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Abstract

The demand for wireless local area network (WLAN) has drastically increased due to the
prevalence of the mobile devices such as smart phones and tablet PCs. However, the distributed
coordination function (DCF), which is the basic MAC protocol used in IEEE 802.11 WLANS,
needs to be improved on MAC efficiency in single-cell networks and fairness performance in
ad-hoc networks. In this dissertation, we propose two MAC protocols that can enhance MAC
efficiency in single-cell network, and max-min air-time fairness in ad-hoc network by adjusting
frame transmission duration, respectively. In the traditional MAC protocol, the length of a
packet or a frame is usually fixed and the transmission duration is determined by the data rate.
However, we show how each node can precisely adjust the transmission duration when the frame
aggregation and block ACK features are used in very high-speed IEEE 802.11n/ac/ad WLANSs.
If the transmission duration can be precisely controlled, it plays the role usually carried out by a
control message. Therefore, a node can indirectly announce necessary information to the other
nodes, which can sense the transmission of the node, without incurring any overhead. This idea
is simple, but very effective to enhance the network performance by exchanging the necessary
information without overheads.

First, we propose the Transmission Order Deducing MAC (TOD-MAC) protocol to improve
MAC layer efficiency in IEEE 802.11 single-cell network. Recently, the physical (PHY) layer
transmission rate increases to Gbps range in the IEEE 802.11 WLANSs. However, the increase
in the PHY layer transmission rates does not necessarily translate into corresponding increase
in the MAC layer throughput of IEEE 802.11 WLANs because of MAC overheads such as PHY
headers and contention time. TOD-MAC precisely controls the frame length and transmission

duration to indirectly provide necessary information to a node to determine the transmission



order among all the nodes in a network. Each node transmits frames of different duration, and
thus the other nodes can determine the time when they can transmit, which has the same effect
as announcing the transmission order, without using a control message. Each node transmits a
frame in a round robin manner, which minimizes the idle time between two consecutive trans-
missions without collisions, and significantly enhances the MAC efficiency in very high speed
CSMA/CA wireless networks. The results of extensive simulations indicate that TOD-MAC
achieves high throughput performance, short/long-term air-time fairness in multi-rate networks
and excellent transient behavior in dynamic environments.

Secondly, we propose Max-min Air-time Fairness MAC (MAF-MAC) to improve max-min
air-time fairness in IEEE 802.11 ad-hoc networks. As the demand for services based on ad-hoc
networks rapidly increases, enhancing fairness among nodes becomes important issue in ad-hoc
networks. The concept of max-min fairness is that a node may use more channel resource as
long as it does take away the channel resource from the other nodes who uses less channel re-
source. In MAF-MAC, the transmission duration is adjusted so that it can indirectly perform
the function of a control message in announcing the state of a node, called the busy time ra-
tio. On the basis of this information, each node adjusts its CW value to improve max-min
air-time fairness. Moreover, we also adopt the hidden node detection and resolving mechanism
to MAF-MAC to improve the max-min air-time fairness even when there are hidden nodes in
ad-hoc networks. We show through simulation that MAF-MAC incorporating hidden node de-
tection/resolution mechanisms can provide good air-time fairness with high channel occupation

and utilization ratio whether or not there are hidden nodes in the network.

Keywords: Wireless LAN, IEEE 802.11, IEEE 802.11n, medium access control (MAC), round
robin, transmission duration adjusting, max-min fairness, air-time fairness, hidden node prob-
lem

Student Number: 2010-30225
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Chapter 1

Introduction

The users of wireless mobile devices such as smart phones and tablet PCs, which basically
require wireless Internet access, is explosively increased, and the wireless local area network
(WLAN) is one of the most popular wireless communication technology thanks to its ease of
deployment and low installation cost. At the same time, the demand for multimedia applica-
tions such as HDTV (20 Mbps) and DVD (9.8 Mbps) rapidly increases in WLANSs, and higher
bandwidth is required for such services in wireless networks. To satisfy the increasing demand
for higher throughput of WLANSs, the IEEE 802.11n standard introduces new physical (PHY)
layer and medium access control (MAC) specifications [1]. By using advanced PHY layer
technologies such as multiple-input multiple-output (MIMO) antenna, orthogonal frequency di-
vision multiplexing (OFDM), adaptive channel coding, and channel bonding, the data rate in the
PHY layer reaches up to 600 Mb/s for a 40 MHz channel bandwidth and 4x4 MIMO configura-
tion. Furthermore, IEEE 802.11ac/ad aims to support PHY layer rates in the Gbps range [2, 3].
Although the transmission rate may significantly increase, one does not see a commensurate

increase in user throughput because the MAC efficiency of IEEE 802.11 rapidly decreases with



increasing PHY rates [4,5]. This is because the MAC-layer overheads such as the MAC header,
contention time, and acknowledgement (ACK) frame transmission limit user throughput. In
fact, in the transmission of a frame, the proportion attributed to overhead becomes larger as the
PHY rate increases. According to a study conducted by Li et al. [4], MAC efficiency falls from
42% at a 54 Mbps rate to only 10% at a 432 Mbps rate.

IEEE 802.11n [1] introduced several mechanisms including frame aggregation and Block
ACK to enhance MAC efficiency. In the traditional MAC protocol, the length of a packet or a
frame is usually fixed and the transmission duration is determined by the data rate. However, we
will show shortly that a node can precisely adjust the transmission duration when the frame ag-
gregation and block ACK features are used as in very high-speed IEEE 802.11n/ac/ad WLANS.
If the transmission duration can be precisely controlled, it can play the role usually carried out
by control messages, i.e., a node can indirectly announce necessary information to the other
neighbor nodes, which can sense the transmission of the node, without incurring any overhead.
By using transmission duration, necessary information can be exchanged among the nodes that
are in the carrier sensing range of each other. This is better than transmitting a control mes-
sage directly or using an optional field in the PHY/MAC headers, because nodes must be in the
transmission range of each other to communicate successfully. This dissertation is based on this
idea, which is simple, but very effective to enhance network performance by exchanging nec-
essary information without overheads. In this dissertation, we propose two MAC protocols that
can enhance MAC efficiency in single-cell network, and max-min air-time fairness in ad-hoc
network by adjusting frame transmission duration, respectively. It is noted that we will discuss
the operation of the proposed MAC protocols based on IEEE 802.11 for ease of explanation,
but its main underlying idea can be applied to any carrier sense multiple access with collision
avoidance (CSMA/CA) wireless networks.

In the first part of this dissertation, we propose Transmission Order Deducing MAC (TOD-



Time

Figure 1.1 Data transmission in a round robin manner

MAC) protocol to improve MAC layer efficiency in IEEE single-cell networks. As the PHY
rate increases, the time to transmit a frame is quickly dominated by a fixed overhead associated
with the PHY header, contention time, etc. Reducing the wasted time caused by collisions
or channel errors is crucial for improving the MAC efficiency. Data transmission in a round
robin manner, instead of contention for an opportunity for data transmission, is an attractive
alternative. Figure 1.1 shows the basic concept of the round robin data transmission when there
are /N number of nodes in a single-cell network. If each node transmits in a round robin manner,
the both contention time and collision rate can be minimized at the same time, and consequently
the MAC efficiency can be improved. TOD-MAC protocol is based on a round robin scheme,
but it does not use any control messages. In TOD-MAC, the transmission duration is accurately
adjusted and it performs the function of a control message to determine the transmission order
of nodes. Based on the information of transmission order, each node transmits in a round robin
manner. In this way, TOD-MAC can achieve a very high MAC efficiency in various network
environments. Furthermore, the results of extensive simulations show that TOD-MAC provides
a good short/long term air-time fairness, and fast transient response in dynamic environments,
where a node newly joins or leaves.

As the demand for services based on ad-hoc networks rapidly increases in WLANS, en-
hancing fairness among nodes becomes an important issue in ad-hoc networks. If each node
can share the wireless channel fairly, it will be satisfied. However, sometimes, some nodes mo-
nopolize the channel and some nodes cannot use the channel at all due to the relative position
of the nodes in a network. Because each node operates based on CSMA/CA in IEEE 802.11

WLAN:S, a node that senses the channel busy for all the time never has a chance to transmit a
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Figure 1.2 The simple starvation scenario in the ad-hoc networks

data frame. In ad-hoc networks, a node generally has different number of nodes in its carrier
sensing range from the other nodes. Then, a node that has many nodes in its carrier sensing
range may starve due to the nodes in the carrier sensing range. Figure 1.2 shows a simple star-
vation scenario in an ad-hoc network, where the circles with the dotted-line indicate the carrier
sensing range. In this scenario, node 2 senses the channel busy most of time and suffers from
starvation because nodes 1 and 3 monopolize the channel. To solve such an unfairness problem,
in the second part of this dissertation, we propose a MAC protocol that will improve max-min
air-time fairness in IEEE 802.11n ad-hoc networks. It is noted that max-min fairness implies
achieving not only the air-time fairness, but also full utilization of the channel. This protocol
will be called as Max-min Air-time Fairness MAC (MAF-MAC). In MAF-MAC, a node esti-
mates the ratio of its using air-time with respect to the total channel busy time starting from its
present transmission to the next transmission, and announces estimated ratio to the nodes in its
carrier sensing range. By using the information of estimated ratio, each node can appropriately
adjust its CW value to improve max-min air-time fairness in ad-hoc network. Note that there
may be hidden nodes in an ad-hoc network, and the fairness can be significantly degraded by

hidden nodes [6,7]. Therefore, we adopt the hidden node detection [8] and resolving mecha-

4



nism [9] to MAF-MAC for alleviating the hidden node problem. We show in a simulation study
that MAF-MAC improves air-time fairness and at the same time fully and effectively utilize the
channel whether or not there are hidden nodes.

This dissertation is organized as follows. Chapter 2 overviews the aggregation with fragment
retransmission (AFR) scheme [4], which is closely related to the proposed MAC protocols, and
shows how the transmission duration can be precisely controlled. In Chapter 3, we propose
Transmission Order Deducing MAC (TOD-MAC) for maximizing the MAC efficiency in a
single cell wireless network. In Chapter 4, Max-min Air-time Fairness MAC (MAF-MAC) is
proposed to improve max-min air-time fairness in IEEE 802.11 ad-hoc networks. Finally, we

conclude the dissertation in Chapter 5.



Chapter 2

Precisely adjusting transmission dura-

tion in IEEE 802.11n WLANSs

In this chapter, we briefly introduce the Aggregation with Fragment Retransmission (AFR)
scheme, which forms the basic element for the proposed MAC protocols in this dissertation.
Then, we explain how transmission duration can be precisely adjusted in the proposed MAC
protocols. In [4], the authors proposed a new fragmentation technique, called the AFR scheme.
In the AFR scheme, a frame is composed of fragments, and packets that exceed the predeter-
mined fragment size are divided into fragments. A Fragment, rather than a packet, is the basic
unit used in retransmission rather (see Fig. 2.1(a)).

In the AFR scheme, packets are divided and combined following the procedure described
below [4]. In the MAC header of the AFR scheme, the fields of the MAC header of IEEE 802.11
remain unchanged, except that three additional fields - fragment size, fragment number,
and spare are added. The fragment size and fragment number represent the size of a

fragment and the number of fragments in a MAC frame, respectively. Each fragment header



< Data frame format in the AFR scheme >
37 8..2048 64..2048 2 2 64..2048 2

MAC header Fragment headers | Fragment 1 [ FCS | -+« FCS | Fragment N | FCS

| < Data frame format in the proposed MAC protocols> S
: 35 10 .. 2560 64, 2048 2 N 2% 64,2048 2

MAC header Fragment headers Fragment 1 | FCS| - FCS | Fragment N | FCS
[«—Frame header—»« Frame body >

(a) Data frame format

< MAC header format in the AFR scheme >

2 2 6 6 6 2 6 2 1 4
Frame | Duration | Address | Address | Address | Sequence | Address it | Fragment FCS
control /1D 1 2 3 control 4 1Z number
. < MAC header format in the proposed MAC protocols >

PN PR 6 6 6 P 6 S o
Frame | Duration | Address | Address | Address | Sequence | Address | Fragment FCS
control /ID 1 2 3 control 4 number

(b) MAC header

< Fragment header format in the AFR scheme >
14 bits 12 bits 2 Bbits 2 14 bits 12 bits 2 6bits 2
Packet Packet Start Packet Packet Start

D length | position Offset | FCS |« Offset

ID length position

; <"Fragmen'{ header format in the proposed MAC protocols > NN
A4 bits A2 bits . 2 - Bbitsi 2 14 bits | 12 bits 2 2 ™. 6bifs. 2~

2
Packet | Packet Start Fragment | qec | eaa | . Packet | Packet Start Fragment
1D length | position size Offset | FCS 0 length | position size | Offset | FCS

(c) Fragment header

Figure 2.1 Modified data format in the proposed MAC protocols (The numbers are in bytes
except for those explicitly denoted in bits)

is composed of six fields: packet ID (pID), packet length (pLEN), startPos, offset, spare, and
FCS. pID and pLEN represent the corresponding ID and length of packet P to which a fragment
belongs. The startPos indicates the position of a fragment body in a frame, and the offset is used
to record the position of a fragment in packet P. After receiving a frame, the receiver combines
the fragments corresponding to packet P based on the information in the MAC and fragment
headers (see [4] for the process by which the packet is combined by a receiver) and sends
successfully combined packets to the upper layer. The receiver also transmits an ACK frame in

the format of Fig. 2.2, where a 32-byte bitmap is simply added to the legacy ACK format. Each

7



2 2 6 32 4
Frame . Receiver .
control Duration address Fragment bitmap | FCS
Figure 2.2 ACK frame format
Basic
Transmission Duration ‘
Time
Ki=1
<« T\ Time
Ks=2
¢ TBTD > 2 A Time
KS = Ksmax
<—TBTD >!1 Ksmax ‘A > Time

Figure 2.3 The required information coding using transmission duration

bit in the bitmap indicates the correctness of a fragment, from which a sender can retransmit

only the corrupted fragments.

If packets can be divided into small fragments, the aggregated frame size can be adjusted

at the fragment level, and the transmission duration can also be controlled so that it plays the

role usually carried out by control messages. Figure 2.3 illustrates how each node indirectly an-

nounces necessary information without incurring any overhead in the proposed MAC protocols.

This idea is simple, but very effective to enhance the network performance by exchanging nec-

essary information without overheads. In the proposed MAC protocols, each node announces a

positive integer K that indicates its present state (transmission order or channel resource usage)

and transmits a frame according to K ;. To implicitly announce its K, each node calculates its



transmission duration as

Tyena = TPWY + T8 + T/ 1 T,y = Tprp + Ky A, @.1)
where T,fgf , Tjnac, T{;ﬁg , and T}, represent the time duration to transmit the PHY, MAC, frag-
ment headers, and data frame, respectively. And, Ts7p is the basic transmission duration
(a fixed parameter), and A is the difference in duration between K, = k and K, = k + 1.
Tprp in the proposed schemes is set sufficiently shorter than the channel coherence time 1
so that the channel noise level does not change much during a frame transmission. This pre-
vents miss-detection of channel state caused by large fluctuation of channel noise during a frame
transmission, and thus we can assume that each node knows the frame transmission time exactly
based on physical carrier sensing?. After determining the transmission duration, the frame body
size S sy, which is the size of the payload and fragment headers, can be calculated depending on
the transmission rate R, i.e.,

S . Tsend * R phy mac
fo = ] ~ “hdr — “hdr>

where Sﬁgf{ and S57¢ are the sizes of the PHY and MAC headers, respectively. Each node can

subsequently deduce K g corresponding to the current transmission from 7,4 by (2.1).
Although the fragment aggregation in the AFR scheme is more flexible than the packet ag-

gregation in IEEE 802.11n for controlling transmission duration, it is not sufficient to accurately

adjust the transmission duration because, except for the last fragment of a packet, the fragment

size is fixed. For example, let g7 p be 192 us, A be 4 us, R be 65 Mbps, packet size S, be 1280

"We consider that the coherence time of a typical WLAN channel is on the order of a few tens of milliseconds
[10].

The physical carrier sensing mechanism defined by IEEE is known as clear channel assessment (CCA). The
CCA determines the channel state (busy or idle) in PHY layer, and it takes 4us to judge the channel state in 802.11n
[11,12].



256 256 256 256 256
AFR scheme Fragment 2 Fragment 2 Fragment 3 Fragment 4 Fragment 5
T
| | |
256 256 256 256 114 142
Proposed MAC Fragment 2 Fragment 2 Fragment 3 Fragment 4 Fragment | Fragment
(a) Fragmentation in the AFR scheme and proposed MAC protocols
40 256 2 256 2 256 2 256 2 256 2
AFR scheme FLZirg:?t Fragment 1 | FCS | Fragment 2 | FCS | Fragment 3 | FCS | Fragment 4 | FCS | Fragment 5 | FCS
i i
! 50 256 2 256 2 256 2 256 2 114 2 !
Proposed Fragment Fragment
MAC repahy Fragment 1 | FCS | Fragment 2 | FCS | Fragment 3 | FCS | Fragment 4 | FCS 5 FCS
e Reauired Sp = 1198 >
1

(b) Fragment aggregation inthe AFR scheme and proposed MAC protocols

Figure 2.4 Fragment techniques in the AFR scheme and proposed MAC protocols

bytes (B) and fragment size S,y be 256 B, which shows near-optimal performance across a
wide range of BERs in the AFR scheme. When a packet of 1280 B is divided into five fragments
(256; 256; 256; 256; 256), a node with K¢ = 1 must transmit for 196 us to indirectly announce
that its K is 1. According to IEEE 802.11n, the time duration to transmit a PHY header is 44
us. Therefore, the time duration to transmit the payload and MAC header (37 B in the AFR
scheme) needs to be 192 4 4 — 44 = 152 ps when we use a single antenna radio. That is, Sy
must be 1198 B. Since 1198 is not a multiples of 256 + 8 + 2 = 266 (8 B for the fragment
header and 2 B for the FCS of a fragment in the AFR scheme), a sender cannot make a frame
that meets the required 7T’.,q using the AFR scheme. The Sy, size should be either 1064B or
1330B, and thus it cannot precisely adjust the transmission duration to inform its K in the AFR
scheme. To adjust the transmission duration more precisely, the size of each fragment needs to
vary, which requires some modification of the AFR scheme.

Figure 2.1 shows the difference in the data frame format between the AFR scheme and pro-
posed MAC protocols (the ACK frame format is the same for both the proposed MAC protocols

and the AFR scheme). In the proposed MAC protocols, the Fragment size field is in the

10



fragment header instead of in the MAC header. In this way, each fragment can vary in size,

and consequently the transmission duration can be precisely controlled in the proposed MAC

protocols. For the required S, of 1198 B in the previous example, a packet can be divided into

six fragments (256; 256; 256; 256; 114; 142;) and then the node can make a frame of length

Sy = (256 + 10) * 4 + (114 + 10) + (2 % 5) = 1198 B (10 B for the fragment header and 2

B for the FCS of a fragment). Figure 2.4 shows the difference in the fragmentation technique

used between the AFR scheme and proposed MAC protocols.

