10 research outputs found

    Advanced Protocols for Peer-to-Peer Data Transmission in Wireless Gigabit Networks

    Get PDF
    This thesis tackles problems on IEEE 802.11 MAC layer, network layer and application layer, to further push the performance of wireless P2P applications in a holistic way. It contributes to the better understanding and utilization of two major IEEE 802.11 MAC features, frame aggregation and block acknowledgement, to the design and implementation of opportunistic networks on off-the-shelf hardware and proposes a document exchange protocol, including document recommendation. First, this thesis contributes a measurement study of the A-MPDU frame aggregation behavior of IEEE 802.11n in a real-world, multi-hop, indoor mesh testbed. Furthermore, this thesis presents MPDU payload adaptation (MPA) to utilize A-MPDU subframes to increase the overall throughput under bad channel conditions. MPA adapts the size of MAC protocol data units to channel conditions, to increase the throughput and lower the delay in error-prone channels. The results suggest that under erroneous conditions throughput can be maximized by limiting the MPDU size. As second major contribution, this thesis introduces Neighborhood-aware OPPortunistic networking on Smartphones (NOPPoS). NOPPoS creates an opportunistic, pocket-switched network using current generation, off-the-shelf mobile devices. As main novel feature, NOPPoS is highly responsive to node mobility due to periodic, low-energy scans of its environment, using Bluetooth Low Energy advertisements. The last major contribution is the Neighborhood Document Sharing (NDS) protocol. NDS enables users to discover and retrieve arbitrary documents shared by other users in their proximity, i.e. in the communication range of their IEEE 802.11 interface. However, IEEE 802.11 connections are only used on-demand during file transfers and indexing of files in the proximity of the user. Simulations show that NDS interconnects over 90 \% of all devices in communication range. Finally, NDS is extended by the content recommendation system User Preference-based Probability Spreading (UPPS), a graph-based approach. It integrates user-item scoring into a graph-based tag-aware item recommender system. UPPS utilizes novel formulas for affinity and similarity scoring, taking into account user-item preference in the mass diffusion of the recommender system. The presented results show that UPPS is a significant improvement to previous approaches

    Belaidลพio ryลกio tinklลณ terpฤ—s prieigos valdymo tyrimas

    Get PDF
    Over the years, consumer requirements for Quality of Service (QoS) has been growing exponentially. Recently, the ratification process of newly IEEE 802.11ad amendment to IEEE 802.11 was finished. The IEEE 802.11ad is the newly con-sumer wireless communication approach, which will gain high spot on the 5G evolution. Major players in wireless market, such as Qualcomm already are inte-grating solutions from unlicensed band, like IEEE 802.11ac, IEEE 802.11ad into their architecture of LTE PRO (the next evolutionary step for 5G networking) (Qualcomm 2013; Parker et al. 2015). As the demand is growing both in enter-prise wireless networking and home consumer markets. Consumers started to no-tice the performance degradation due to overcrowded unlicensed bands. The un-licensed bands such as 2.4 GHz, 5 GHz are widely used for up-to-date IEEE 802.11n/ac technologies with upcoming IEEE 802.11ax. However, overusage of the available frequency leads to severe interference issue and consequences in to-tal system performance degradation, currently existing wireless medium access method can not sustain the increasing intereference and thus wireless needs a new methods of wireless medium access. The main focal point of this dissertation is to improve wireless performance in dense wireless networks. In dissertation both the conceptual and multi-band wireless medium access methods are considered both from theoretical