide frequency regulation services. However, V2G is a dynamic system where the participating EVs come and go independently. Thus it is not easy to estimate the regulation capacities for V2G. In a preliminary study, we modeled an aggregation of EVs with a queueing network, whose structure allows us to estimate the capacities for regulation-up and regulation-down, separately. The estimated capacities from the V2G system can be used for establishing a regulation contract between an aggregator and the grid operator, and facilitating a new business model for V2G. In this paper, we extend our previous development by designing a smart charging mechanism which can adapt to given characteristics of the EVs and make the performance of the actual system follow the analytical model.Comment: 11 pages, Accepted for publication in IEEE Transactions on Smart Gri

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost

    Get PDF
    This paper presents an optimised bidirectional Vehicle-to-Grid (V2G) operation, based on a fleet of Electric Vehicles (EVs) connected to a distributed power system, through a network of charging stations. The system is able to perform day-ahead scheduling of EV charging/discharging to reduce EV ownership charging cost through participating in frequency and voltage regulation services. The proposed system is able to respond to real-time EV usage data and identify the required changes that must be made to the day-ahead energy prediction, further optimising the use of EVs to support both voltage and frequency regulation. An optimisation strategy is established for V2G scheduling, addressing the initial battery State Of Charge (SOC), EV plug-in time, regulation prices, desired EV departure time, battery degradation cost and vehicle charging requirements. The effectiveness of the proposed system is demonstrated using a standardized IEEE 33-node distribution network integrating five EV charging stations. Two case studies have been undertaken to verify the contribution of this advanced energy supervision approach. Comprehensive simulation results clearly show an opportunity to provide frequency and voltage support while concurrently reducing EV charging costs, through the integration of V2G technology, especially during on-peak periods when the need for active and reactive power is high

    Impact of driver behaviour on availability of electric vehicle stored energy for STOR

    Get PDF
    As take up of low carbon vehicles increase, there is interest in using the energy stored in the vehicles to help maintain system frequency through ancillary services on the electricity grid system. Research into this area is generally classed as vehicle-to-grid research. In theory, the energy available from electric vehicles could be directly correlated to the vehicle's state of charge (SoC) and battery capacity during the time the car is parked and plugged in. However, not all the energy in the vehicle may be used, as some capacity is required by the driver for their next journey. As such, this paper uses data captured as part of a large scale electric vehicle trial to investigate the effect of three different types of driver routine on vehicle-to-grid availability. Each driver's behaviour is analysed to assess the energy that is available for STOR, with follow on journey requirements also considered

    Feasibility study: investigation of car park-based V2G services in the UK central hub

    Get PDF
    The increasing uptake of electric vehicles, and the established practice of long-term parking at stations and airports, offers an opportunity to develop a flexible approach to help with the energy storage dilemma. This paper investigates the feasibility of using a number of EV batteries as an energy storage and grid balancing solution within the UK Central Hub area. Here, the capital cost of the vehicle is a sunk cost to the EV owner. The potential income generated, or discount on long-term parking, is an additional benefit of ownership. This paper considers the income available to a small and large size car park from the different market mechanisms to offer grid support in the UK and contrasts this with the complexity and costs of the EV charging infrastructure required within these types of scheme
    corecore