Algorithm 1 Pseudo Code of receiver’s running logic in the proposed MAC protocols

1:

10:
11:
12:

13:
14:
15:
16:

17:
18:
19:

2
3
4
5:
6:
7
8
9

if MAC header is correct then

for i = 0to fragment number - 1 do
if Fragment ¢’s header is correct then
if pLEN < fgLEN then
fragment ¢’s length = pLEN
else
fragment ¢’s length = fgLEN
end if

fragment start position = start PO.S in the fragment header.
check the correctness of the fragment body using its F'C'S.
end if
record the correctness (including the fragment header and fragment body) of each
fragment in an ACK bitmap.
end for
construct an ACK frame using the ACK bitmap and transmit it back to the sneder.
update the receiving queue according to the ACK bitmap.
check the receiving queue and transfer all correctly received packets upwards, and re-
move them from the receiving queue.
else
discard this frame and defer an EIFS before initiating the next transmission.
end if

After receiving a frame, the receiver operates as shown in Algorithm 1, which is similar

to the receiver algorithm of the AFR scheme, to reconstruct packets from the fragments. The

zero-padding is used when the difference between the required S'y;, and a packet is smaller than

the fragment header size S; (= 10 B), i.e., (Sg, — Sp) < Si. Using the modified fragmentation

11



technique and zero padding, the frame size can be precisely adjusted so that each transmission

lasts for specified duration.
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Chapter 3

Improving the MAC efficiency of IEEE

802.11n WLANSs

3.1 Background and Related Work

As the demand for multimedia applications such as HDTV (20 Mbps) and DVD (9.8 Mbps)
rapidly increases in wireless LANs (WLANSs), higher bandwidth is required in wireless net-
works. Recent IEEE 802.11n proposals seek to support physical (PHY) layer rates of up to
600 Mbps [1], and IEEE 802.11ac/ad aims to support PHY layer rates in the Gbps range [2, 3].
Although the transmission rate may significantly increase, one does not see a commensurate
increase in user throughput because the MAC efficiency of IEEE 802.11 rapidly decreases with
increasing PHY rates [4,5]. This is because even though increasing PHY rates leads to faster
transmission of the MAC frame payloads, overheads such as PHY headers and contention time
typically do not decrease at the same rate. In transmitting a frame, the proportion attributed to
overhead becomes larger as the PHY rate increases. According to a study conducted by L et

al. [4], MAC efficiency falls from 42% at 54 Mbps PHY rate to only 10% at 432 Mbps PHY
13



rate.

Many schemes have been proposed to improve MAC efficiency in very high-speed WLANS.
In [13] and [14], the backoff process is modified to reduce the number of collisions and idle
slots, which are the main causes of overhead during channel contention. However, the MAC
efficiency in high-speed networks is intolerably low even in ideal cases, where there are no
channel errors or collisions [4,5]. In the Block ACK [5, 15] and Burst ACK [16-18] schemes,
several packets can be transmitted at the end of a backoff process, and so the number of ACKs
and SIFSs can be reduced. A backoff process is performed to transmit a series of data and
ACKs in Burst ACK, whereas Block ACK goes one step further by using a single ACK frame
for multiple data frames. In this way, the contention time and ACK time per packet can be
reduced and, consequently, the MAC efficiency can be improved. However, the PHY and MAC
header overheads are left untouched in these schemes, and the time to transmit a frame quickly
becomes dominated by PHY headers as the PHY rate increases.

IEEE 802.11n [1] introduced several mechanisms including frame aggregation and Block
ACK to enhance MAC efficiency. The standard supports two types of frame aggregation schemes,
the aggregated MAC level service data unit (A-MSDU) and the aggregated MAC layer protocol
data unit (A-MPDU). Several analytic studies have investigated the effect of A-MPDU and/or
A-MSDU frame sizes on the achievable throughput and their optimal sizes to improve through-
put [19-22]. In addition, a hybrid frame aggregation scheme known as two level aggregation,
which combines A-MSDU and A-MPDU, has been introduced [23, 24]. Even for such features
in IEEE 802.11n, MAC efficiency can become severely degraded in noisy channels as packet
sizes increase.

To overcome this shortcoming, Li et al. proposed the Aggregation with Fragment Retrans-
mission scheme (AFR scheme) [4], which modifies the frame aggregation algorithm in IEEE

802.11n. In the AFR scheme, packets that exceed a fragment size are divided into fragments to
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form a frame, and fragments, rather than an entire frame or packets, are retransmitted. Thus, the
AFR scheme gives good throughput performance even in noisy channels regardless of packet
size. Furthermore, transmission delays are minimized by using a zero-waiting mechanism in
which frames are transmitted immediately once a node wins a transmission opportunity. How-
ever, the MAC efficiency of the AFR scheme is lower than that of IEEE 802.11n in low noisy
channels because of unnecessary frame aggregation. Furthermore, the AFR scheme does not
reduce the time for contention including idle time and collisions. This is one of the main rea-
sons for low efficiency, and as a consequence, the efficiency decreases as the number of nodes
increases.

In this paper, we propose the Transmission Order Deducing MAC (TOD-MAC) protocol
for CSMA/CA wireless networks, which is a novel approach that improves MAC efficiency in
very high-speed WLANs by adopting frame aggregation and minimizing contention time. We
assume that all the nodes are located in a carrier sensing range of each other. In the traditional
MAC protocol, the length of a packet or a frame is usually fixed and the transmission duration
is determined by the data rate. However, we show how to determine the transmission order
of the nodes in a WLAN using transmission duration. If packets can be divided into small
fragments, the aggregated frame size can be adjusted at the fragment level, and the transmission
duration can also be controlled so that it plays the role usually carried out by control messages.
This idea is simple, but very effective as each node can indirectly announce its transmission
order without incurring any overhead. In TOD-MAC, a node transmits a frame in a round
robin manner based on the transmission order, which can minimize the idle time between two
consecutive transmissions without causing a collision. To correctly announce its transmission
order, a node in TOD-MAC adjusts the size of each fragment, unlike in the AFR scheme. In
this way, TOD-MAC achieves a much higher MAC efficiency than the AFR scheme or IEEE

802.11n, regardless of the number of nodes. Furthermore, high MAC efficiency is maintained
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even in noisy channels because TOD-MAC uses fragments as the basic unit of retransmission.

Recently, several MAC protocols was proposed to implement the round robin access method
[25-27]. However, these schemes required either additional control messages or sub-headers
for proper operation of the round robin access method. These induce additional overhead that
severely degrades MAC efficiency because these are transmitted at the basic rate as the PHY
header, and all the nodes need to be in the transmission range of each other, not the carrier
sensing range as in TOD-MAC, to obtain necessary information from control messages or sub-
headers. Furthermore, they did not consider the frame aggregation, which could be one of the
key features for improving MAC efficiency.

The remainder of this chapter is organized as follows. Section 3.2 overviews the AFR
scheme, which is closely related to TOD-MAC. Section 3.3 explains the operation of TOD-
MAC that improves MAC efficiency. Section 3.4 evaluates TOD-MAC and compares it to other

MAC schemes for very high-speed WLANS [1,4]. Section 3.5 concludes this chapter.

3.2 Preliminaries

In this section, we briefly introduce the Aggregation with Fragment Retransmission (AFR)
scheme, which forms the basis for TOD-MAC. In [4], the authors presented two basic require-
ments that must be met by any aggregation schemes: zero-waiting for aggregation and high
MAC efficiency. Zero-waiting for aggregation means that frames are immediately transmitted
whenever a node wins a transmission opportunity, without it waiting for packets to be accumu-
lated at the MAC layer.

We discuss MAC efficiency and how to achieve high MAC efficiency in the AFR scheme in

more detail as it is closely related to the development of TOD-MAC. In [4], the MAC efficiency
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for packet P is defined as

I, Sp/R
T,+ Ty, Sp/R+Th,

Mp (3.1)

where T}, and 7", are the times required to transmit a packet (i.e., a payload) and overheads,
respectively. As PHY rate R increases, for a fixed packet size S), the time T}, (= S,/R) to
transmit a packet decreases. If 7%, does not decrease, then the efficiency 7, decreases to zero
as R increases to infinity.

From (3.1), one can see that it is indeed possible to maintain a high MAC efficiency as R
increases, if Tfh decreases in inverse proportion to K. Considering Tfh in more detail, it can be
decomposed into the following elements:

h
(TPRY + Tpnee + T + Tow + Taer) - 7

Tfh = M )

(3.2)

where ngﬁ , Tymac, T{gfg , and T, represent the time duration to transmit the PHY, MAC,
fragment headers, and ACK frame, respectively. Ty is the contention time to win an oppor-
tunity for transmitting a frame, and r denotes the average number of transmissions required
to successfully transmit all the fragments of a packet. For a given fragment size Sy,q4, the
number of fragments in a frame 7,4 increases with the number of packets M in the frame,
ie., Nfrag = Ny, M, where 0’y is the number of fragments per packet. Assuming that
the number of packets M in a frame is proportional to R (i.e., M = bR), then we have
Nfrag = Nppq,0R. Therefore, T/ /M = 110451/ R, Where Sy is the fragment header size,
and consequently, the MAC efficiency per packet is given by

Sp

M = Sp‘}'r'(a/b_‘_n/frag'sl)’

(3.3)
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where a = T,fgf + 7% + Tow + Thek. If factor b increases, 7, asymptotically approaches

- Sp 1
= Sy+r-m'-S  1+d

(3.4)

where d = (rn;, ., S1)/Sp.

This shows that the efficiency is fundamentally limited by the number of fragments per
packet ns,,. and the number of retransmissions r. If we use a large fragment size, which
corresponds to a small n}m - then the fragment is more likely to become corrupted in a noisy
channel. On the other hand, if a packet is divided into many smaller fragments, the probability
of a fragment being corrupted is low, and thus n’fm g becomes larger and r gets smaller. If the
fragment size Sy,q4 can be adjusted according to channel conditions, high MAC efficiency can
be achieved. In [4], the authors proposed a new fragmentation technique, which is called the
AFR scheme and explained in Chapter 2, for improving MAC efficiency. In the AFR scheme,
a frame is composed of fragments, and packets that exceed the fragment size are divided into
fragments. Fragments are the basic unit used in retransmission rather than frames (see Fig.
2.1(a)).

In [4], the authors assume that a (= T}fgf + T7"¢ + Tow + Taer) can be ignored when
b is large enough. In this case, the MAC efficiency can be improved by controlling the values
of n’fT ag and . However, the value of b can also be small. Furthermore, the number of re-
transmissions 7 can increase depending on channel conditions and the collision rate when there
are many transmitters in a network. Therefore, r - a/b in (3.3) must not be ignored in practice,
and so there is an upper bound on how much the MAC efficiency can be improved by the AFR
scheme. TOD-MAC improves the MAC efficiency by minimizing a, especially Ty, and 7.
In the following section, we explain the operation of TOD-MAC that achieves higher MAC

efficiency.
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3.3 Transmission Order Deducing (TOD) MAC protocol

As the PHY rate increases, the time to transmit a frame is quickly dominated by a fixed overhead
associated with the PHY header, contention time, etc. Minimizing the wasted time caused
by collisions or channel errors is crucial to improve the MAC efficiency. Data transmission
in a round robin manner, instead of contention for an opportunity for data transmission, is
an attractive alternative. If each node transmits in a round robin manner, the contention time
and collision rate can both be minimized at the same time. That is, the values of @ and r
in (3.3) decrease and, consequently, the MAC efficiency can be improved. However, a round
robin method is not compatible with the distributed nature of IEEE 802.11 DCEF, in which the
transmission order of nodes is determined by contention. It usually requires control messages
to inform the nodes in a network of the transmission order. Moreover, when a node newly
joins or leaves the network, each node needs to know its transmission order, which can change
over time. Thus, it is hard to operate appropriately in a dynamic environment without control
messages.

The Transmission Order Deducing MAC (TOD-MAC) protocol is based on a round robin
scheme, but it does not use any control messages. The main idea underlying TOD-MAC is that
each node that is located in carrier sensing range of other nodes implicitly announces its trans-
mission order by way of its transmission duration. Each node determines the transmission order
of the other nodes by measuring the duration of their transmissions. Using a fragment aggre-
gation technique similar to that of the AFR scheme, which divides packets into fragments of a
small fixed length, the transmission duration is no longer solely dependent on the transmission
rate and can be flexibly adjusted in TOD-MAC.

Figure 3.1 illustrates the basic concept underlying TOD-MAC when there are N nodes in a
network. In the figure, ¢ is slot time and n,, is a design parameter. In this paper, the time period

during which each node in a network transmits a frame is called a transmission round and the

19



[————Transmission round———— > <«—Wait period—>»|

1 2 3 ‘ ...... N 1 2 ......
5 &> « Ny 6————>1e-6-> 5 Time
(a) Transmission round and wait period
Basic
Transmission Duration ‘

Time

1
‘—TBTD4>I<7\" Time

2
N

<«—TBmD >l N-A > Time

(b) Transmission order coding

Figure 3.1 Basic concept underlying TOD-MAC
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time period between two consecutive transmission rounds is called the wait period. Each node
has a transmission order O (marked in each square box in Fig. 3.1), which changes from round
to round, and transmits a frame according to its transmission order. To implicitly announce its

order, each node calculates its transmission duration as
Tsena = Tprp+ O * A, (3.5)

where Tyepng = ngﬁ + Tymac 4 T/:gf 9 + T, is the time duration to send a data frame composed
of fragments, Tprp is the basic transmission duration (a fixed parameter), and A is the
difference in duration between the kth and (k + 1)th transmissions. Figure 3.1(b) shows how
each node determines its Tg.,q according to its order, O. After determining the transmission
duration, the frame body size S;, which is the size of the payload and fragment headers, can

be calculated in terms of the transmission rate i.e.,

T d * R h
Spy = % — SPY — Sprae, (3.6)
where Sﬁgff and S}7p¢ are the sizes of the PHY and MAC headers, respectively. Each node
can subsequently deduce the transmission order corresponding to the current transmission from
Tseng When all the nodes are in carrier sensing range of each other.

In order for TOD-MAC to use the transmission order information to achieve high throughput

performance and air-time fairness without collisions, we have to resolve the following questions:

e How can transmission duration 7., 4 be accurately adjusted according to the transmission

order?
e How can the transmission order be deduced in a distributed manner?

e How can situations where a node newly joins or leaves a network be accommodated?

21



Table 3.1 Parameters of node 7 for transmission order determination.

CW; Contention window of node %

BC; Backoff counter of node ¢

WT; The number of idle slots to wait for node ¢ before starting to decrease its BC
O; Transmission order of node 7

Onmin,i | Minimum transmission order value among the transmission orders announced to node &
Omaz,i | Maximum transmission order value among the transmission orders announced to node 4
m; Number of transmissions between the transmissions of n(min) node and node 4

e How are the cases of transmission collisions and unsaturated nodes to be handled?

3.3.1 Adjusting the transmission duration

In high-speed WLANSs such as IEEE 802.11n/ad/ac, packet aggregation is adopted to reduce
transmission overheads. Although fragment aggregation in the AFR scheme is more flexible
than packet aggregation in IEEE 802.11n for controlling transmission duration, it is not suf-
ficient to accurately adjust the transmission duration because, except for the last fragment of
a packet, the fragment size is fixed. In TOD-MAC, the Fragment size field is in the frag-
ment header instead of in the MAC header as previously stated in Chapter 2. In this way,
each fragment can have a different size and, consequently, the transmission duration can be
precisely controlled in TOD-MAC. Furthermore, zero-padding is used when the difference be-
tween the required Sy, and a packet is smaller than the fragment header size S1 (= 10 B), i.e.,
(S¢p—Sp) < Si. Using the modified fragmentation technique and zero padding, frame size can
be precisely adjusted and each transmission can last according to the specified duration. After

receiving a frame, the receiver can easily reconstruct packets from the fragments.

3.3.2 Arranging transmission order

Let us now look at how the transmission order is determined distributively in TOD-MAC so that

the transmission order is arranged as in Fig. 3.1(a). In a network consisting of N nodes, node ¢
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Table 3.2 Updating the parameters of node ¢ for each idle slot.

Normal node Collision / Unsaturated node
Event
\ WP =0 WP >0, | WP >0,
Parameters WP, >0 Otherwise
0;,=0 0, >0 1>3 I1<3

O - m; + 1 - - - -

BC; - O; BC; —1 BC; —1 - -
Onw'n,i - Oz - - - -
Omaac,i - Oz - - - -
WP, WP, — 1 - - WP, — 1 WP, — 1 -

needs CW;, BC;, O;, Omini» Omaz,i» W F;, and m;, which are listed in Table 3.1, in order to
calculate the transmission order. CW;, BC;, and O; are the contention window, backoff counter,
and transmission order of node i, respectively. O,,;, and O, are the minimum and maximum
transmission orders in the network, respectively, and O,y i and Opqz,; are the minimum and
maximum transmission orders deduced by node . W F; is the number of idle slots that node
i waits before starting to decrease BC};, and node ¢ deduces that the wait period ends in W F;
slots. W P; is decremented by one for each idle slot, and is reset to 1, -6 when O,y ; is updated
or the transmission of node 7 ends (this will be explained in detail later). After W P; becomes
zero, BC; is decreased by one for each idle slot as shown in Table 3.2. Let us call node ¢ whose
transmission order O; is equal to k (O; = k) as n(k), and denote the nodes that have minimum
transmission order (Oy;,) and maximum transmission order (Oy,qz) as n(min) and n(max),
respectively. For example, assume that there are only two nodes in a network, nodes ¢ and j
with O; = 3 and O; = 5. Then, node i is node n(min) and node j is node n(max), and Opyp,
and Oy, are three and five, respectively. We also denote m; as the number of transmissions

between the transmissions of node n(min) and node .
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Table 3.3 Updating the parameters of node 7 at the end of transmission by n(k).

W node i # n(k) node i = n(k)
Parameters Omaz,i < k k < Omin,i Otherwise TX success TX failure

CWZ‘ - - - - 2 % CWZ

O, Change by (3.7) Select from

0; >0 0;=0 [1,CW;]
BC; O; - - O Omaz,i O;
Omin,i - k - O; 1 128
Omaa,i k - - O; 1 0
WP N - 0 - - Ny - 0 Ny * 0 -
mg m; + 1 0 m; + 1 0 0 0

When node ¢ newly joins the network, it selects its transmission order O; from [1, C'W;],
sets BC;i, Omin,i» and Opqz; equal to O;, WF; to ny, - 0, and m; to zero. Each node needs
to know the following information to transmit successfully in a round robin manner: 1) the
time when the current transmission round ends, 2) the time when the next transmission round
starts, and 3) its proper transmission order in the next round. (In a network of N nodes, we
say that the transmission order is proper when the transmission orders of nodes are in [1, N]
without overlap.) Using this information, we try to make W P; = n,, - 6 and BC; to O; for all
¢ at the end of the transmission round so that each node can transmit in proper order at the next
transmission round. However, it is not easy to obtain this information because it can change
whenever a node newly joins or leaves the network.