point of view and experimental usage. The introduction chapter presents the investigated problem and itโ€™s objects of research as well as importance of dissertation and itโ€™s scientific novelty in the unlicensed wireless field. Chapter 1 revises used literature. Existing and up-to-date state-of-the-art so-lution are reviewed, evaluated and key point advantages and disadvantages are analyzed. Conclusions are drawn at the end of the chapter. Chapter 2 describes theoretical analysis of wireless medium access protocols and the new wireless medium access method. During analysis theoretical simula-tions are performed. Conclusions are drawn at the end of the chapter. Chapter 3 is focused on the experimental components evaluation for multi-band system, which would be in line with theoretical concept investigations. The experimental results, showed that components of multi-band system can gain sig-nificant performance increase when compared to the existing IEEE 802.11n/ac wireless systems. General conclusions are drawn after analysis of measurement results

    IEEE 802.11n WLAN์—์„œ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„ ์กฐ์ ˆ์„ ํ†ตํ•œ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ MAC ํ”„๋กœํ† ์ฝœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์ตœ์ข…ํ˜ธ.์ตœ๊ทผ ์Šค๋งˆํŠธํฐ, ํƒœ๋ธ”๋ฆฟ PC ๋“ฑ์˜ ๋ฌด์„  ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ์˜ ์‚ฌ์šฉ์ด ๊ธ‰์ฆํ•จ์— ๋”ฐ๋ผ ๋ฌด์„  ๋žœ (wireless local area network (WLAN))์— ๋Œ€ํ•œ ์ˆ˜์š”๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, IEEE 802.11 ํ‘œ์ค€์—์„œ ๊ธฐ๋ณธ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” MAC (medium access control) ํ”„๋กœํ† ์ฝœ์ธ DCF (distributed coordination function) ๋Š” single-cell ๋„คํŠธ์›Œํฌ์—์„œ MAC ํšจ์œจ (MAC efficiency) ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ๋ฌธ์ œ์ ๊ณผ ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ ๋…ธ๋“œ๊ฐ„์— ๊ณตํ‰์„ฑ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜ ๋˜๋Š” ๋ฌธ์ œ์ ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋„คํŠธ์›Œํฌ์—์„œ DCF๊ฐ€ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ๊ฐ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋‘ ๊ฐ€์ง€ ๋‹ค๋ฅธ ๋ฐฉ์‹์˜ MAC ํ”„๋กœํ† ์ฝœ๋“ค์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ MAC ํ”„๋กœํ† ์ฝœ์—์„œ๋Š” ํŒจํ‚ท (packet) ์ด๋‚˜ ํ”„๋ ˆ์ž„ (frame) ์˜ ํฌ๊ธฐ๊ฐ€ ์ •ํ•ด์ง€๋ฉด, ๊ฐ ๋…ธ๋“œ (node) ์˜ ๋ฐ์ดํ„ฐ ์ „์†ก ์†๋„์— ๋”ฐ๋ผ (data transmission rate) ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„ (frame transmission duration) ์ด ์ •ํ•ด์กŒ๋‹ค. ํ•˜์ง€๋งŒ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” IEEE 802.11n/ac/ad ํ‘œ์ค€์—์„œ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋ ˆ์ž„ ๊ฒฐํ•ฉ (frame aggregation) ๊ณผ block ACK ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ •ํ™•ํžˆ ์กฐ์ ˆ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋งŒ์•ฝ ์ด์™€๊ฐ™์ด ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ๋ฐ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์กฐ์ ˆ ํ•  ์ˆ˜ ์žˆ๊ฒŒ๋œ๋‹ค๋ฉด, ๋„คํŠธ์›Œํฌ ์ƒ์— ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ถ”๊ฐ€์ ์ธ ์˜ค๋ฒ„ํ—ค๋“œ (overhead) ์—†์ด ์ž์‹ ์ด ์•Œ๋ ค์ฃผ๊ณ ์ž ํ•˜๋Š” ์ •๋ณด๋ฅผ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ด์šฉํ•˜์—ฌ ์ž์‹  ์ฃผ๋ณ€์˜ ๋…ธ๋“œ๋“ค์—๊ฒŒ ๊ฐ„์ ‘์ ์œผ๋กœ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ฆ‰, ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ •ํ™•ํžˆ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์„ ํ†ตํ•ด์„œ ๊ธฐ์กด์˜ ์ปจํŠธ๋กค ๋ฉ”์‹œ์ง€ (control message) ๊ฐ€ ์ˆ˜ํ–‰ํ–ˆ๋˜ ์—ญํ• ์ธ ์ •๋ณด ์ „๋‹ฌ์˜ ์—ญํ• ์„ ์ˆ˜ํ–‰ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด ์•„์ด๋””์–ด๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ, ๊ฐ ๋…ธ๋“œ๋“ค์ด ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋ฅผ ๊ตํ™˜ํ•˜๋Š”๋ฐ ํšจ๊ณผ์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋‘ ๊ฐœ์˜ MAC ํ”„๋กœํ† ์ฝœ๋“ค์€ ์ด ์•„์ด๋””์–ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ ์ž ํ•˜์˜€๋‹ค. ์šฐ์„ , IEEE 802.11 single-cell ๋„คํŠธ์›Œํฌ์—์„œ์˜ MAC