Let us look at how each node can deduce the time when the current round ends and also the
time when the next round starts. Basically, nodes n(min) and n(maz) transmit first and last in

a transmission round, respectively. Thus, node 7, ¢ = 1,2,..., N, can deduce the start (and the
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end) of a round by comparing O,,in i (Opmaz,i) With the order deduced from the duration of the
current transmission following the procedures described below. When there is a transmission
by n(k) and k is larger than O,,,45 ;, node i updates O,z to k, BC; to O;, and W P; to ny, - 9,
and increases m; by one. After updating O, i, it starts to decrease W P; by one for each idle
slot. If W P; becomes zero and there is no more updating of O,,44., node i concludes that the
current round has ended. In a similar way, whenever node 7 discovers, after the transmission by
n(k), that k is smaller than the current Oy, ;, it updates O,y in ; to k and assumes that the next
round has started with the transmission of n(k) and sets m; to zero. If Opini < k < Omag,is
node 7 simply increases m; by one without updating O,ip ;i Or Opmaz . The way in which the
node parameters are updated in accordance with various events is summarized in Table 3.3.
When node ¢ successfully transmits a data frame, it calculates its transmission order O;

using

Oi — 1, if Ol = Omin,i and Ol > 0,
Oi < (37)

Ommﬂ' +m;, if O; 7& Omm,i and O; > 0.

As stated previously, when node 7 newly joins a network, it randomly selects its transmission
order O; from [1, CW;]. Thus, there is a possibility that O,,;, will be greater than one in a
transient state. If O,,;, is [ (> 1), there must be a node whose transmission order is greater
than or equal to N + [, which needs to be changed to a number between one and N so that
the transmission orders are properly arranged. Therefore, if O; is equal to Oyp,; and the
transmission of node ¢ is successful, it deduces that it has become n(min) in this transmission
round, and therefore decreases O; by one as long as it is greater than zero. Otherwise, it sets O;
to Opin,i +m;. In this way, O; for each node can be made between one and N without overlap

when the transmission order of n(min) is one. After node 7 determines O; using (3.7), it resets
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Omin,i and Opqz i to O; so that node ¢ can follow the changes of Oy, and Oy, in a dynamic
environment. In addition, node i sets BC; to O; and W P; to ny, - 6.

Note that n(k) increases its transmission duration as k increases because it must transmit
for the duration of Tgrp + k - A. This means that n(k + 1) transmits longer than n(k) by
A and, consequently, the air-time fairness can become severely degraded if the transmission
order does not change. To achieve air-time fairness, each node adjusts its transmission order
after each transmission round. If the transmission order of each node is adjusted using (3.7), it
is decremented by one after each transmission round. Note that the transmission order of node
n(min) naturally becomes zero first. Node [, if it is currently node n(min), must find its proper
transmission order (Of ) for the next round when O; becomes zero. Thus, node [ sets BCj to
Omaz,1> not to O; (= 0 in this case), and sets m; to zero. After this, it temporarily sets both
Omaz,l and O,y 1 to one. These will be updated when W P, becomes zero, i.e., when the wait
period ends. Table 3.3 summarizes the way in which each node updates its parameters at the
time of successful transmission.

Since a transmission collision occurs if Of is less than or equal to O,,4, in the next round,
the value of Of must be larger than O,,,, in the next round. However, it is difficult to know the
value of Oy, in the next round because it can change whenever a node newly joins or leaves
the network. In order to determine the value of O, node [ counts the number of transmissions
in the current transmission round. Since O,y is set to one, node [ does not update Oy, ;. The
value of m; is increased by one whenever there is a transmission before W F; becomes zero. In
this case, the value of m; 4 1 at the end of the wait period after the current transmission round
becomes the maximum possible value for O,,,, in the next round. For example, assume that
there are /N nodes in the current round, and /N7 nodes join the network, with each transmitting
a frame during the wait period. If any node leaves the network in the next round, the value of

Opmaz 1n the next round will be less than N + Ny, which is equal to m; + 1. Otherwise, Oyqz
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Figure 3.2 Determining transmission order

will be equal to NV + N;. After determining the transmission order Oy, node [ sets BCy, Oppin 1,
and O,,4,,; to newly determined O;. Table 3.2 summarizes the way in which node  updates its
parameters according to the value of O; when W P; becomes zero.

Let us now look at some examples for the following cases: 1) How TOD-MAC operates at
the time of network initialization, 2) how each node determines when the current round ends
and when the next round starts, 3) how each node transmits in round robin manner, and 4) how

TOD-MAC operates when a node newly joins or leaves the network.

How TOD-MAC operates at the time of network initialization

Figure 3.2 shows how nodes determine their transmission orders when they form a network.
In the first round, node ¢, ¢ = 1,2,..., N, randomly selects its transmission order O; from
the range[1, CW;] (i.e., 2,5,7,..., N + [ in Fig. 3.2), and sets BC; to O;. Here, we do not
take collisions into consideration, i.e., we assume that each node initially selects a value for its
transmission order that is different from that of the others. (The case of transmission collision
will be discussed later.) Presently, node 1, which is n(2), is also n(min) in the network, and

thus it transmits first in the first round. After the transmission by node 1, it notices that O =
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Figure 3.3 Determination by node A of when the current round ends and when the next round
starts using Opyin, 4 and Opaz A.

Omin,1 = 2, and thus decreases the value of O by one in accordance with (3.7). At this point,
node j, j = 2,3,..., N, sets Opipn,; to two, which is the minimum among the transmission
orders calculated from the transmission durations. After successfully transmitting a frame, node
J sets its transmission order to O j +mj = 2 4+ m,;. In this way, each node 7 can accurately
determine its proper transmission order in the second transmission round. Node 1 prepares to
change its order after transmitting in the second round, because O is now zero. Since there
are N — 1 transmissions when the second wait period ends, node 1 changes O1 to m; + 1 =
N —141 = N in the third round. In this way, node ¢ decreases its transmission order by one in
accordance with (3.7), if O; is greater than zero. If O; is equal to zero, it changes O; to m; + 1

in the next round and, consequently, air-time fairness is achieved as the rounds proceed.

How each node determines when the current round ends and when the next round starts

Figure 3.3 illustrates how node A (node n(k) in this example) determines when the current
round ends and when the next round starts using Oypin. 4 and Opae. 4. Let Opipn and Oppgn
be p and ¢ (> p) in the first round, respectively, and assume that the transmission orders of

nodes are well arranged from p to ¢ without overlap. Note that node A initially sets Oyin 4
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and Ojq.,4 equal to its transmission order k. Node A then updates O,,;n 4 to p when the
transmission by node n(p) (p < Omin 4 = k) ends, and it can easily deduce that the first round
has started. After node A transmits a frame, it sets its transmission order O 4 to k — 1, and resets
both Opnin, 4 and Oz 4 to k — 1 in accordance with Table 3.3. When transmission by n(q)
ends, node A updates O,,q..4 to ¢ and concludes that the first round has ended when there is
no more updating of O,,q4. 4 and there is no transmission during the wait period. As previously
stated, the transmission orders of each node is decremented by one after the first transmission
round according to (3.7). Since O, 4 has been reset to k — 1 in the first round, node A updates
Omin, A to (p — 1)when the transmission by node n(p — 1) ends, and thus it can determine that
the second round has started. After its transmission in the second round, it resets both O, 4
and O,q4, 4 to the newly determined transmission order O 4 (=k —2). In the second round, node
A lastly updates O,;,q, 4 When the transmission of node n(g — 1) ends, and thus it concludes
that the second round has ended at the end of the transmission by node n(q — 1). In this way,
node ¢ can correctly deduce when the current round ends and when the next round starts using

Omin,i and Omaa:,i .

How each node transmits in a round robin manner

In TOD-MAC, each node knows when to transmit in a round robin manner, as shown in Fig.
3.1(a), based on its transmission order and the time when the current round ends. When node ¢
updates Opqz,; or successfully transmits a data frame, it deduces that the current round can be
ended and sets BC; to O; and W P; to n,, - 6. Note that the idle time between two consecutive
transmissions is set to a single slot time to maximize MAC efficiency, and the backoff time is
determined according to the transmission order; i.e., node 4, if it is n(k), sets its backoff counter
to BC; = O; = k after its successful transmission. If each node ¢, ¢ = 1,2,..., N, knows

when a transmission round has ended and sets BC; to O; and W P; to n,, - 9, then it can transmit
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Figure 3.4 Node transmission in a round robin manner using O,

in a round robin manner without any collision.

For example, let us assume that there are two nodes, A (O4 = k) and B (O = k + 1),
in a network and nodes A and B set their backoff counter to k and k + 1, respectively. In this
case, node A, which is n(min), will transmit before node B. Node A assigns k — 1 to O 4 in
accordance with (3.7), and sets BC'4 to k—1 and W Py4 to n,, - § after transmitting a data frame.
When node B ends transmission, which is n(max), node A updates O,,4, 4 to (k + 1), and sets
W P4 ton,, -6 and BC4 to k— 1. Note that node B also sets O to O,;n, 5 +mp = k, BCp to
k, and W Pp to n,, - 0 after transmitting a frame. Nodes A and B then both wait the same time
period (W P4 = W Pg) before starting the backoff process, and the backoff counters of nodes
A and B are £ — 1 and k, respectively, when the transmission of node B ends, which is also the
end of the current round. Thus, nodes A and B have to wait (k + n,, — 1) - 6 and (k + n,) - § to
transmit data, respectively. That is, node A transmits before node B, and the idle time between
transmissions by nodes A and B is a single slot time. Furthermore, since node A always resets
Omaz,4 to a newly determined O 4 after its transmission, node A updates O, 4 When the

transmission by node B ends and this procedure is repeated until the transmission order of node
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Figure 3.5 Description of time durations D; and D».

A becomes zero at which time node A changes O 4 to m4 + 1 = 2. The transmission orders of
nodes A and B are switched with each other after the end of each transmission round. Figure

3.4 shows how nodes A and B transmit in a round robin manner.

Operation of TOD-MAC when a node newly joins or leaves the network

Let us now look at how TOD-MAC operates when a node newly joins or leaves a network. Let
Omin and Op,q, be p and g (> p) in the rth transmission round, respectively, and assume that
transmission orders are well arranged from p to g without overlap. First, let us consider the
case when node [ newly joins the network, and randomly selects its transmission order O; from
[1,CW], and sets BCj to O; and W P, to n,, - 6. Node [ may then transmit in the middle of the
transmission round (D) or between the two consecutive transmission rounds (Ds), described in
Fig. 3.5. Here, the case where node [ transmits during D7, which would result in a collision, is
not considered (the collision handling method will be described in the next section). When node
[ transmits during D after the rth transmission round, there are three possible cases depending
on the value of O;, which node [ has chosen from [1, CW,] as its transmission order (O; = L)
in the rth transmission round; i.e., 1) ¢ < L,2)p < L < gand 3) L < p.

Figure 3.6(a) shows how each node arranges its transmission order for the case where ¢ < L.
After the transmission by node [/, node ¢, i # [, updates O,,q.,; once more because Oz =
q < L, and consequently resets BC; to O; and W P; to n,,-d in accordance with Table 3.3. In the

same time, node [ calculates its transmission order O; = Oy +m; = p+ (¢ —p) = ¢ for the
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Figure 3.6 Operation of TOD-MAC when node [ newly joins the network
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(r + 1)th transmission round, and sets BC) to O; and W P, to n,, - 6. Note that the transmission
order of node i in the (r + 1)th transmission round is decreased by one after its transmission, in
accordance with (3.7). Therefore, node [ becomes node n(maz) and the transmission order of
each node can be arranged in the (r + 1)th transmission round as can be seen in Fig. 3.6(a).

In the case where p < L < ¢, the transmission order of each node can be arranged in
the similar way as described in the above except that the transmission order of each node is
completely arranged in the (74 2)th round instead of the (r+1)th round. When node [ transmits
a data frame, node i, for ¢ # [, does not updates O,in i OF Opaz,i because Oppini = p < L <
q¢ = Omaa,i> and so it simply increases m; by one. On the other hand, node [/ calculates its
transmission order O; as Opyin; + m; = p + (¢ — p) = ¢ in the (r + 1)th round, and sets
BCj to Oy and W P, to ny, - 6. Note that (W P, + BC)) — (W P; + BC;) > 1,1 # [, because
WP, < WP, = ny and BC; < BC; = . Thus, although node ! becomes n(maz) in the
(r 4+ 1)th round, the number of idle slots (/1) between the transmissions of node [ and node
n(q — 1) is greater than one. When node [ transmits in the (r 4+ 1)th round, node 7 updates
Omaz,i to q and resets W P; to n,, - d, and node [ also sets W P, to n,, - §. Therefore, the
transmission order of each node can be properly arranged in the ( + 2)th round, as can be seen
in Fig. 3.6(b)

Figure 3.6(c) shows how each node arranges its transmission order for the case where L < p.
After the transmission by node [, node i updates Oy, = p (> L) to L and notices that the
(r + 1)th round has started and O,,,;,, has changed to L. Consequently, it calculates O; as
Omini +mi; = L 4+ m, after its transmission in the (r 4 1)th round, and O; is between L and
L + (p — q) in the (r + 2)th transmission round. Note that node [ simply decreases O; to L — 1
in the (r + 2)th round because it is n(min) in the (r + 1)th round. Therefore, the transmission
order of each node is arranged from L — 1 to L + (p — ¢) in the (r + 2)th transmission round.

Let us now consider the case when node [ leaves the network in the rth round. Note that
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Figure 3.7 Operation of TOD-MAC when a node [ newly leaves the network

L must be between p and ¢. The transmission order of node n(ky), where p < ky < L, is not
affected when node [ leaves the network, and is decreased by one, in accordance with (3.7) in
the (r 4+ 1)th round. On the other hand, node n(k3), where L < ko < ¢, sets its transmission
order Oy, t0 Opin ki, +Miky = p+ (ke —p—2) = ko —2; i.e., it decreases its transmission order
by two because node [ has left the network. Therefore, the transmission order in the network is

well arranged from p — 1 to ¢ — 2 in the (r 4 1)th round, as can be seen in Fig. 3.7.

3.3.3 Handling Collision and Unsaturated nodes

In this section, we look at how transmission collisions are handled by each node. In TOD-MAC,
a receiver always sends an ACK frame to the sender except when the transmitted data frame
header has been corrupted by channel noise. We assume that the data rate is set sufficiently low
so that data frame headers are not corrupted by channel noise. Thus, each node can easily know
whether a transmission fails because of collisions or channel errors using the ACK frame from
the receiver. Hereafter, we will call a node that fails to transmit a frame because of collision a
colliston node, and a node that successfully transmits a frame a normal node.

After a transmission failure, collision node ¢ doubles C'W;, using (3.8), and randomly selects

its transmission order O; from the range [1, C'W;] with the newly determined C'W;.

CWZ‘ * 2, if CWi < CWmawa
oW, = (3-8)

CWinaz, otherwise.
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After determining the value of O;, collision node ¢ sets BC; to O;. Unlike the other nodes that
successfully transmit a frame, 1) it sets Oyip i and Oppaq,; to 128 and zero, respectively, and
2) the W P; value of collision node i is kept at zero until there is a successful transmission.
The reason underlying this is as follows. It is noted that the newly selected transmission order
O; can be less than O,y;, or greater than O,,4,. When O; is less than O,,;, and collision
node i sets Oyyin,i to Oy, it does not update Oppp, ; after the transmission of n(min) because
Omin,i < Omin. Consequently, it cannot determine when the next round starts from the value
of Opin,i- Likewise, when O; is greater than Oy, and collision node i sets Oyyqz,; to O, it does
not update Oy ; after the transmission of n(maz) because Opag,i < Omaz. Consequently, it
cannot determine when the current round ends from the value of O,,44,5. Thus, it sets Oypin i
and Ojpqz; to 128 and zero, respectively, so that it can correctly determine these when the next
round starts and when the current round ends. Let us now look at why collision node ¢ has
to be kept W P; at zero after its transmission fails. If a collision node retransmits right after a
collision in the current transmission round, there is a high probability that the collision node will
experience another collision because the idle time between the two consecutive transmissions
is a single slot. In order to avoid another collision, collision node ¢ decreases BC; only for
idle slots in the wait period, and consequently transmits data only during the wait period. In
TOD-MAC, the number of idle slots I between two consecutive transmissions is one during the
transmission round and can be larger than one only during the wait period (see Fig. 3.1(a)) or
at the time of network initialization. After the first round, with the exception of collision nodes,
each node knows its transmission order. Therefore, collision nodes can deduce with a high
probability that the wait period has started when [ is larger than one after the first transmission
round. In this paper, collision nodes 7 judges that the wait period has started and decreases
BC; when [ is larger than or equal to three and W P; is larger than zero. The parameter update

for collision node 7 in the event of idle slot (i.e., backoff procedure) is described in Table 3.2.
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Thus, if W P; of collision node ¢ remains to zero, it does not retransmit a frame until there is a
successful transmission from other nodes. By not retransmitting a frame right after its collision,
it can avoid other possible collisions in the current transmission round. Table 3.3 summarizes
the method by which node parameters are updated in the event of a collision.

Note that the possibility exists for all the nodes in a network to become collision nodes
and consequently set their W Ps to zero. if such a possibility occurs, no node can perform the
backoff procedure because a node can transmit only after a successful transmission. As a result,
there would be no activity in the network until a node newly joins and successfully transmits a
frame. In order to prevent such a scenario, collision node ¢ decreases BC; when [ is larger than
2 - n,, - 0 even if W P; remains at zero.

After collision node 7 updates parameters CW;, O;, Opin, i, and Opqq,; as described above,
it operates like the other normal nodes, except that it decreases its backoff counter only during
the wait period. If collision node 7 successfully transmits a frame in the wait period, it then
determines its transmission order in accordance with (3.7) and becomes a normal node. Other-
wise, it doubles C'W; once more and starts the backoff procedure only during the wait period
until it successfully transmits a frame. If a collision occurs, the other nodes j, 5 = 1,2,..., N,
J # 1, that are not affected by the collision do nothing (do not update O, Omin,j» Omaz,j, and
WP;).

Figure 3.8 shows in which a collision occurs in a network comprising three nodes, A, B,
and C. We assume that each node sets WP, to 10 - § (i.e., n,, = 10) and nodes A, B, and C
randomly set their transmission orders to three, five, and five, respectively. In the first round,
transmissions by nodes B and C fail due to collisions, and only node A successfully transmits
a data frame. After the transmission, node A determines O 4 to two, in accordance with (3.7),
and sets Oz, 4, Omin,a, and BC 4 to 2, and resets W P4 to 10 - 6. When the collision occurs,

node A does nothing, whereas nodes B and C double their CW's and randomly choose their
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Figure 3.8 Collision handling in TOD-MAC
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transmission orders from the newly determined C'Ws. Let us assume that nodes B and C set
their transmission orders to six and three, respectively. Nodes B and C then, respectively, set
Omaz,B and Opyaq.c 10 z€10, Opin g and Oy ¢ to 128, and keep W Pp and W P¢ at zero.
Note that they cannot start to decrease their BC's in the first wait period even if I is larger than
three because their W Ps are zero. After 10 - § (= W P4 + BC4, presently W Py is 8 - §) has
elapsed after the collision, node A, which is node n(min) with O4 = 2 in the second round,
transmits a data frame. Nodes B and C then update their O,,40.B: Omin, B> Omaz,c and Opin.c
to two. Note that the W Ps of nodes B and C are initialized to 10 - § because O,,qq, B and
Opmaz,c are updated. The second wait period starts at the end of the transmission by node A.
In the second wait period, nodes B and C start the backoff procedure because their W Ps are
larger than zero. They wait I is larger than three and start to decrease their BC's during the wait
period. Node C transmits when BC¢ becomes zero and sets O¢ t0 Opin.c +me = 2+0 = 2,
and then operates like a normal node. After three more idle slots have passed, node B also
successfully transmits a data frame and sets Op to Oy, 8 + mp = 2+ 1 = 3. In the third
round, the transmission orders are properly arranged and nodes A, B, and C transmit in a round
robin manner.

An unsaturated node, whose aggregated length of packets in the queue is smaller than the
required frame body length (Sy;), cannot correctly inform others of its transmission order using
the transmission duration. When a node cannot make a frame of the required length Sy, because
of lack of packets in the queue, it does not transmit during the transmission round and transmits
only in the wait period. That is, an unsaturated node decreases BC; when [ is equal to or greater
than three and W P; is larger than zero in accordance with Table 3.2. An unsaturated node ¢
operates like a normal node when it can make a frame of required length Sy,. If unsaturated
node 7 fails to transmit a frame because of collisions in the wait period, it doubles C'W;, using

(3.8), and selects BC; from the newly determined C'W;. Otherwise, it sets CW; to CW,,;,, and
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Table 3.4 System parameters used in the simulations.

Subsection 3.4.1 3.42and 3.4.4 343

Scheme TOD AFR DCF TOD AFR DCF TOD AFR DCF
Data rate H: 65 H: 65 H: 65

varied | varied | varied 65 65 65

(Mbps) L:6.5 L:6.5 L:6.5

Basic rate
6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

(Mbps)

CWnin 32 32 32 32 32 32 32 32 32
CWinaz 256 1024 1024 256 1024 1024 256 1024 1024
Frame Size 8192, 8192, 8192, H: 10240 | H: 10240 | H: 10240

10240 | 10240 | 10240
(B) 16384 | 16384 | 16384 L: 1024 L: 1024 L: 10240
Packet Size

2048 2048 2048 2048 2048 2048 2048 2048 2048

(B)
Fragment Size

256 256 - 256 256 - 256 256 -

(B)

randomly chooses BC; from [1, CW;]. If each node in a network is unsaturated, TOD-MAC
operates in much the same fashion as IEEE 802.11 DCF; i.e., all the nodes contend with each
other using the binary exponential backoff, because there is no transmission round and only the
wait periods are concatenated one after the other. The only difference is that in TOD-MAC each
node has to wait three additional idle slots before decreasing its backoff counter. By doing this,

TOD-MAC can effectively deal with transmission collisions as well as unsaturated nodes.

3.4 Simulation and performance evaluation

In this section, we report the result of performance evaluation conducted on TOD-MAC using
an NS2 simulator, and how they compared to those of the AFR scheme [4] and IEEE 802.11n
DCF with packet aggregation and Block ACK. The system parameters used in the simulations
are listed in Table 3.4. H and L in the experiment of Subsection 3.4.3 denote the high and low
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rates in multi-rate network, respectively.

Because the frame size varies according to the transmission order in TOD-MAC, we give
only the average frame size in TOD-MAC. Frame size is fixed in the AFR scheme and 802.11n
DCEF. In order for all the schemes to have the same payload size on average, we set Tprp in
TOD-MAC as

(Sy+ Spiy + Spmacy -8 N A«

T = . 3.
BTD I N (3.9)

Here, S represents the payload size of the AFR scheme and 802.11n DCF.

As the value of A\ in TOD-MAC increases, the probability that a node becomes an un-
saturated node increases and MAC efficiency can decrease. Therefore, we set A to 4us, be-
cause it is the minimum time required for packet detection/clear channel assessment (CCA) in
802.11n [11, 12]. We also set n,, to six, i.e., we set node ¢, ¢ = 1,2,..., N, to reset WF;
to 6 - 0 when it updates O,,q,,; or the transmission of node ¢ ends. (When the rate of packet
generation is not explicitly mentioned, it is assumed that each node always has enough packets
to transmit.) Nodes were randomly placed in a rectangular area 100 m by 100 m. The packets
were sent without RTS/CTS. We used MAC efficiency, throughput, collision rate, and air-time

fairness as performance measures.

3.4.1 MAC efficiency performance

Figure 3.9 shows the MAC efficiency (% - 100%) for various payload sizes (8192 and
16384 B) and PHY rates (from 65 Mbps to 585 Mbps) for a network comprising 10 nodes.
Although, in the figure, the MAC efficiency of TOD-MAC decreases as the PHY rate increases,
it can be seen that it was always greater than 50% regardless of the payload size or PHY rate.

Furthermore, TOD-MAC provided the best MAC efficiency compared to the ARF and DCEF, at

approximately 20% higher. Since high throughput performance implies high MAC efficiency
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Figure 3.9 MAC efficiency for various payload sizes with increasing PHY rates for a network
comprising ten nodes

for a fixed PHY rate, we present the throughput performance instead of the MAC efficiency in

the following subsections.

3.4.2 Single rate network

We investigated the total throughput and collision rate for a 65 Mbps network. Figure 4.8(a)
shows the total throughput for various numbers of nodes in the network. Regardless of the
number of nodes, TOD-MAC maintained a relatively constant throughput, which was 10% —
35% higher than those of the AFR scheme and DCF. This is because the collision rate of TOD-
MAC is virtually zero (see Fig. 3.10(b)).

Figure 3.11 shows the throughput performance for various numbers of nodes in a noisy
channel. In the noisy channel of BER = 1074, the throughput performance of DCF was
severely degraded because packets that were aggregated to form a frame 2048 B long, which
was longer than the fragment sizes in the AFR scheme and TOD-MAC. TOD-MAC also gave

the best throughput performance for BERs of 10~* and 107°.
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Figure 3.12 shows the throughput performance when there were 10 saturated nodes and
one unsaturated node in the network. In the figure, T'hrr, Thry, and Thrg represent the total
throughput, aggregate throughputs of the unsaturated node and saturated nodes, respectively.
The offered load of the unsaturated node was varied every 5sas(1 -2 —-3 4 —-5—-4 —
3 — 2 — 1) Mbps. Note that the unsaturated node became a saturated node when the offered
load was larger than 6 Mbps. In TOD-MAC, the unsaturated node used a sufficient amount of
channel bandwidth to transmit its offered load, and the saturated nodes effectively shared the
remaining bandwidth of the unsaturated node. The total throughput was approximately 25%
higher in TOD-MAC compared to the AFR scheme at all times. Even though we also studied
the case for IEEE 802.11n DCEF, its simulation results are not presented in Fig. 3.12 because
they were very similar to those of the AFR scheme. (Further, including them would make the
graph difficult to comprehend.)

We confirmed that TOD-MAC has the best performance in single rate networks under var-
ious environments because it is based on a round robin algorithm that does not use control

messages.

3.4.3 Multi-rate network

We also evaluated the throughput performance and Jain’s fairness index of air-time in a multi-
rate network. We considered a scenario in which there are 20 senders in a network and the
number of high rate nodes varied from zero to 20 (i.e., the number of low rate nodes varied
from 20 to zero). The data rate of high and low rate nodes were 65 and 6.5 Mbps, respectively.
Since frame size is adjusted according to the data rate in TOD-MAC and the AFR scheme, the
throughput performance increased linearly as the number of high rate nodes increased, as can
be seen in Fig 3.13(a). In contrast, IEEE 802.11n DCF had a poor throughput performance

because it did not adjust the frame size. Figure 3.13(b) shows that TOD-MAC and the AFR

44



60 L ' ' TOD-MAC —8— |
AFR ---o---
DCF ---4---
0
o
Qo
=3
5
[oX
<
(o))
>
(@]
S
|—
Number of high rate nodes
(a) Throughput performance
L}
. -
s 08} A R
g .
2 AL
e 06 A .
8 TA ;
(0] T ‘."
E o04¢f a
= T A
<
021 TOD-MAC —=— |
AFR ---o---
DCF ---a--
0 1 1 1
0 5 10 15 20

Number of high rate nodes

(b) Air-time fairness

Figure 3.13 Throughput performance and air-time fairness in multi-rate network

45



Air-time fairness Index

02r - TOD-MAC —=— ]|
2 S AFR ---o---
DCF -4
O N N M | N N M | N N P
0.01 0.1 1 10

Evaluation interval (s)

Figure 3.14 Short-term air-time fairness in multi-rate network

scheme achieved excellent air-time fairness for various numbers of high rate nodes in the multi-
rate network.

Figure 3.14 shows the short-term air-time fairness when there were five high rate nodes
and five low rate nodes in the network. TOD-MAC gave the best short-term air-time fairness
compared to the AFR scheme and DCF because it is based on a round robin scheme and the
transmission duration for each node is nearly the same on average. In TOD-MAC, the air-time
was fairly allocated to each node at the end of the tenth round (10 x Ts“ég’;l * 10 = 0.1322 s),

as can be seen in Fig. 3.14. This shows that TOD-MAC also achieved the best throughput

performance and air-time fairness in multi-rate network as in the single rate network.

3.4.4 Transient time behavior

Finally, we investigated how long it took for the transmission order in a network to stabilize
when all the nodes newly joined the network and randomly selected their transmission orders.

For this, we simulated a scenario in which 20 nodes randomly selected their transmission order
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and measured the variation in collision rate from 100 simulation results. In Figure 3.15, the
circle and error bars indicate the average collision rate and its standard deviation, respectively. It
took approximately 0.1 s for the average collision rate to become nearly zero, and approximately
0.2 s for the average collision rate and its standard deviation to stabilize.

Figure 3.16 shows the aggregate and per-node throughputs when five nodes joined a net-
work of five nodes at 5.0 s, and then left the network at 10.0 s. In TOD-MAC, the throughput
performance stabilized quickly as soon as the nodes joined or left the network. This simulation
result confirmed that TOD-MAC can achieve high throughput performance within a very short

transient time despite the changes in the number of nodes in a network.

3.5 Chapter summary

In this paper, we proposed the TOD-MAC that enhances MAC efficiency in WLANs. Unlike
traditional MAC protocols, in TOD-MAC, the transmission duration is adjusted and it performs

the function of a control message to determine the transmission order of nodes. Based on infor-
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Figure 3.16 Transient time behavior when five nodes newly joined and then left the network

mation of transmission order, each node transmits in a round robin manner, which minimizes
the idle time between two consecutive transmissions and also prevents transmission collisions.
Consequently, TOD-MAC achieves high throughput performance in various simulation scenar-
ios. Furthermore, the simulation results show that it provides good short/long term air-time
fairness, and fast transient response in dynamic environments. TOD-MAC can operate not only
in WLANS, but also in any CSMA/CA networks. In addition, the basic principle underlying

TOD-MAC is simple, which makes it easy to implement.
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Chapter 4

Improving Max-min air-time fairness in

IEEE 802.11n ad-hoc networks

4.1 Background and Related Work

The recent explosive proliferation of mobile devices such as smart phones and tablet PCs ac-
celerates the demand for wireless Internet access. The wireless local area network (WLAN) is
one of the most popular wireless communication technology thanks to its ease of deployment
and low installation cost. At the same time, the demand for services based on ad-hoc networks
rapidly increases in WLANs. Providing fair service among nodes is important in the operation
of ad-hoc networks. When a user does not get a fair service compared to other users, he/she will
not be satisfied with the wireless service provider.

The principle for a MAC protocol to achieve fairness is simple, i.e., to adjust the contention
window (CW) of a node according to its current share of channel resources. However, designing
a protocol that works well in ad-hoc networks is very difficult and has not yet been successful.

This is due to the combination of several factors such as the physical nature of wireless commu-
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nication, random access mechanism to wireless channel, arbitrary spatial distribution of nodes,
multiple objectives in the operation of an ad-hoc network. Some of the objectives is to make
nodes share the wireless channel fairly with their neighbors and at the same time maximize the
network throughput with small transmission delay. These objectives are usually conflicting with
each other and one has to find a suitable compromise among these objectives.

Extensive studies have been carried out to find an optimal MAC, and one of them is to
achieve max-min fairness [28-38]. The notion of max-min fairness was introduced for wired
networks [39], and it cannot be directly applied to wireless networks. To achieve max-min
fairness in a wireless network, a node can use additional channel resource as long as it does not
take the resource away from the others who use less channel resource. (The channel resource
can be throughput, air-time or the number of transmissions, etc. In this dissertation, we will
consider air-time as the channel resource that should be fairly utilized and elaborate on the
definition of max-min air-time fairness later.) In general, if a node uses more channel resource,
other nodes have to use less channel resource when channel resource are limited. Let us consider
a node attempting to use more channel resource to increase its air-time. If the other nodes can
still maintain the same air-time as before, then these nodes have nothing to complain about this
attempt, and this improves the overall channel utilization. Otherwise, they will complain about
this attempt, because channel utilization becomes less fair. This is the reason why it is important
to achieve max-min fairness.

It is well known that the DCF protocol does not provide fair throughput to the nodes in
ad-hoc networks [40]. A flow contention graph [28,29] was proposed to calculated the max-
min fair share of a node, up to which a node can utilize wireless channel resource. However,
each node must know the topology of its neighbor nodes to obtain the flow contention graph,
which may severely degrade the MAC efficiency due to the heavy traffic caused by control

packets. Furthermore, these schemes show poor transient response in dynamic environments.
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Some schemes [32,33] tried to improve max-min fairness by making heavy users yield transmis-
sion opportunities to other users, but these did not necessarily provide max-min fairness [38].
In [34-37], each node uses the channel resource in accordance with the weight that is calcu-
lated from its fair share. However, theses schemes are not practical to use in ad-hoc networks,
because it is difficult to calculate the fair share of a node in a distributed way and so the weights
of nodes are unknown in general. In the Distributed Filling and Draining (DFD) scheme [38],
each node periodically broadcasts its throughput potential (THP) information using a control
frame, and adjusts its CW,,;, and CW,,4, according to the THP information announced by
other nodes. Although the DFD scheme can improve max-min throughput fairness in ad-hoc
networks, it requires additional control messages as in [28,29]. This induces additional over-
head that can severely degrade MAC efficiency in high speed WLANSs because control messages
are transmitted at the basic rate as the PHY header. Moreover, it cannot be guaranteed that the
schemes based on the control frames improve max-min throughput fairness among the nodes
that are in carrier sensing range but out of transmission range of each other, because they may
not obtain necessary information from the control frame. Recently, Douglas et al. [41] ex-
ploited the transmission opportunity (TXOP) feature for transmitting burst of packets in the
IEEE 802.11e/n MAC, to enhance max-min throughput fairness in mesh networks formed from
a set of inter-connected WLANS that are non-interfering, which is not suitable for general ad-
hoc networks.

In order to achieve max-min fairness, it is very important to take the hidden node problem
into consideration, because it is highly probable that there are hidden nodes in an ad-hoc network
and the fairness can severely degraded in such a case [6,7]. Several analytic models were
derived to estimate the impact of hidden nodes on network performance for simple network
topologies [42-44]. The process to alleviate the effects of hidden nodes can be accomplished

into two steps: (1) hidden node detection [8,45—47] and (2) hidden node resolution [9,48-52].
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In the hidden node detection scheme of [45], a sender deduces that there are hidden nodes
in the networks when only an ACK frame is observed without observing the corresponding data
transmission. This method can be successfully applied in a single BSS network, but does not
work properly in general ad-hoc networks. In another hidden node detection mechanism, nodes
cooperate with access points (APs) in a densely deployed network [46]. Because the cooperation
with APs is essential for hidden node detection, it cannot be used in general ad-hoc networks.
Kim et al. [8] proposed the hidden node detection scheme that exploits the new features of IEEE
802.11n such as the frame aggregation and block ACK. This scheme can detects hidden nodes
quite well in IEEE 802.11n network environment [8], and we will incorporate this scheme into
the MAC protocol to improve max-min fairness in Section 4.2.

Aside from hidden node detection schemes, several hidden node resolution schemes were
proposed [9,48-52]. Exchanging RTS/CTS control frame, which is probably the most well
known hidden node resolution scheme in WLANSs, was introduced in the multiple access with
collision avoidance (MACA) [48]. Moreover, several Receiver-oriented Contention (ROC)
schemes [49-51] were designed based on the MACA scheme to suppress the transmission
of RTS frame at the sender. The ROC schemes show better performance compared to the
RTS/CTS exchange scheme when there are hidden nodes [49]. A dual busy tone multiple access
(DBTMA) mechanism [52] was proposed to alleviate the hidden node problem by using busy
tone signal to prevent the interference from hidden nodes during data transmission. However,
it does not use ACK frames, and requires additional transceivers, control and data sub-channels
with sufficient spectral separation to avoid inter-channel interference, and thus it is not compat-
ible with the IEEE 802.11 standard. Kim [9] proposed a method to alleviate the hidden node
problem by extending the effective CTS range and adaptively adopting the ROC mechanism.
In this method, a node can identify a CTS frame that is sent out of the transmission range but

within the carrier sensing range. After identifying the CTS frame, the node can appropriately set
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its network allocation vector (NAV) value with the help of the frame size adaptation scheme. In
addition, the ROC mechanism is initiated only when interference from hidden nodes is detected
via the hidden node detection mechanism [8]. In this way, this scheme can effectively resolve
the hidden node problem for various network topologies. However, it does not take fairness into
consideration and its fairness performance can be poor in the presence of the starvation problem
as in Fig. 1.2.

In this chapter, we propose a max-min air-time fairness MAC (MAF-MAC) for improving
max-min air-time fairness in IEEE 802.11n ad-hoc networks. In traditional MAC protocols, the
length of a packet or a frame is usually fixed and the transmission duration is determined by
the data rate. If packets can be divided into small fragments, the aggregated frame size can be
adjusted at the fragment level, and the transmission duration can also be controlled so that it
can play the role that is usually carried out by control messages. This idea is simple, but very
effective to achieve max-min air-time fairness in ad-hoc networks without incurring any over-
head. In MAF-MAC, a node estimates the ratio of its air-time usage with respect to the total
channel busy time, and announces this ratio to the nodes in its carrier sensing range. Each node
adjusts its C'W value based on this information to improve max-min air-time fairness. Further-
more, MAF-MAC adopts the hidden node detection [8] and resolution mechanism [9], and thus
it can provide good air-time fairness while effectively utilizing the channel even when there are
hidden nodes in a network. Moreover, MAF-MAC can automatically resolve the performance
anomaly in multi-rate networks, where high rate and low rate nodes achieve the same through-
put in IEEE 802.11 DCEF that provides the same transmission opportunity to each node [53].
Because of this, a low rate node occupies the channel longer than a high rate node, which is
good with respect to the throughput fairness performance, but can significantly deteriorate the
overall network throughput. MAF-MAC naturally takes care of this problem even in a general

ad-hoc networks, not like the methods for a single cell network [54-58].
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The rest of this chapter is organized as follows. Section 4.2 explains the operation of MAF-
MAC that improves max-min air-time fairness in ad-hoc networks. In Section 4.3, we discuss
how to handle the issues such as hidden nodes, transmission collision and overlap, the presence
of unsaturated nodes among saturated nodes, and enhancing channel utilization when wireless
channel is underutilized in implementing MAF-MAC. Section 4.4 evaluates the performance
of MAF-MAC and compares it to other MAC schemes in very high-speed WLANSs [1, 8, 9].

Section 4.5 concludes this chapter.

4.2 Max-min Air-time Fair MAC (MAF-MAC) protocol in ad-hoc

networks

In this section, we explain how MAF-MAC works to improve max-min air-time fairness in
an ad-hoc network. In IEEE 802.11 ad-hoc networks, node 7 shares channel resource with its
neighbor nodes that are in the carrier sensing range of node 7. Let us define a neighbor node of

node 7 as the following.

Definition 4.1 (neighbor node). Node j is a neighbor node of node i if it is in the carrier sensing

range of node 1.

In the following, we denote the set consisting of node ¢ and its neighbor nodes as .S; and the
number elements in S; as V;.
Max-min fair was originally defined for wired networks [39], where transmission rate r; is

allocated for session s;. The rate vector 7= (ri,ro,...,7 N)T is said to be feasible if the sum
of rates for sessions crossing each link in a network does not exceed the link capacity, where N

is the number of nodes in the network. Then, the max-min fair is defined as the following.

Definition 4.2 (max-min fair [39]). A rate vector 7 is said to be max-min fair if it is feasible

and it is impossible to increase the rate of a session without losing feasibility or decreasing the
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rate of another session that has a smaller rate.

The sessions crossing a link share the link capacity in wired networks, whereas a node shares
wireless channel with its neighbor nodes in ad-hoc networks. It is difficult to test the feasibility
of a given rate allocation for nodes because nodes access the channel in a distributed manner and
channel resource can be spatially reused. Therefore, in order to further discuss MAC protocols
to improve max-min fairness in ad-hoc networks, a measure needs to be defined to show how
much channel resource a node uses. It can be throughput, air-time, the number of transmissions
or the time spent for successful transmission in a given time interval. In this dissertation, we
use air-time as a fairness measure and a MAC protocol to improve fairness with respect to this
measure is proposed, but other measures can be used similarly. Let A; be the channel access
time of node 7 in time interval T, and a; = A;/T be the normalized air-time of node i. We
will simply call a; as air-time of node ¢ if no confusion arises. Then, we can easily see that the
air-time vector @ = (a1,as,...,an)T is feasible if Zkesi ar, < 1, for all . (T is assumed be
fixed for ease of explanation.) Similar to Definition 4.2, the max-min air-time fair is defined as

the following.

Definition 4.3 (max-min air-time fair in wireless network). An air-time vector d is said to be
max-min fair if Y s, ak < 1, for all i, and it is impossible to increase the air-time of a node

without decreasing the air-time of another node that has a smaller air-time.

Jain’s fairness index, which is usually used for a single cell network to measure its fairness
performance, is not appropriate to evaluate the fairness performance for an ad-hoc network
consisting of multiple cells. This is because each node has different neighbor nodes, and the
number of neighbor nodes generally differs from one node to another. Thus, we define a new

fairness index to evaluate max-min air-time fairness for ad-hoc networks.

Definition 4.4 (Jain’s air-time fairness index for node ¢ and generalized Jain’s air-time fairness
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index). Jain’s air-time fairness index for node 1 is defined as

(Zkesi ag)?

Ji _—
. P
Ni - kes, O

Based on this, the generalized Jain’s air-time fairness index is defined as

(Note that node i fairly shares air-time with its neighbor nodes if J; = 1, and J = 1 implies

that J; = 1 for all 1.)

From these fairness indices, we can derive the following proposition. Consider a network
where there is at least a node in the carrier sensing range of each node, and we will call this an

interconnected network.

Proposition 4.1 (condition for max-min air-time fair). The air-time a for an interconnected
random access network is max-min air-time fair if and only if a;, + = 1,2,..., N, are feasible

and maximized under the constraint of J = 1.

Proof. (If part) Since .J = 1, each node has the same air-time as its neighbor nodes. This implies

that a; = a;, forall j = 1,2,..., N. Let @’ be the maximum air-time that a node can have under
_ —

the constraint .J = 1. Then, a; = o’ for all 5. Assume that o’ = (a/,d’,...,a’)" is not max-min
_)

air-time fair. Then there must be another air-time vector o’y = (a’ + A,d’ + A, ..., d + A).

However, this is impossible because of the definition of a’.

(Only if part) When each node in a network increases its air-time from zero until there is a
node that cannot increase its air-time. Let @ be the air time value of each node at this time. In
this case, if some of the nodes try to increase their air-time from a, there must be a node that

needs to decrease its air-time from @, and consequently the minimum air-time value of a node
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in the network decreases from a. Therefore, a is the max-min air-time value that each node can

have, and consequently J = 1. O

From Proposition 4.1, we can achieve max-min air-time fair if we can maximize a; and a;
and maintaining the condition a; = a;, for all j € S; and for each node . This is an idealistic
goal in a general ad-hoc network, but is a right direction to improve max-min air-time fairness
in real circumstances. Therefore, we need a fairness measure for a node to announce in order to
improve max-min air-time fairness. For this, each node estimates its busy time ratio, which is

defined as the following.

Definition 4.5 (busy time ratio of node ¢). The busy time ratio of node 1 is the channel busy time
owing to the transmission by node i with respect to the total channel busy time, which can be

expressed as

Here, b; = B;/T and B; is the time duration that node i senses the channel busy including its

own transmission duration in time interval T'.

Now, we present how each node estimates «; using only measurable MAC layer statistics.
We define the estimation period for node ¢ as a time period consisting of backoft slots (i.e.,
idle slots), busy medium times due to other nodes’ transmission, node ¢’s data transmission and
the corresponding SIFS, ACK transmission, and DIFS as shown Fig. 4.1(a). (The busy medium
time of node ¢ is the time that node ¢ senses its channel busy.) For ease of explanation, these
terms, excluding the backoff slots and the busy medium time, are merged into a transmission
instant. As each transmission starts and ends at the slot boundaries, we can abstractly draw
the transmission instants and busy medium times due to other nodes’ transmission as black

dots, as shown in Fig. 4.1(b). An estimation period of node : starts from the end of its current
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Figure 4.1 Estimation cycle of MAF-MAC for node ¢

transmission, and ends at the end of its next transmission if it can sense at least one transmission

of its neighbor nodes between these transmissions. If not, the estimation period is extended to

the end of its later transmission until at least one of its neighbor nodes transmits. It is noted

that estimation period is not fixed, but this does not give any difficulty because we do not

use the estimation period explicitly in the implementation of MAF-MAC. We denote the busy

time duration owing to the kth transmission by node 4 in the rth estimation period as A;[r, k].

Similarly, the busy time duration owing to the /th transmission by the neighbor nodes of node ¢

in the rth estimation period is denoted as B;[r,[]. And, n;[r] and n,[r] represent the number of

transmissions by node ¢ and the other neighbor nodes in the rth estimation cycle, respectively.

Since there must be one or more transmissions of other nodes in an estimation period, n,[r| is
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greater than 0. Then, a;[r| and b;[r] can be expressed as the following

mll A k
wlr] = kZIT[r][T] 4.1)

no[r] ni[r]
21 Bilr, 0+ >0 Ailry k
blr) = =L }T,[T]Z‘“—l i, (4.2)

where T;[r] is the time duration of the rth estimation period for node i. Node i estimates its

busy time ratio «; after the rth estimation period as

a;[r] _ ZZ;[:] Ailr, k] .
bilrl el By 1) 4+ S Ayl &)

Finally, o is low pass filtered with a coefficient p (0 < p < 1) after the rth estimation period

to produce &;[r + 1] as

ailr+1] = p-ar]+ (1 —p) - ayfr]

Let a@; and b; be the expect values of a;[r] and b;[r] in steady state, respectively. Then, for suffi-
ciently large r, we can assume that a;[r] ~ @; and b;[r] = b;, and &;[r + 1] can be approximated

as

alr+1 ~

S &8

Let g; ; is the conditional probability that node j senses the channel idle given that node %
senses the channel idle. If the neighbor nodes of nodes 7 and j are identical, i.e., S; = S; the
conditional probability ¢; ; then becomes 1. Assume that ¢; ; = 1, Vj € S;, (single-cell case)

then the following proposition can be made.

Proposition 4.2 (a condition for approximate max-min air-time fair in a single-cell network).
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The air-time vector d for a wireless random access network is approximately max-min air-time
fair if and only if &; and o are maximized under the constraint of &; = & when q; j = 1, for
all j € S;.

Proof. Note that b; = b?, for all j € S;, because node 7 and j sense the identical channel. Thus,

[}

~ — ;

%Ozl:aj%

&

we can see that @; ~ a; from the , and consequently J ~ 1. Moreover,

(=

g J

&; and a; are proportional to a; and a;, respectively. Therefore, a; and a; are maximized when
&; and a; are maximized. From Proposition 4.1, the air-times of nodes in a wireless network is
approximately max-min air-time fair if and only if &; and &; are maximized under the constraint

of &; = @; in a single-cell network. 0

However, Proposition 4.2 is applicable only to single cell networks. Because the carrier
sensing areas of nodes ¢ and j are different in ad-hoc networks, and consequently g; ; is less
than 1 in practice. Therefore, the following assumption is required to extend Proposition 4.2 for

general ad-hoc networks.

Assumption 4.1. When each node in an interconnected random access network greedily ac-
cesses the channel to maximize ¢;s while satisfying the constraint &; = i, forall i and j € S,
the channel is busy for most of the time. Consequently, nodes i and j, for all i and j € S;, sense

the channel busy for most of the time in steady state, and

b= b ~1 “3)

Then, we can derive the following proposition under the Assumption 4.1.

Proposition 4.3 (a condition for approximate max-min air-time fair). Under the Assumption
4.1, air-time vector d for an interconnected random access network is approximately max-min
air-time fair if and only if nodes i and j greedily access the channel to maximize &; and o

while satisfying the constraint of &; = a;, for all j € S;.
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Proof. Assume that nodes i and j greedily access the channel to maximize ¢&; and &;, and

b; = E by Assumption 4.1. Then, the proof of this proposition follows similar to Proposition

4.2 because a; ~ a; can be derived from &; = @;. d

In MAF-MAC, node ¢ determines its transmission duration Ts.,q ; in accordance with &; as

Tsend,i = Tprp+ I.O/Z’L * 10(” * )\ “4.4)

, where | - | is the notation for round down operation. Note that each frame size can be precisely
adjusted and each transmission can last for a specified duration in MAF-MAC by using the
modified fragmentation technique and zero padding, which were described in Chapter 2. That
is, each node can announce its busy time ratio in percent (%) by adjusting its transmission
duration as can be seen in Fig. 4.2. Then, the other neighbor nodes of node i can deduce &;
from the transmission duration.

After node ¢ deduces as of its neighbor nodes based on their transmission duration, node
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1 adjusts its attempt probability 7; in an additive increase and multiplicative (AIMD) manner to
maximize &; and &; while try to achieve the fairness condition &; = aj, for all j € S;, as the

following.

W, if a; > a;
T = 4.5)

T; + ¢, otherwise,

where ¢ (0 < ¢ < 1) and ¢ (> 0) design parameters. It is noted that there is no need to identify
the transmission node. If node ¢ guesses that it uses more air-time than the other neighbor nodes
(i.e., @; > a;), it multiplicatively decreases its attempt probability 7; to yield channel resources
to the other neighbor nodes. Otherwise, it additively increases 7; to get its fair share. We can
write (4.5) using the contention window C'W; of node i because 7; = 2/(CW; + 1) [59]. Also

we make sure that CW; is in the range of [C'W,in,C Wizl

min{i (CW; +1) = 1,CWyag}, if & > @y,
CW; = (4.6)

2-(CW; +1) '
-1 min s h .
2+ c (CW; + 1) ,CWinin}, otherwise

max{

In this way, MAF-MAC tries to improve max-min air-time fairness in distributed manner by

using the transmission duration.

4.3 MAF-MAC in various circumstances

In this section, we study several typical cases to see how MAF-MAC works to improve max-min

air-time fairness in ad-hoc networks.
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Figure 4.3 Announcing range of node ¢ in MAF-MAC

4.3.1 Handling the Hidden Node Problem

In IEEE 802.11 ad-hoc networks, we need to take the hidden node problem into consideration,
because there may exist hidden nodes in a network, which can results in significant fairness
degradation [6,7]. Let the announcing range of node 7 be the range that node ¢ can implicitly
inform its &; to other neighbor nodes by its transmission duration, as can be seen in Fig. 4.3.
The gray area in Fig. 4.3 represents the announcing range of node ¢ when node ¢ transmits
a data frame to node j, while the circles with the solid-line and the dotted-line indicate the
transmission range and carrier sensing range, respectively. The announcing range and the carrier
sensing range are the same in this case. Then, nodes v; and vy, which are in the announcing
range of node 4, can sense the transmissions of node 4, and consequently deduce &; from the
transmission duration of node i. However, nodes hy and hg, which are hidden nodes to node
i, cannot senses the transmissions of node ¢, and thus cannot adjust their C'W's in accordance
with (4.6) because they do not know &;. Moreover, the hidden nodes interfere the transmissions

of node ¢, which can severely degrade max-min air-time fairness. To improve max-min air-
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time fairness even when there are hidden nodes in ad-hoc networks, MAF-MAC adopts the
the hidden node detection mechanism [8], extension of the effective CTS range and Receiver-
Oriented Contention (ROC) [9], which are summarized in Appendices A and B, respectively. In

the following, we explain how these schemes can be used in MAF-MAC.

Hidden node detection mechanism

Because MAF-MAC also uses the fragment aggregation and block ACK features, the hidden
node detection mechanism in [8] can be easily adopted to MAF-MAC except for the calculation
of THRP and THRY, where THRP and TH RI are the estimated throughputs without/with
using the RTS/CTS control frame exchange, respectively. Note that a fragment is the basic unit
used in retransmission rather than a packet in MAF-MAC. Therefore, the throughput (T"H R) is

calculated as

Ns, frag * Sfrag

THR =
Tdata + Toh

) “4.7)

where 15 frqq and Sty 4 are the number of successfully transmitted fragments and the fragment
size, respectively. The number of successfully transmitted fragments can be estimated as

(1 — phidy(1 — plidyn,;, for basic access mode,

Ns, frag = 7 ' (48)

nif, for RTS/CTS mode,
where n;s is the total number of fragments in a data frame. In MAF-MAC, node i calculates
TH RZB and TH RZR based on QZ% and p%‘}, which are estimated as in [8] (see Appendix A),
and employs the RTS/CTS exchange when T'H RZR is larger than TH RZB . In the simulation of
section 4.4, the parameters n(E 2) and n(P 2) for MAF-MAC are set to 0.1 and 0.05 respectively,

as in [8].
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Figure 4.4 Announcing range of node ¢ in MAF-MAC when a CTS frame is used

Note that there is a duration field in a CTS frame. If a node can decode the CTS frame, it can
deduce @ of the upcoming transmission by using the duration field in a CTS frame. Therefore,
the announcing range of node 7 can be extended when the RTS/CTS mechanism is used, as can
be seen in Fig. 4.4. When node j transmits a CTS frame, node h; in Fig. 4.4 can decode the

CTS frame, and thus it can deduce ¢; and properly adjust its CTW value according to (4.6).

Extending the effective CTS range

There are two major problems to be resolved in extending the effective CTS range (see Ap-
pendix B), which are how to identify a CTS frame when a node can only sense the transmission
of a data frame, and how to set the NAV value to protect the upcoming data transmission. Since
MAF-MAC uses the block ACK feature, a CTS frame can be differentiated from an ACK frame
by its transmission duration as in [9]. After identifying a CTS frame, each node has to defer
channel access to protect the upcoming data transmission. In [9], a node simply sets NAV to
T,cy after identifying the CTS frame, because the average transmission time of a data frame

Tlatq 1s close to T}y by using the Frame size Adaptation (FA) scheme.
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In MAF-MAC, each node has different transmission duration according to & - 100, which is
always less than 100. Therefore, the upcoming data transmission is always protected if the NAV
value is set to the maximum transmission duration 77.%7 = BT'D + 100 - A after identifying
a CTS frame. However, a large portion of channel resource may be wasted when the & value
of transmitting node is small. Note that the hidden node problem can occur only when there
are three or more flows in an ad-hoc network. Therefore, we use CTS frames only when there
are at least three flows in a network. In this case, & - 100 should be less than or equal to
33% in order to achieve max-min air-time fairness, and consequently the average transmission
duration of a node is less than Tg7p + 34 - A. Thus, each node set its NAV value to Tgrp +
34 - X\ after identifying a CTS frame to reduce wasted air-time and to protect upcoming data
transmission. In this way, even though node hs in Fig. 4.4 does not know ¢, it can avoid
interfering the transmission of node ¢ when it senses a CTS frame from node j by setting its

NAV value appropriately.

Receiver-oriented contention (ROC) mechanism

To more effectively resolve the hidden node problem, the Receiver-Oriented Contention (ROC)
mechanism can be adopted to MAF-MAC when hidden nodes are detected. However, there
are some issues to solve before adopting the ROC mechanism. When node 7 transmits a data
frame to node j, and these nodes decide to use the ROC mechanism because of hidden nodes.
Then, node j initiates a transmission when it ends the backoff procedure by transmitting a CTS
frame to node 7. However, node j does not know the exact value of ¢;, which is important
information for the nodes that cannot sense the transmission of node ¢ but can decode the CTS
frame from node j. Hence, node j set the time duration in the CTS duration field to the previous
@;, which was obtained from the previous transmission of node i. Because of hidden nodes and

the difference in the carrier sensing ranges of nodes 7 and j, node j may not know most of

66



values of ay, for all k € S;. Therefore, node j cannot adjust its CTV value in accordance with
(4.6), and contends based on the Binary Exponential Backoff (BEB) mechanism as in the IEEE
802.11 DCEF. For this reason, even though the hidden node problem can effectively be resolved,

the fairness performance can degrade when the ROC mechanism is adopted to MAF-MAC.

4.3.2 Handling Transmission Collision and Overlap

In MAF-MAC, each node deduces & of current transmission based on transmission duration,
and adjusts its CW value according to a. A transmission collision occurs when two or more
nodes, which are in the carrier sensing range of each other, transmit a data frame at the same
slot time. On the other hand, a transmission overlap occurs when transmissions of two or more
nodes that are not in the carrier sensing range of each other are overlapped. Figure 4.5 shows the
difference between the transmission collision and overlap when nodes 1 and 3 transmits data.
Note that nodes 1 and 3 are in the carrier sensing range of each other in Fig. 4.5(a), but not in
the carrier sensing range in Fig. 4.5(b).

The transmission collision can be easily handled, because a node can deduce the largest
« from the transmission that have the longest duration among the failed transmissions due to
collision. Figure 4.5(a) shows that node 2 can deduce a3, where the transmission duration of
node 3 is longer than that of node 1. Therefore, node 2 can adjust its C'W3 in accordance with
(4.6) based on as.

When two or more transmissions overlap, it is difficult for a node to correctly deduce the
proper value of & based on the transmission duration as we can see in Fig. 4.5(b). Node 2
cannot know the values of a7 and a3 when the transmissions of node 1 and 3 overlap. If the
overlapped transmission duration is longer than BT'D + 100 - A, each node can deduce that the
transmissions are overlapped and does not adjust its CW value. (In this example, o; depends

on the overlapping transmission duration of nodes 1 and 3, and j is neither 1 nor 3.) This

67



e e e ~ ~
// // 7 AN
/ / / \ \ \
/ / / \ \ \

/ / / \ \ \
/ Lo \ Voo
| | | \ \ \
Lo o
| | | i | |
\ Vo / I
\ Vo 2 3y I’
\ NN / /s
\ \ \ , , ;

AN A A 7 7 Va
\\ > N - // //

Node 1 Tx
I
Node 3 TX
| I
Node 2 Channel sensing
(a) Transmission collision
TR T
// // /\/\ \\ A
/ / / \
/ / / \ \
/ / / \ \
I | | \' "
I I I
\ \ \ | |
\ \ \ / h
\ v \2 3/
\ \ A /
\ \ \ ,
\\ \\ /)\\ // //
S~o_ U 22 27
Node 1 Tx
I
I
Node 3 | Tx
: I
Node 2 Channel sensing

(b) Transmission overlap

Figure 4.5 Transmission collision and overlap

68



corresponds to 64} > 100 in (4.6), and node ¢ (= 2 in this example) does not change its CW;.
Otherwise, it cannot properly adjust its C'W value, because it cannot correctly deduce & from
the transmission duration. In general, a node that experiences transmission overlap is a starving
node, and the nodes that uses more channel resource can deduce the @ value of starving nodes
from their transmission duration. That is, nodes 1 and 3 in Fig. 4.5(b) can correctly deduce oz
most of the time and can properly adjust their CW's when node 2, which is a starving node,
transmits a data frame. Note that if node 2 starves and nodes 1 and 3 heavily use channel
resource, the &z value is smaller than &7 and 3. Therefore, nodes 1 and 3 can see that node 2
is starving from the a3 value and yield their transmission opportunities to node 2 according to
(4.6). This in turn reduces the transmission overlaps and node 2 can correctly deduce a7 and
a3 more frequently. In this way, MAF-MAC can handle the starvation problem and improve

max-min air-time fairness even when the transmission overlap occurs in ad-hoc networks.

4.3.3 Handling Unsaturated Nodes

An unsaturated node, whose aggregated length of packets in the queue is smaller than the re-
quired frame body length (Sy), cannot correctly inform other nodes of its & using the trans-
mission duration. Let T3¢ be the transmission duration for an unsaturated node transmitting
aggregated packets in its queue. In MAF-MAC, each node does not adjust its CW value in ac-
cordance with (4.6) if the current transmission duration is shorter than 77 p. Therefore, when
T4y 1s shorter than T p, which corresponds to a; < 0, a node simply transmits a data frame

when its backoff counter becomes zero, because it does not affect the C'TW values of the other
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nodes. Then, (4.6) is modified as

,

mln{i(cwl—Fl)—l,CWmar} ’ lfO/é\Z >a;20’
CW; = { max{ 2.CWitl]) _ L, CWinin} , if & < aj <100, 49)

2+4c- (CW; +1)

CW; , if a; <0 or a; > 100.

If the T3 is longer than Tprp but shorter than Tseng = Trp + |a * 100] * A, there
are two options, i.e., waiting for the packets from the upper layer or using the zero-padding
method to fill the data frame with zero bits if necessary. If (Tsena — Tyg,) > 7, Where v
(> 0) is a design parameter, an unsaturated node waits packets from the upper layer until the
aggregated packet length in the queue is greater than or equal to Ss;. Otherwise, it zero-pads the
remaining data frame and transmits it as soon as the backoff procedure ends. There is tradeoff
between transmission delay and MAC efficiency depending on the value of . If  is zero, an
unsaturated node always waits for the packets from the upper layer, and thus delay increases.

As 7y increases, it uses the zero-padding more frequently, and thus delay may not in decrease,

but the MAC efficiency degrades. (In the simulation of Section 4.4, we set y to 50 - \.)

4.3.4 Enhancing Channel Utilization

Although the max-min air-time fairness is improved as .J approaches 1, the channel can be un-
derutilized when the nodes in a network are not uniformly distributed as in Fig. 4.6. Assume
that m nodes are placed in the right-side of carrier sensing range of node 2. Then, the maximum
air-time value that each node can have under the constraint J = 1 is bounded by #H There-
fore, the gray area in Fig. 4.6 may be underutilized as m increases, because the sum of air-time
of nodes 1 and 2 is less than miﬂ In this case, node 1 notices that its channel is underutilized.

To enhance the channel utilization in such a non-uniformly distributed network even though
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Figure 4.6 Channel can be underutilized when the nodes in a network are not uniformly dis-
tributed
it may decrease the air-time fairness a little, node ¢ estimates b, [r] after the rth estimation period

as in (4.1), and b;[r] is low pass filtered as the following.

bilr +1] = p-bilr] + (1 - p) - bilr],

where 0 < p < 1. If b;[r + 1] is less than ¢ (0 < ¢ < 1), node i deduces that the channel
is underutilized, and simply decreases C'W; (i.e., increases attempt probability) regardless of
value of &; whenever it senses the transmission of its neighbor nodes. Therefore, (4.9) is finally

modified as the following.

2. (CW;+1) 1 ,ifbAi<C,

Adjust CW; according to (4.9) , otherwise.
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4.4 Performance evaluation

In this section, we evaluate MAF-MAC via simulation using the ns-2 simulator [60], and com-

pare it with the following five schemes.
e BASIC : This is a baseline scheme that only employs DCF.

e BASIC(HD/E) : This scheme employs the RTS/CTS mechanism with the extended CTS

range when hidden nodes are detected, which was studied in [8].

o BASIC(ROC/HDV/E) : This scheme employs the ROC mechanism with the extended CTS

range when hidden nodes are detected, which was studied in [9].

e MAF-MAC : This scheme employs MAF-MAC instead of DCF without any hidden node

detection/resolution mechanisms.

e MAF(HD/E) : This scheme employs MAF-MAC instead of DCEF, together with the RTS/CTS

mechanism and the extended CTS range when hidden nodes are detected.

e MAF(ROC/HD/E) : This scheme employs MAF-MAC, together with ROC mechanism

and the extended CTS range when hidden nodes are detected.

We set A to 4us, because it is the minimum time required for packet detection/clear channel
assessment (CCA) in 802.11n [11,12]. The values of p, u and c in (4.9) for MAF-MAC were set
to 0.8, 1/1.2 and 0.002, respectively, and the basic rate was set to 6.5Mbps. We set path loss and
data rate of each link according to distance between sender and receiver of the link. (Note that
the data rate of a link is 65Mbps if the data rate is not explicitly mentioned, and the transmission
and carrier sensing range were set to 250m and 400m, respectively.) The frame size in BASIC
was always set to 10240byte, and and T p in the schemes based on MAF-MAC was 1.3 ms,

which corresponds to the transmission time of a 10240byte frame at 65Mbps. The average
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data transmission duration in BASIC(HD/E) and BASIC(ROC/HD/E) was also set to 1.3ms by
applying the frame size adaptation scheme that tried to improve air-time fairness in multi-rate
environment [9]. The size of a packet in both BASIC and MAF-MAC was 2048byte whereas a
fragment in MAF-MAC was 256byte long. Corrupted data were retransmitted in packets for the
schemes based on BASIC and in fragments for the schemes based on MAF-MAC. The CW,, 4,
and C'W,;, were always set to 32 and 1024, respectively. Each node always had packets to
transmit, except for the simulation in the case where there was an unsaturated node in an ad-hoc
network.

Since MAF-MAC adjusts the CW values to make neighbor nodes have the same busy time
ratio, which in turn tries to achieve max-min air-time fairness, not throughput, we need some
measures that can show the degree of channel utilization by a node in ad-hoc network. We
define the individual channel occupation ratio of link k (Cy. ) and avaerage channel

occupation ratio (Cy.) as

Tyysy i
T usy’Ts , if k € Sgr
c _ busy,k T Lidle,k
oc,k — Tr
busy,k .
T usy’TT , if k€ Sgr
busy,k T Lidle,k

1 N
Coc = N';COC,kr

Here, Srr and Sg7 are the sets of links, in which a sender or a receiver initiates a transmission,
respectively. Also, T} syk (13, sy, p)and T2, ek (T7, . 1) Tepresent the time duration that a sender
(receiver) of link k judges that the channel is busy and idle, respectively. We estimate C,. to see
whether the channel is busy or not from the view point of the transmission initiator. When C,,

is close to 1, we can say that the channel is fully used, and thus Assumption 1 is reasonable.
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We also define the individual channel utilization ratio of link k (Cy; 1) and average

channel utilization ratio (Cy) as

_ frag
Cut,k = C’oc,k . ng 'p&k )

L
Cu = N';Cut,k-

Here, ;¢ is the ratio of aggregate air-time used for successful transmissions of link k& with

respect to total air-time of link &, and pﬂ“g is the probability that successfully transmitted

/79 i always 1 when there is no channel noise.)

fragments in link k are not corrupted. (p
Then, we can see that each node effectively utilizes its channel when C; is close to 1. Note
that C'; is an average that indicates how each node effectively uses the channel in its vicinity.
The throughput is proportional to Cy; for a single-cell network. We use throughput, air-time
fairness, C,, Cy¢ and average packet delay Tj; as performance measures in the evaluation of

network performance (7y; is the average amount of wait time before successfully transmitting

a packet).

4.4.1 Effect of ( on the performance of MAF-MAC

First, we study the effect of ¢ on the performance of MAF-MAC for various value of m in
Fig. 4.6. Figure 4.7 show the network performance corresponding to the value of ¢ (= 0.2,
0.5 and 0.8). As ( increases, node 1 in Fig. 4.6 more greedily accesses the channel, and thus
the aggregate throughput, C,. and C,; are improved. However, the air-time fairness degrades a
little, because node 2 can access the channel less frequently. In the following simulations, we
set ¢ to 0.5 to improve throughput performance while sacrificing air-time fairness performance

as little as possible.
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Figure 4.8 Network performance for various number of nodes in a single cell network

4.4.2 A single-cell network

We investigate the aggregate throughput, generalized air-time fairness, C,. and C,,; when all
the nodes are located in the carrier sensing range of each other, i.e., a single-cell network.
In a single cell network, there is no hidden nodes in the network, and consequently, no dif-
ference in network performance between BASIC and BASIC with the hidden node detec-
tion/resloution schemes, and also between MAF-MAC and MAF-MAC with the hidden node
detection/resolution schemes. Thus, we compare the network performances of BASIC and
MAF-MAC only. Figure 4.8(c) shows that channel is nearly fully occupied regardless of the

number of nodes whereas Fig. 4.8(d) shows that probability of successful data transmission de-
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Region 1

Region 2 Region 3

Figure 4.9 A simple starvation scenario without hidden nodes

creases as the the number of nodes increases resulting in the throughput decrease in Fig. 4.8(a).
Figure 4.8 shows that MAF-MAC achieves near perfect air-time fairness and at the same time
fully and effectively utilizes the channel, i.e., improves max-min air-time fairness regardless of
the number of nodes. Moreover, MAF-MAC shows good throughput performance compared to
BASIC as can be seen in Fig. 4.8(a). Although we have studied the delay performance of BA-
SIC and MAF-MAC in a single-cell network, the simulation results are not presented because

they were nearly the same in both schemes.

4.4.3 A simple scenario of the starvation problem

In this section, we investigate the network performance in a simple starvation scenario as in Fig.
4.9 to show that MAF-MAC effectively resolves the starvation problem. In this topology, the
nodes in Region 2 starve because of the nodes in Region 3 that are in the carrier sensing range

of the nodes in Region 2 but are not in the carrier sensing range of each other. To keep the nodes
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in Region 2 in starving state, we need two or more nodes that are out of the carrier sensing
range of each other, in Region 3. Note that although the nodes in Region 1 are out of the carrier
sensing range of the nodes in Region 2, they do not interfere the transmissions in Region 2, i.e.,
there are no hidden nodes. Therefore, we only compare the network performance of BASIC and

MAF-MAC for various number of nodes in Regions 1 (R1), 2 (R2), and 3 (R3).

Network performance for various numbers of nodes in R1

We investigate the network performance for various numbers of R1 nodes when there are one
and two nodes in R2 and R3, respectively. Note that R1 nodes can transmit data without in-
terfering the transmission of R2 nodes, i.e., the channel can be spatially reused. Thus, the
aggregate throughput can be greater than the data transmission rate (65 Mbps) as can be seen
in Fig. 4.10(a). Figures 4.10(b) and 4.10(d) show that MAF-MAC maintains similar or better
air-time fairness and higher C; compared to BASIC regardless of the number of R1 nodes.
On the other hand, MAF-MAC and BASIC show nearly the same performance in the channel

occupation ratio C,. and packet delay T}, as can be seen in Fig. 4.10(c) and 4.10(e).

Network performance for various numbers of nodes in R2

We evaluate the network performance for various numbers of R2 nodes when the numbers of
R1 and R3 nodes are zero and two, respectively. Figure 4.11(b) shows that R2 nodes starved
because of R3 nodes regardless of the number of R2 nodes, and thus the air-time fairness was
severely degraded in the BASIC scheme. On the contrary, MAF-MAC successfully resolved
the starvation problem and gave good air-time fairness performance for various numbers of R2
nodes. Because R2 nodes in BASIC had to wait for a long time to transmit a data frame, the
packet delay of BASIC was much longer than that of MAF-MAC as shown in Fig. 4.11(e).

Although Fig. 4.11(a) shows that the aggregate throughput is higher in the BASIC scheme
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compared to MAF-MAC, we can see that C,. of BASIC is nearly equal to that of MAF-MAC
in Fig. 4.11(c). Furthermore, C);; is lower in BASIC compared to MAF-MAC as can be seen
in Fig. 4.11(d). This means that MAF-MAC fully and effectively utilized the channel resources

while maintaining much higher air-time fairness compared to BASIC.

Network performance for various numbers of nodes in R3

Figure 4.12 shows the network performance for various numbers of R3 nodes when the numbers
of R1 and R2 nodes are zero and one, respectively. The BASIC scheme shows better air-time
fairness performance compared to the previous simulation results, but it still shows rather poor
air-time fairness as can be seen in Fig. 4.12(b). MAF-MAC achieves better air-time fairness and
delay performance compared to BASIC regardless of the number of R3 nodes as can be seen
in Fig. 4.12(b) and 4.12(e). At the same time, Fig. 4.12(c) and 4.12(d) show that each node
in MAF-MAC fully and effectively utilizes the channel resources. The simulation study shows
that MAF-MAC achieves good air-time fairness and low packet delay with high C,. and C,;

regardless of the number of nodes when there is no hidden node.

Simple starvation scenario with an unsaturated node

Figure 4.13 shows network performance when the numbers of nodes in R1, R2 and R3 are zero,
six and two, respectively. All the nodes in R2 except one are saturated. In Fig. 4.13(a), T'hrr,
Thry, and T'hrg represent the total throughput, aggregate throughputs of the unsaturated node
and saturated nodes, respectively. The offered load of the unsaturated node varied every 5 s as
1—-2—-3—-4—-5—-4—3—2—1)Mbps. In MAF-MAC, the unsaturated node used
a sufficient amount of channel bandwidth to transmit its offered load, and the saturated nodes
shared the remaining bandwidth unused by the unsaturated node. However, the unsaturated node

in the BASIC mode could not use its fair share, because nodes in R3 monopolized the channel
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Figure 4.13 Network performance when there is an unsaturated node in region 2
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Figure 4.14 Short-term generalized air-time fairness for various number of R2 and R3 nodes

for most of the time. Figure 4.13(b) illustrates the generalized air-time fairness computed for the
time interval of one second among the saturated nodes, i.e., excluding the unsaturated node in
calculating the generalized air-time fairness. The saturated nodes in MAF-MAC fairly utilized
the channel resource even in the presence of an unsaturated node. This simulation result shows
that MAF-MAC can improve max-min air-time fairness whether there are unsaturated nodes or

not in an ad-hoc network.

Short-term generalized air-time fairness

Figure 4.14 shows the short-term generalized air-time fairness for various numbers of R2 and R3
nodes, whereas the number of R1 node is zero. Regardless of the numbers of R2 and R3 nodes,
BASIC could not achieve good air-time fairness, while MAF-MAC provided the generalized

air-time fairness index better than 0.9 for the evaluation intervals longer than 1 second.
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Figure 4.15 Transient time behavior
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Figure 4.16 Four patterns of three flows in a line topology

Transient time behavior

Figure 4.15 shows network performance when the number of R3 nodes is fixed to two and the
number of R2 nodes varies every 5 secondas (1 -2 —+3 —+4—-5—4—3—2—1). The
BASIC scheme shows poor air-time fairness despite of its higher throughput, whereas MAF-
MAC provides good air-time fairness despite the frequent changes in the number of nodes in an

ad-hoc network.

4.4.4 Three flows in a line topology

To show the effectiveness of MAF-MAC in improving max-min air-time fairness even when
there are hidden nodes, we tested the six schemes for various flow patterns in the line topology
of Fig. 4.16 , where the data rate was 26Mbps for each link. There are four different flow
patterns depending on the direction of data flow. It is noted that there is no hidden node in

the flow patterns (i) and (ii) of Fig. 4.16, whereas the hidden node problem occurs between
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Table 4.1 Link throughput, J, Cye, Cyy and Ty, of the six schemes in the line topologies of

three flows.
Throughput (Mb/s) -

Topology Scheme Dink 1 | Link2 | Link3 | Aggregate || 0 || @oc || O || Toer M9
BASIC 19.843 | 1.505 | 19932 | 41281 [[ 0.626 || 0.939 ]| 0.923 [[ 4.056
BASIC(HD/E) 19.825 | 1509 | 19.926 | 41.260 || 0.625 || 0.938 || 0.925 || 4.145
Line (iy | BASIC(ROC/HD/E) [ T9.815 | 1532 | 19905 | 41252 0625 || 0939 || 0925 [ 4,060
MAF-MAC 13292 | 7.626 | 13322 | 34239 || 0939 || 0912 || 0.904 || 1.533
MAF(HD/E) 13.291 | 7.622 | 13.339 | 34253 || 0.938 || 0.911 || 0.903 || 1.536
MAF(ROC/HD/E) || 13.189 | 7.693 | 13.225 | 34.108 || 0.942 || 0912 |[ 0.905 || 134
BASIC 19815 | 1.485 | 19.864 | 41194 [ 0.627 || 0.939 [[ 0.925 [| 4.402
BASIC(HDJE) 10.846 | 1.445 | 19929 | 41.221 || 0.621 || 0.940 || 0.924 || 4332
Line (iiy | PASIC(ROC/HD/E) [ 19875 | 1417 | 19957 | 41251 [ 0623 [ 0.938 || 0923 [ 4453
MAF-MAC 13.327 | 7.594 | 13.342 | 34263 || 0.938 || 0.911 || 0.905 || 1.539
MAF(HD/E) 13347 | 7.572 | 13341 | 34259 || 0.937 || 0912 || 0.905 || 1533
MAF(ROC/HD/E) || 13.188 | 7.748 | 13.199 | 34135 || 0.943 || 0.910 || 0.902 || 1.538
BASIC 19.7294 | 0.006 | 20.528 | 40.263 || 0.695 || 0.958 [| 0.615 || 910.746
BASIC(HD/E) 20.194 | 0.051 | 21.018 | 41262 || 0.673 || 0.908 || 0.658 || 103.828
Line (iiiy | _BASICROC/HD/E) || T9.825 | 1105 | 20057 | 40989 || 0.710 || 0.938 [ 0.901 || 5617
MAF-MAC 7.938 | 0.005 | 10.738 | 18.675 || 0.997 || 0.603 || 0.312 || 1092.537
MAF(HD/E) 7880 | 6302 | 7.378 | 21568 | 0.998 || 0.837 || 0.673 || 2.302
MAF(ROC/HD/E) || 14458 | 6.232 | 8871 | 29.561 || 0.891 || 0.851 || 0.823 || 2.178
BASIC 20498 | 0.007 | 19.686 | 40.193 [[ 0.697 || 0.957 || 0.613 || 833.876
BASIC(HDJE) 20.679 | 0.051 | 20208 | 41235 || 0.673 || 0.907 || 0.659 || 113.168
Line (iv) | BASIC(ROC/HD/E) || 19485 | 0.125 | 19.538 | 39.147 || 0.676 || 0911 [ 0616 || 34672
MAF-MAC 10.537 | 0.006 | 7.789 | 18327 || 0.998 || 0.653 || 0.395 || 912.538
MAF(HDJE) 7421 | 6199 | 7906 | 21.527 | 0997 || 0.837 || 0.632 || 2315
MAF(ROC/HD/E) || 8527 | 3.206 | 15431 | 27.164 || 0.851 || 0.849 || 0.678 || 2914

senders S1 and S2 in flow pattern (iii), and S2 and S3 in flow pattern (iv). Table 4.1 shows the

link throughput, generalized air-time fairness index (.J), channel occupation ratio (C..), channel

utilization ratio (C);;) and average packet delay (T;.;) of each scheme for the four flow patterns

in Fig. 4.16, and we summarize the result as the following.

o Flow patterns in Fig. 4.16(i) and (ii): There is no hidden node in flow patterns (i) and

(ii), thus the network performance is similar to the previous simulation study of the star-

vation scenario. Although the aggregate throughputs of BASIC, BASIC(HD/E) and BA-

SIC(ROC/HDV/E) is higher than those of MAF-MAC, MAF(HD/E) and MAF(ROC/HD/E),
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1ink?2 suffered from the starvation problem. The transmissions in 1ink1 and 1ink3
occupied the channel most of the time, and consequently the fairness performance was
severely degraded. On the other hand, MAF-MAC, MAF(HD/E) and MAF(ROC/HD/E)
provided much better air-time fairness compared to BASIC, BASIC(HD/E) and BA-
SIC(ROC/HD/E) (from approximately 0.62 to 0.93) with high C,,. and C'; , i.e., achieved
much better max-min air-time fairness in the line flow patterns (i) and (ii). Furthermore,
the packet delays in MAF-MAC, MAF(HD/E) and MAF(ROC/HD/E) were signifi-
cantly reduced compared to BASIC, BASIC(HD/E) and BASIC(ROC/HD/E) by resolv-

ing the starvation problem.

Flow pattern in Fig. 4.16(iii): In this flow pattern, the transmission in 1ink1 and
1ink?2 suffered from the hidden node problem. Therefore, the air-time fairness of BA-
SIC, aggregate throughput of MAF-MAC and packet delay performances of both schemes
were severely degraded. Note that the transmission in 1ink2 still suffers from the
starvation problem in the flow pattern (iii) of Fig. 4.16, and thus 1ink2 cannot use
its fair share of the channel in the BASIC(HD/E) and BASIC(ROC/HD/E) schemes.
We notice that the hidden detection mechanism with extended CTS range significantly
contributes to resolve the starvation problem in MAF(HD/E), i.e., 1ink2 can success-
fully utilize its fair share. Moreover, MAF(HD/E) provides higher C; (from approxi-
mately 0.46 to 0.67) and much lower T.; (from approximately 1001.6ms to 2.3ms) com-
pared to BASIC and MAF-MAC. When the ROC mechanism was applied to MAF-MAC
(MAF(ROC/HD/E), the air-time fairness was degraded (from approximately 0.99 to
0.89) as we expected. However, nodes R1, R2 and S3 participated in channel contention
by the ROC mechanism, which can remove the hidden node problem by placing all the
contending nodes in the carrier sensing range of each other. This results in the improve-
ment of throughput and C'; but degrades the air-time fairness compared to MAF(HD/E).
88



In the flow pattern (iii), MAF(HD/E) and MAF(ROC/HD/E) show much higher the

max-min air-time fairness compared to BASIC(HD/E) and BASIC(ROC/HD/E).

Flow pattern in Fig. 4.16(iv): In this flow pattern, 1ink2 and 1ink3 suffered from
the hidden node problem, while 1ink?2 suffered from the starvation problem as the flow
pattern (iii) in Fig. 4.16. When the ROC mechanism was not applied, there were both
starvation and hidden node problems in the flow pattern (iv) as in the flow pattern (iii).
Thus, Basic, BASIC(HD/E), MAF-MAC and MAF(HD/E) shows nearly the same per-
formance as their counterparts in the flow pattern (iii). When the ROC mechanism is
used, S1, R2 and R3 participate in channel contention, and a hidden node problem oc-
curs between 1ink1 and 1ink2. Therefore, the air-time fairness of MAF(ROC/HD/E)
is degraded compared to that of MAF(HD/E) (from 0.99 to 0.85). It is noted that BA-
SIC(ROC/HD/E) could not properly resolve hidden node and starvation problems, and
thus it provided poor air-time fairness and delay performance. Because of the hidden node
introduced by the ROC mechanism, MAF(HD/E) showed better network performance
compared to MAF(ROC/HD/E). Still MAF(ROC/HD/E) provides better air-time fair-
ness and delay performance with high C,. and C; compared to BASIC, BASIC(HD/E)

and BASIC(ROC/HD/E).

For each case in Fig. 4.16, MAF(HD/E) and MAF(ROC/HD/E) successfully resolve both

starvation and hidden node problems, and improve max-min air-time fairness with good delay

performance compared to BASIC, BASIC(HD/E), BASIC(ROC/HD/E) and MAF-MAC.

4.4.5 Double ring topologies

We tested the six schemes in the double ring topologies as shown in Fig. 4.17. This topolo-

gies were introduced to demonstrate the usefulness of the ROC mechanism [9]. There are two

kinds of flow patterns depending on the direction of data flow, and there are two topologies, a
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Figure 4.17 Two kinds of double ring topologies.

smaller one and a larger one for each flow pattern. The radius of inner circle is always fixed to
150 meters, and radius of outer circles for small and large topologies were 250 and 300 meters,
respectively. The data rate of small and large topologies were set to 26Mbps and 19.5Mbps,
respectively. It is noted that more nodes suffered from the hidden node problem in the larger
topology. The hidden node problem cannot be resolved by only using the hidden detection
mechanism with the extend CTS range for larger topologies. Table 4.2 shows the link through-
put, J, Cye, Cyr and Ty, of each scheme for the four topologies, and we summarize the result

as the following.

¢ Small double ring topology in Fig. 4.17(i) : The senders and receivers were uniformly
located in the outer and inner circles, respectively. Transmission of each link was in-
terfered by hidden nodes, and thus, BASIC and MAF-MAC showed poor throughput
performance. Note that the each link fairly utilized the channel, but the probability of
successful transmission was very low, because the ACK transmission of each link was
interfered by the transmissions of the other links. Thus, although .J was close to 1, Cy
was very low compared to C,. and the packet delay performance was severely degraded.

The hidden detection mechanism with extended CTS range alleviated the effect of hidden
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nodes, and thus BASIC(HD/E) and MAF(HD/E) provided good throughput performance
as shown in Table 4.2. When the ROC mechanism was applied, receivers participated in
channel contention instead of senders. This effectively resolved the hidden node problem,
because all the receivers could carrier sense each other. Therefore, BASIC(ROC/HD/E)
and MAF(ROC/HD/E) show the best throughput and packet delay performance with

good air-time fairness.

Large double ring topology in Fig. 4.17(i): In this case, there are more hidden nodes
for each link. BASIC and MAF-MAC schemes showed poor network performance as
in the small topology of Fig. 4.17 (i). Moreover, the hidden node problem could not
be resolved by only using the the hidden detection mechanism with the extended CTS
range, and thus BASIC(HD/E) and MAF(HD/E) could not provide good throughput
and delay performance as shown in Table 4.2. The hidden node problem was effec-
tively resolve only when the ROC mechanism was applied, and BASIC(ROC/HD/E) and
MAF(ROC/HD/E) showed good throughput and delay performance and air-time fairness

with high C, and C;.

Small double ring topology in Fig. 4.17(ii): In this case, half of the senders transmitted
data frames inwards and the other half transmitted data frames outwards. The outward
links (Links 1, 3, 5 and 7) suffered from the hidden node problem whereas the others
did not. Most of the transmissions from inner senders failed because of the transmissions
from outer senders, and thus the throughput and packet delay of outward links were very
poor in BASIC and MAF-MAC. BASIC(HD/E) and BASIC(ROC/HD/E) somewhat
alleviated the hidden node problem, however, the inward links still showed low through-
put performance. Only in MAF(HD/E) and MAF(ROC/HD/E), all the links fairly and

successfully utilized the channel, and at the same time transmited data frames with short
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packet delay as shown in Table 4.2.

e Large double ring topology in Fig. 4.17(ii): When the outer ring is larger, the hidden
node problem is no longer resolved by only using the the hidden detection mechanism
with the extended CTS range as in the large ring topology Fig. 4.17 (i). Therefore,
the outward links suffered from the hidden node problem, and their throughput and de-
lay performances were severely degraded in BASIC, BASIC(HD/E), MAF-MAC, and
MAF(HD/E). When the ROC mechanism was applied, only the receivers of outward links
participated in channel contention. Therefore, BASIC(ROC/HD/E) and MAF(ROC/HD/E)
could effectively resolve the hidden node problem and all the links could fairly share the
channel, because the receivers of outward links and the senders of inward links could
carrier sense each other. Moreover, they provided the best delay performance in this

topology.

In all the cases of double ring topologies, MAF(ROC/HD/E) makes each link effectively
utilized and fairly shared the channel by resolving both the hidden node and starvation problems,

resulting in good throughput, packet delay and air-time fairness performance.

4.4.6 Random topologies

Finally, we investigated the network performance of the six schemes for a duration of 20 sec-
onds in various environments when all the nodes were randomly located in a square area of
500m x500m. We simulated networks of single data rate in noise-free channel for various link
topologies, i.e., first for twenty different 20-link topologies, and then varying the number of
links from 20 to 100. Then we simulated the networks again as in the above, except that data
were transmitted in four different rates depending on the link. We performed the simulations
once more, this time in noisy channel. For each case, the network performance was evaluated in

terms of throughput, the generalized air-time fairness index, channel occupation ratio, channel
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occupation ratio and packet delay. Note that the hidden node and starvation problems may co-
exist and theses can result in significant degradation of network performance in such complex

network topologies.

Single data rate in noise free channel

We tested the six schemes with twenty different random topologies of 20 links, and their per-
formances are shown in Fig. 4.18. Although BASIC, BASIC(HD/E) and BASIC(ROC/HD/E)
show higher throughput performance compared to MAF-MAC, MAF(HD/E) and MAF(ROC/HD/E),
their performance of air-time fairness are poor. It means that there always were starving links be-
cause of the hidden node and/or starvation problems, and some links monopolized the channel.
The schemes based on MAF-MAC shows good air-time fairness in all the cases. Also, the chan-
nel was fully and effectively used in MAF-MAC, MAF(HD/E) and MAF(ROC/HD/E). Figure
4.18(e) shows the average packet delay of each scheme. (The average packet delay that is longer
than 500ms is not shown in Fig. 4.18(e).) BASIC, BASIC(HD/E) and BASIC(ROC/HD/E)
provided very poor delay performance (from 50 to 5000ms), because there always were starving
nodes. On the contrary, there was no starving nodes in the schemes based on MAF-MAC, which
gave shorter average packet delay (mostly less than 10ms) for all the topologies. There are not
much performance differences among the schemes based on MAF-MAC.

Figure 4.19 shows the average network performances for thirty random topologies as the
number of links increases. The throughput performances of the schemes based on BASIC
achieved higher throughput than those based on MAF-MAC regardless of the number of links.
However, there always were starving nodes in the networks for the schemes based on BASIC, re-
sulting in poor air-time fairness and delay performance. (We do not present the average packet
delay that is longer than 3000ms in Fig. 4.19(e).) When the ROC mechanism was applied,

the air-time fairness of MAF(ROC/HD/E) degraded compared to those of MAF-MAC and
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Figure 4.18 Network performance for single data rate in noise free channel

MAF(HD/E). This is because the receiver that initiated a transmission could only announce the
previous value of & and had to contend based on the binary exponential backoff (BEB) mech-
anism. However, MAF(ROC/HD/E) still shows much better air-time fairness compared to the
schemes based on BASIC regardless of number of links. Moreover, the schemes based on MAF-
MAC more effectively utilized the channel compared to those based on BASIC as shown in Fig.

4.19(d). The average packet delay for the schemes based on MAF-MAC increased much slowly

compared to those based on BASIC. As in the previous case, the schemes based on MAF-MAC
effectively resolved the hidden node and starvation problems, and thus significantly improved

max-min air-time fairness regardless of the number of links.

Multi data rate in noise free channel

We tested the six schemes for multi data rate networks in noise free channel, and Fig. 4.20

shows various network performance for 20 networks of random topology. There were five links
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Figure 4.19 Network performance for various number of links in single data rate networks

for each of the data rates of 6.5, 13, 52 and 65Mbps. Since the link distance was longer for
a lower data rate, the probability that a low rate link suffered from the hidden node problem
increased. This is because there are more possibilities of encountering nodes that are out of the
carrier sensing range of a sender, but can still interfere data frame reception of the receiver. For
this reason, the hidden node problem occurred more frequently in multi-rate environment than
a single data rate of 65Mbps network.

It is noted that BASIC has no features to improve air-time fairness in multi-rate envi-
ronment, whereas BASIC(HD/E) and BASIC(ROC/HD/E) both use the frame size adapta-
tion scheme to extend the effective CTS range that was proposed to improve air-time fair-
ness in multi-rate environment [9]. Although BASIC(HD/E) and BASIC(ROC/HD/E) show
higher throughput performance compared to BASIC by somewhat alleviating the performance
anomaly, they still show poor air-time fairness because they could not resolve the starvation

problem as we can see in 4.20(b). This implies that the air-time fairness cannot be improved by
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Figure 4.20 Network performance for multi data rates in noise free channel

only using the frame size adaptation in ad-hoc networks.

In MAF-MAC, the air-time fairness was significantly improved compared to the schemes
based on BASIC. However, the channel utilization ratio and delay performance were severely
degraded as shown in Fig. 4.20(d) and 4.20(e), because MAF-MAC could not resolve the hid-
den node problem, and thus most of transmissions interfered by hidden nodes failed. (We do
not present the average packet delay that is longer than 500ms in Fig. 4.20(e).) MAF(HD/E)
and MAF(ROC/HD/E) provided good air-time fairness and delay performance even though
the throughput was lower than the schemes based on BASIC. This does not mean that the chan-
nels were not well utilized as can be seen by the high channel occupation ratio and channel
utilization ratio, but implies that channel was used by lower rate links as well as higher rate
links. There is not much difference in the network performance between MAF(HD/E) and

MAF(ROC/HD/E) that successfully resolve both the hidden node and starvation problems in

multi data rate networks.
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Figure 4.21 Network performance for various number of links in multi data rate networks

Figure 4.21 shows the average network performance of thirty multi data rate random topolo-
gies for various number of links. The number of links were the same for each of the data rates
(6.5, 13, 52 and 65 Mbps). And, each network performance is the average of thirty different
multi-rate random topologies corresponding to a given number of links. Although the schemes
based on BASIC show higher throughput performance compared to the schemes based on MAF-
MAUC, they provide poor air-time fairness regardless of the number of links, as can be seen in
Fig. 4.21(a) and 4.21(b). It due to the hidden node and/or starvation problems, and some links
could not use the channel, which can be seen by the delay performance in Fig. 4.21(e). (We do
not present the average packet delay that is longer than 6000ms in Fig. 4.21(e).)

MAF-MAC provides better air-time fairness compared to the schemes based on BASIC,
but it shows low channel utilization and poor delay performances compared to MAF(HD/E)
and MAF(ROC/HD/E), as can be seen in Fig. 4.21(d) and 4.21(e). This simulation results

show that MAF(HD/E) and MAF(ROC/HD/E) improved max-min air-time fairness in multi
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data rate random topologies while achieving good throughput by resolving the hidden node and

starvation problems.

Single data rate in noisy channel

Figure 4.22 shows the network performance of single data rate networks of twenty links in noisy
channel, where the bit error rate (BER) was set to 5-107°. Figure 4.22(d) shows that the channel
utilization ratio was very low in BASIC, BASIC(HD/E) and BASIC(ROC/HD/E) due to the
channel noise, which resulted in significant throughput degradation compared to the case of
noise free channel (see Fig. 4.18(a)). Because packets were divided into fragments of 256byte,
which are much shorter than the packet size of 2048byte, in the MAF-MAC based schemes, they
showed higher channel utilization ratio compared to the schemes based on the BASIC as can be
seen in Fig 4.22(d). In this case, the schemes based on MAF-MAC provided similar or higher
throughput performance compared to the schemes based on BASIC as shown in Fig. 4.22(a).
Furthermore, they also showed much better air-time fairness and delay performance compared
to the schemes based on BASIC while fully utilizing the channel. (We do not present the average
packet delay that is longer than 500ms in Fig. 4.22(e).) MAF-MAC was a little bit lower in the
channel utilization ratio and MAF(ROC/HD/E) is a little bit lower in the generalized air-time

fairness among the schemes based on MAF-MAC.

Multi data rate in noisy channel

We investigate the network performance of each scheme in the same environments as in the case
of multi data rate in noise free channel except that the BER of the channel was set to 5 - 107°.
The throughput performance for the schemes based on BASIC in noisy channel degraded sig-
nificantly compared to the case in noise free channel, whereas we can see that there are little

throughput difference between the noise free channel and noisy channel in MAF-MAC based
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Figure 4.22 Network performance of single data rate networks in noisy channel

schemes by comparing Fig. 4.20(a) and Fig. 4.23(a). Note that BASIC provided poor through-
put performance compared to BASIC(HD/E) and BASIC(ROC/HD/E) due to the performance
anomaly. Moreover, Fig. 4.23(b) and 4.23(e) show that the schemes based on BASIC provided
poor air-time fairness and delay performance. (We do not present the average packet delay that
is longer than 500ms in Fig. 4.23(e).)

The schemes based on MAF-MAC show similar or higher throughput performance, much
better air-time fairness, and higher channel utilization ratio compared to the schemes based on
BASIC. As mentioned earlier, the hidden node problem occurs more frequently in this multi
data rate environment than in the single data rate (65Mbps) environment. Thus, channel utiliza-
tion and delay performance of MAF-MAC degraded because it could not effectively handle the
hidden node problem. On the contrary, MAF(HD/E) and MAF(ROC/HD/E) provided much
better air-time fairness and delay performance, high channel occupation ratio and channel uti-

lization ratio for each network topology, as can be seen in Fig 4.23.
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Figure 4.23 Network performance of single data rate networks in noisy channel

The extensive simulation results demonstrates that MAF(HD/E) and MAF(ROC/HD/E)
show good network performance in various environments by effectively resolving the hidden
node and starvation problems. Since MAF(HD/E) shows a little bit more consistent perfor-
mance than MAF(ROC/HD/E) except for the cases of double ring topologies, it is a good idea

to use MAF(HD/E) as a MAC protocol in ad-hoc networks.

4.5 Chapter summary

In this chapter, we proposed MAF-MAC to improve max-min air-time fairness in IEEE 802.11
ad-hoc networks while providing good throughput performance. In MAF-MAC, the transmis-
sion duration is adjusted to announce the busy time ratio & without using control messages.
On the basis of the information of @, each node can adjust its CW value to improve max-min
air-time fairness. Moreover, by adopting the hidden node detection and resolving mechanism,

MAF-MAC provides good air-time fairness and small packet delay with high channel utiliza-
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tion ratio even when there are hidden nodes in the network. The basic idea of proposed MAC

protocol can be applied not only to WLANSs, but also CSMA/CA networks.
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Chapter 5

Conclusion

The MAC efficiency of IEEE 802.11 rapidly decreases as the transmission rate becomes higher
because of the MAC-layer overheads such as the MAC header, contention time, and ACK trans-
mission time. To improve the MAC efficiency, IEEE 802.11n [1] introduces several mechanisms
including frame aggregation and Block ACK. However, the MAC efficiency does not improve
as much as expected because of transmission collisions and channel impairment. Moreover, the
IEEE 802.11 DCF is based on the CSMA/CA and BEB mechanism, and thus it cannot provide
the nodes in an ad-hoc network a fair opportunity to access the channel. In order to overcome
this shortcoming, we first show how each node can adjust its the transmission duration based
on the frame aggregation and block ACK features of IEEE 802.11n. The transmission duration
is adjusted to play the role usually carried out by control messages, and a node can indirectly
announce its present state to the other nodes without incurring any overhead. Furthermore,
the nodes that are in the carrier sensing range of each other can exchange information of their
present state by using transmission duration. This is impossible for the schemes using a control

message or an optional field in the PHY/MAC headers. This idea is simple, but very effective
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to enhance the network performance by exchanging necessary information without overheads.
Based on this idea, we propose two MAC protocols (TOD-MAC and MAF-MAC) for enhancing
network performance.

We firstly introduced the Transmission Order Deducing MAC (TOD-MAC) protocol to im-
prove the MAC layer efficiency in a IEEE 802.11n single-cell network. As the PHY rate in-
creases, the time to transmit a frame is quickly dominated by a fixed overhead associated with
the PHY header, contention time, etc. The wasted time caused by collisions or channel errors
is crucial in improving the MAC efficiency. Thus, data transmission in a round robin manner,
instead of contention for an opportunity for data transmission, is an attractive alternative. If
each node transmits in a round robin manner, the contention time and collision rate can both
be minimized at the same time, and consequently the MAC efficiency can be significantly im-
proved. In TOD-MAC, the transmission duration is adjusted and it performs the function of
a control message to determine the transmission order of nodes. Based on the information of
transmission order, each node transmits in a round robin manner, which minimizes the idle time
between two consecutive transmissions and also prevents transmission collisions. The simula-
tion results indicate that TOD-MAC not only achieves high throughput performance, but it also
provides good short/long term air-time fairness and fast transient response in various dynamic
environments.

We also proposed another MAC (MAF-MAC) to improve max-min air-time fairness in IEEE
802.11 ad-hoc networks. Because each node operates based on CSMA/CA in IEEE 802.11
WLAN:S, a node that senses channel busy for all the time never has an opportunity to transmit
a data frame. Therefore, some nodes may starve and other nodes may monopolize the channel
depending on their relative position in an ad-hoc network. In MAF-MAC, the transmission du-
ration is adjusted to announce the busy time ratio & to improve max-min air-time fairness. Based

on @, each node can properly adjust its CW value. We also consider the hidden node problem
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in ad-hoc networks, because the probability that there are hidden nodes in an ad-hoc network,
which can significantly degrade throughput as well as fairness performance. To alleviate the
hidden node problem, we adopt the hidden node detection [8] and resolving mechanism [9] to
MAF-MAC (MAF(HD/E) and MAF(HD/E/ROC)) to enhance the air-time fairness even when
there are hidden nodes in ad-hoc networks. Extensive simulation results show that MAF(HD/E)
and MAF(HD/E/ROC) provide good air-time fairness while fully and effectively using the chan-
nel in various environments, regardless of the number of links, network topologies, multi-data
rates, channel noise. These schemes can solve the anomaly problem naturally. Moreover, the
basic principle underlying the proposed MAC protocols is simple, which makes it easy to apply

not only to WLANS but also to any CSMA/CA networks.
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APPENDICES

To provide the necessary materials for the development of the dissertation, this appendices
are excerpted from the hidden node detection and resolving mechanisms in [8, 9] with only
minor modification.

A. Hidden node detection mechanism

Kim et al. [8] proposed the hidden node detection mechanism using the new features of
IEEE 802.11n, i.e., the frame aggregation and block ACK. Frame losses are categorized into
two types: entire (E) and partial (P) frame losses during transmission according to a receiver’s
response. The receiver sends a block ACK back to the sender once the PHY header of a frame is
decoded successfully, even when the subframes are not successfully received in IEEE 802.11n.
Therefore, the frame loss is denoted as entire frame loss (E) when the sender cannot receives
the block ACK from the receiver. Otherwise, it is denoted as partial frame loss (P). Then, frame
losses can be subdivided according to their type and cause, as shown in Table A.1. For the en-
tire frame loss type (E), frame losses can be caused by a collision (E1), hidden nodes (E2), and
channel impairments (E3). Note that a collision always results in entire frame loss, not partial
frame loss, because the frame transmissions that result in collision always have started at the
same slot. Therefore, the partial frame losses are caused only by hidden nodes (P2) and channel
impairments (P3). The sender can get more information on the transmission result from a block

ACK, and this can help to differentiate frame losses according to their causes. Now, we describe
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Table A.1 Classification of frame loss event.

Type of frame losses [ Causes of frame losses [ Receiver response
(E1) Collisions (synchronous interference)
Entire frame loss (E2) Hidden nodes (asynchronous interference
(E) on PHY header) No response

(E3) Channel impairments (during PHY header
or block ACK frame transmission)
(P2) Hidden nodes (asynchronous interference

Partial frame loss on frame body*) Transmit block ACK
P) (P3) Channel impairments (during frame body
transmission)

how to detect events (E2) and(P2), and a method for a sender to determine whether or not to use

the RTS/CTS exchange.

Detecting entire frame losses caused by hidden nodes (E2)

A sender can estimate the probability of (E2) using measurable MAC layer statistics [8].
We consider an arbitrary node ¢ with N; transmitters within its carrier sensing range. Also,
there may be hidden nodes out of the carrier sensing range of node i. Let us denote pf'" as
the probability that there is at least one node among N; nodes concurrently transmitting with
node ¢ at the same slot. It is noted that not all of the concurrent transmissions by the nodes in
the carrier sensing range result in a collision. The receiver can still decode a frame when the
received SINR is larger than the SINR threshold, which is known as the capture effect [61], and
we denote this probability as p;*’. Then, the probability prk that node ¢ successfully receives

a block ACK frame can be calculated as

p;‘zck _ plgtr . p?ap + (1 _ pg““) . (1 _ng), (A.1)

where p?fg is the probability of the PHY header becoming corrupted by interference from hidden
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nodes (E2). Let 7; be the attempt probability of node ¢, and then p§*" can be derived as

N;
pétt = H (1—gqi;7j), (A.2)

where g; ; is the conditional probability that node j senses the channel as idle given that node
1 senses the channel as idle. If the carrier sensing areas of nodes ¢ and j are identical, the
conditional probability g; ; then becomes 1. However, the carrier sensing areas can be different,
and g; ; is less than 1 in general. The probability pﬁdle that no node initiates transmission within

the carrier sensing range of node ¢ in an idle slot can be expressed as

1dle

pie=01-mn) — ¢ jTj). (A.3)

||::]2

Although it is difficult for node 7 to know the values of g; ; and IN; without exchanging infor-
mation between the nodes in the carrier sensing range, ¢; j and N; can be eliminated by using

the relationship between (A.2) and (A.3). That is, pCtr can be simplified as

; pzdle
=1 = A4

And, p# in (A.1) can be expressed as

ack ctr, cap
hid p; P D;
Pip=1- % (A.5)
Z

Based on the relations between p¢'" in (A.4) and p’”d in (A.5), we can estimate phld by estimat-

ing p2®, pi?, 7;, and pi@e. Note that the probabilities p¢<¥, pi@’¢, and 7; can be estimated using

MAC layer statistics. However, it is difficult to estimate p;"” because this value depends on the

relative location of node ¢ and the nodes that concurrently transmit. Thus, the lower bound g}”d
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for pf-‘fg is computed by setting p;"” = 0, and can be expressed as

QZ% =1- T (A.6)
p;

After a sender estimates g?ig using MAC layer statistics, it calculates the averaged value of Q?iEd

by low-pass filtering as follows:

i ; pet(l— 1
P ppit (- p)- 1o PELZT) ) (A7)
p;

Once QZ% is estimated, it can be used to help the sender to make decision on whether to employ
the RTS/CTS mechanism to resolve the hidden node problem. When QZ% is less than a certain
threshold n(Z2), the transmitter considers that an entire frame loss is caused mainly due to a
collision. Otherwise, it comes to the conclusion that there are hidden nodes and moves to the
next step to determine whether or not to use the RTS/CTS mechanism. Note that MAF-MAC
can calculate g?fEd in the same way, because it also uses the block ACK feature of IEEE 802.11n.

Detecting partial frame losses caused by hidden nodes (P2)

When a transmitter receives a block ACK frame, it only needs to differentiate partial frame
losses due to hidden nodes (P2) from channel errors (P3), considering that a collision cannot
occur in such a case. It is assumed that each sender transmits at an appropriate transmission
rate in accordance with the channel condition by using feedback information of block ACK.
Then, the hidden nodes are considered to be the main cause of the error if the error probability
of subframes (MPDUs in [8] and fragments in MAF-MAC) is higher than expected. The sender
can easily calculate the error probability for a subframe by simply counting the number of

corrupted subframes in an entire frame. Let p%ﬁl be the error probability of a subframe due to

interference from hidden nodes (P2). Upon receiving a block ACK, p%gl is low-pass filtered
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with a coefficient p (0< p <1) as

P pplE+(1—-p) =, (A.8)

==

where Y and X are the numbers of all subframes and corrupted subframes in an entire frame,
respectively. The transmitter can detect the presence of hidden nodes when pif”g is larger than a
certain threshold (©'2). MAF-MAC can easily estimate pﬁ”ﬁ because it also uses the fragment

aggregation and block ACK features.

When to employ RTS/CTS

When (E2) or (P2) is detected, the proposed HD mechanism [8] determines whether or not
to initiate the RTS/CTS exchange depending on the estimated values of Q?fg and p?fg. It is
better to initiate the RTS/CTS exchange when the RTS/CTS mode is expected to yield higher
throughput than the basic access mode. In [8], the throughput T"H R of a node is derived based
on the following simple throughput model that ignores the variations of 7; and p$"” by employing

the RTS/CTS exchange.

THR= " %

, A9
Tdata + Toh ( )

where n, and S, are the number of successfully transmitted subframes and the packet size,
respectively. Note that T}, is the overhead required for completing a transmission of a single

data frame, which is calculated as

Tsirs +Tprrs + Teo, for basic access mode,
Toh =

Trts + Tets +3Tsirs + Tprrs + Teo, for RTS/CTS mode, (A.l(])
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where 1,5, Tets, are the time durations for transmitting RTS and CTS frames, respectively.

Then, the number of successfully transmitted subframes can be estimated as

(1—pld)(1 = pld)nss, for basic access mode,

Nts, for RTS/CTS mode, (A.11)

where n is the total number of subframes in a data frame. Let THRZ and TH R be the
throughput for the basic access mode and RTS/CTS mode, respectively. Node ¢ calculates
THRP and THR]* based on the estimated p/%d and p[d by using (A.9), (A.10), and (A.11),

and employs the RTS/CTS exchange when T'H Rf /TH Rf} is larger than 1.

B. Hidden node resolving mechanism [9]
Kim [9] proposed two types of effective resolution mechanism for the hidden node prob-
lem; extending the effective CTS range and introducing the Receiver-oriented contention (ROC)

mechanism.

Extending the effective CTS range

The RTS/CTS mechanism was designed to prevent the transmissions of the other nodes in
the neighborhood of a transmitter or a receiver by announcing the information on the upcoming
data transmission via RTS and CTS frames. In particular, the transmission of CTS frame is
effective in preventing the transmission of hidden nodes, because they defer channel access by
setting the NAV value appropriately when overhearing the CTS frame. In the IEEE 802.11
standard [62], the NAV value after receiving a CTS frame is calculated based on the value of the
duration field in the CTS frame. In [9], the effective CTS range is defined as the range that the

transmission of CTS frame can prevent the transmission of other nodes during the subsequent
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data and ACK transmissions. Then, the effective CTS range becomes equal to the transmission
range of the CTS frame because only a node that can decode the CTS frame appropriately
calculates the NAV value. If a node that is located out of the transmission range but within the
carrier sensing range of the CTS frame, it cannot decode the CTS frame but only can sense the
transmission of a frame. If the node defers its channel access by setting extended inter-frame
space (EIFS) instead of NAV, there is no guarantee that the upcoming data transmission will be
protected because the duration of EIFS is much shorter than that of NAV.

In extending the effective CTS range, there are two major problems that have to be resolved.
One is how to identify the CTS frame when a node can only sense the transmission of a frame,
and the other is how to set the NAV value to protect the upcoming data transmission. To iden-
tify the control frames, each control frame should have a unique size. Fortunately, in the IEEE
802.11n standard [1] the CTS and ACK frames can be differentiated by transmission duration
because block ACK frame is much larger than that of CTS frame. After identifying the CTS
frame, a node has to defer channel access to protect the upcoming data transmission, but it still
does not know the appropriate duration of NAV. Kim [9] proposed to adjust the average size of
a frame in a given time by using Frame size Adaptation (FA) scheme so that the average trans-
mission time of data frame, T4, i close to a fixed reference time 7. ;. Then, a node can defer
the channel access appropriately by simply setting the duration of NAV as T,..r after identifying

the CTS frame. In this way, the effective CTS range can be extended.

Receiver-oriented contention (ROC) mechanism

There is a limitation in applying the RTS/CTS mechanism to resolve the hidden node prob-
lem because the exchange of control packets also suffers from the hidden node problem caused
by the carrier sensing mechanism at the sender [9]. To resolve the hidden node problem more

effectively, the Receiver-Oriented Contention (ROC) mechanism, which is inspired by the basic
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Basic access mode . RTS/CTS mode U ROC mode
Backoff : :

T SIFS | SIFS SIFS | SIFS
. | Data [ I|||| RTS [ Data (7 | Data (7
ACK —JI CTS Ly ACK —JI | || CTS [y ACK || |
DIFSI SIFS DIFSI SIFS DIFS
When a HD mechanism detects hidden node After one data frame is successfully transmitted

Figure A.1 Basic operation of the ROC mechanism in conjunction with the HD mechanism

idea of MACA-BI [49], is adopted. In MACA-BI, the part corresponding to the RTS frame
transmission is suppressed and a receiver polls the transmitter for data transmission via RTR
frame, which is a renamed CTS frame. The ROC mechanism can be simply incorporated in
IEEE 802.11 system by allowing a receiver to participate in the contention to access the channel
via the CSMA/CA mechanism. For this, a receiver has its own back-off counter, decrements
the counter by one when the channel is idle, and transmits a CTS frame whenever the counter
reaches zero. Upon receiving the CTS frame, the transmitter transmits a data frame to the
receiver and subsequently the receiver transmits an ACK frame to the transmitter. The ROC
mechanism can save the transmission time of RTS frames and protect the interference from
hidden nodes because the receiver senses the channel and contends with its neighboring nodes.

However, there are some disadvantages in this mechanism. The most critical one is that
different forms of hidden node problem may occur. Thus, the ROC mechanism is adopted
with the hidden node detection (HD) mechanism, so that only the links that suffer from the
hidden node problem use the ROC mechanism, as can be seen in Fig. A.l. Initially, the link
operates in basic access mode and the transmitter detects the presence of a hidden node via
the HD mechanism. When the interference from a hidden node is detected, the sender initiates

the RTS/CTS mechanism to alleviate the interference from a hidden node. It is noted that
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the RTS/CTS exchange may still not be successful due to hidden nodes. In such a case, the
transmission in the RTS/CTS mode needs to be continued until one data frame transmission is
successful. After one successful transmission of a data frame in the RTS/CTS mode, the link
switches to transmit in the ROC mode to resolve the hidden node problem more effectively
and the receivers contend based on the Binary Exponential Backoff (BEB) mechanism as in the
IEEE 802.11 DCF. MAF-MAC uses the ROC mechanism with HD to resolve the hidden node

problem in section 4.3.
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