ํšจ์œจ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด Transmission Order Deducing MAC (TOD-MAC) ํ”„๋กœํ† ์ฝœ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๋ฌผ๋ฆฌ ๊ณ„์ธต (physical layer) ์—์„œ์˜ ์ „์†ก ์†๋„๊ฐ€ Gbps ๋ฒ”์œ„๊นŒ์ง€ ๋น„์•ฝ์ ์œผ๋กœ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฌผ๋ฆฌ ๊ณ„์ธต ์ „์†ก ์†๋„์˜ ์ฆ๊ฐ€๊ฐ€ MAC ๊ณ„์ธต (MAC layer) ์—์„œ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰ (throughput) ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ํšจ๊ณผ์ ์œผ๋กœ ๊ธฐ์—ฌํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ์™œ๋ƒํ•˜๋ฉด, ๋ฌผ๋ฆฌ ๊ณ„์ธต์—์„œ์˜ ์ „์†ก ์†๋„๊ฐ€ ์˜ฌ๋ผ ๊ฐˆ์ˆ˜๋ก PHY header์™€ ์ปจํ…์…˜ ์‹œ๊ฐ„ (contention time) ๋“ฑ์˜ MAC ๊ณ„์ธต์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค๋ฒ„ํ—ค๋“œ๋“ค์ด ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ํฐ ๊ฑธ๋ฆผ๋Œ์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐ ํ•˜๊ธฐ ์œ„ํ•ด์„œ TOD-MAC์—์„œ ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ž์‹ ์˜ ์ „์†ก ์ˆœ์„œ์— ๋”ฐ๋ผ ์•ž์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ •ํ™•ํžˆ ์กฐ์ ˆํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋„คํŠธ์›Œํฌ ์ƒ์˜ ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ž์‹  ์ฃผ๋ณ€ ๋…ธ๋“œ๋“ค์˜ ์ „์†ก ์ˆœ์„œ๋ฅผ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ํ†ตํ•ด ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ , ์ž์‹ ์—๊ฒŒ ์•Œ๋ ค์ง„ ์ „์†ก ์ˆœ์„œ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ˆœํ™˜ ์ˆœ์„œ ๋ฐฉ์‹ (round robin manner) ์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ MAC ํ”„๋กœํ† ์ฝœ์€ ์ „์†ก ์ถฉ๋Œ (transmission collision) ๊ณผ ์ปจํ…์…˜ ์‹œ๊ฐ„์„ ํšจ์œจ์ ์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ , CSMA/CA (carrier sensing multiple access with collision avoidance) ๊ธฐ๋ฐ˜์˜ single-cell ๋„คํŠธ์›Œํฌ์—์„œ์˜ MAC ํšจ์œจ์„ ๊ทน๋Œ€ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, ์‹คํ—˜์„ ํ†ตํ•ด TOD-MAC์ด ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ๊ณผ, ์ข‹์€ short/long-term ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ๊ณตํ‰์„ฑ (air-time fairness) ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” IEEE 802.11 ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ์˜ ์ตœ๋Œ€-์ตœ์†Œ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ๊ณตํ‰์„ฑ (max-min air-time fairness) ์„ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” Max-min Air-time Fairness MAC (MAF-MAC) ํ”„๋กœํ† ์ฝœ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ IEEE 802.11 ad-hoc ๋„คํŠธ์›Œํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ์„œ๋น„์Šค์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฆํ•˜ํ•˜๋ฉด์„œ, ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ ๋…ธ๋“œ๋“ค ๊ฐ„์— ๊ณตํ‰ํ•œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด MAF-MAC์—์„œ๋Š” ๊ฐ ๋…ธ๋“œ๋“ค์ด ์ž์‹ ์˜ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ํ†ตํ•ด ์ฃผ๋ณ€ ๋…ธ๋“œ๋“ค์—๊ฒŒ ์•Œ๋ ค์ฃผ๊ณ , ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ด ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž์‹ ์˜ contention window (CW) ๊ฐ’์„ ์ ์ ˆํ•˜๊ฒŒ ์กฐ์ ˆํ•˜์—ฌ ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ์˜ ์ตœ๋Œ€-์ตœ์†Œ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ๊ณตํ‰์„ฑ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ MAC ํ”„๋กœํ† ์ฝœ์€ ๋„คํŠธ์›Œํฌ์— ์žˆ๋Š” ๋…ธ๋“œ๋“ค์—๊ฒŒ ๋ณด๋‹ค ๊ณตํ‰ํ•œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•จ๊ณผ ๋™์‹œ์— ์ฑ„๋„ ์ ์œ ์œจ๊ณผ ์‚ฌ์šฉ์œจ์„ ํšจ์œจ์ ์œผ๋กœ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค๋ฅธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ํžˆ๋“  ๋…ธ๋“œ ๊ฐ์ง€ (hidden node detection) ๋ฐฉ๋ฒ•๊ณผ ํžˆ๋“  ๋…ธ๋“œ ํ•ด๊ฒฐ (hidden node resolving) ๋ฐฉ๋ฒ•์„ MAF-MAC์— ์ ์šฉํ•จ์œผ๋กœ์จ ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ ๋ฐœ์ƒ ํ•  ์ˆ˜ ์žˆ๋Š” ํžˆ๋“  ๋…ธ๋“œ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹œ๋ฎฌ๋ž˜์ด์…˜์„ ํ†ตํ•ด ํžˆ๋“  ๋…ธ๋“œ์˜ ์กด์žฌ ์—ฌ๋ถ€์™€ ๊ด€๊ณ„ ์—†์ด ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ MAF-MAC์— ๊ธฐ๋ฐ˜ํ•œ ๋ฐฉ๋ฒ•์ด ์ข‹์€ ์ฑ„๋„ ์ ์œ  ๊ณตํ‰์„ฑ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์คŒ๊ณผ ๋™์‹œ์— ํšจ์œจ์ ์œผ๋กœ ์ฑ„๋„์„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.The demand for wireless local area network (WLAN) has drastically increased due to the prevalence of the mobile devices such as smart phones and tablet PCs. However, the distributed coordination function (DCF), which is the basic MAC protocol used in IEEE 802.11 WLANs, needs to be improved on MAC efficiency in single-cell networks and fairness performance in ad-hoc networks. In this dissertation, we propose two MAC protocols that can enhance MAC efficiency in single-cell network, and max-min air-time fairness in ad-hoc network by adjusting frame transmission duration, respectively. In the traditional MAC protocol, the length of a packet or a frame is usually fixed and the transmission duration is determined by the data rate. However, we show how each node can precisely adjust the transmission duration when the frame aggregation and block ACK features are used in very high-speed IEEE 802.11n/ac/ad WLANs. If the transmission duration can be precisely controlled, it plays the role usually carried out by a control message. Therefore, a node can indirectly announce necessary information to the other nodes, which can sense the transmission of the node, without incurring any overhead. This idea is simple, but very effective to enhance the network performance by exchanging the necessary information without overheads. First, we propose the Transmission Order Deducing MAC (TOD-MAC) protocol to improve MAC layer efficiency in IEEE 802.11 single-cell network. Recently, the physical (PHY) layer transmission rate increases to Gbps range in the IEEE 802.11 WLANs. However, the increase in the PHY layer transmission rates does not necessarily translate into corresponding increase in the MAC layer throughput of IEEE 802.11 WLANs because of MAC overheads such as PHY headers and contention time. TOD-MAC precisely controls the frame length and transmission duration to indirectly provide necessary information to a node to determine the transmission order among all the nodes in a network. Each node transmits frames of different duration, and thus the other nodes can determine the time when they can transmit, which has the same effect as announcing the transmission order, without using a control message. Each node transmits a frame in a round robin manner, which minimizes the idle time between two consecutive transmissions without collisions, and significantly enhances the MAC efficiency in very high speed CSMA/CA wireless networks. The results of extensive simulations indicate that TOD-MAC achieves high throughput performance, short/long-term air-time fairness in multi-rate networks and excellent transient behavior in dynamic environments. Secondly, we propose Max-min Air-time Fairness MAC (MAF-MAC) to improve max-min air-time fairness in IEEE 802.11 ad-hoc networks. As the demand for services based on ad-hoc networks rapidly increases, enhancing fairness among nodes becomes important issue in ad-hoc networks. The concept of max-min fairness is that a node may use more channel resource as long as it does take away the channel resource from the other nodes who uses less channel resource. In MAF-MAC, the transmission duration is adjusted so that it can indirectly perform the function of a control message in announcing the state of a node, called the busy time ratio. On the basis of this information, each node adjusts its CWCW value to improve max-min air-time fairness. Moreover, we also adopt the hidden node detection and resolving mechanism to MAF-MAC to improve the max-min air-time fairness even when there are hidden nodes in ad-hoc networks. We show through simulation that MAF-MAC incorporating hidden node detection/resolution mechanisms can provide good air-time fairness with high channel occupation and utilization ratio whether or not there are hidden nodes in the network.Docto

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    ยฉ 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore