3,007 research outputs found

    Multidimensional Capacitive Sensing for Robot-Assisted Dressing and Bathing

    Get PDF
    Robotic assistance presents an opportunity to benefit the lives of many people with physical disabilities, yet accurately sensing the human body and tracking human motion remain difficult for robots. We present a multidimensional capacitive sensing technique that estimates the local pose of a human limb in real time. A key benefit of this sensing method is that it can sense the limb through opaque materials, including fabrics and wet cloth. Our method uses a multielectrode capacitive sensor mounted to a robot's end effector. A neural network model estimates the position of the closest point on a person's limb and the orientation of the limb's central axis relative to the sensor's frame of reference. These pose estimates enable the robot to move its end effector with respect to the limb using feedback control. We demonstrate that a PR2 robot can use this approach with a custom six electrode capacitive sensor to assist with two activities of daily living-dressing and bathing. The robot pulled the sleeve of a hospital gown onto able-bodied participants' right arms, while tracking human motion. When assisting with bathing, the robot moved a soft wet washcloth to follow the contours of able-bodied participants' limbs, cleaning their surfaces. Overall, we found that multidimensional capacitive sensing presents a promising approach for robots to sense and track the human body during assistive tasks that require physical human-robot interaction.Comment: 8 pages, 16 figures, International Conference on Rehabilitation Robotics 201

    Prototyping a Capacitive Sensing Device for Gesture Recognition

    Get PDF
    Capacitive sensing is a technology that can detect proximity and touch. It can also be utilized to measure position and acceleration of gesture motions. This technology has many applications, such as replacing mechanical buttons in a gaming device interface, detecting respiration rate without direct contact with the skin, and providing gesture sensing capability for rehabilitation devices. In this thesis, an approach to prototype a capacitive gesture sensing device using the Eagle PCB design software is demonstrated. In addition, this paper tested and evaluated the resulting prototype device, validating the effectiveness of the approach

    Pre-Interaction Identification by Dynamic Grip Classification

    Get PDF
    We present a novel authentication method to identify users as they pick up a mobile device. We use a combination of back-of-device capacitive sensing and accelerometer measurements to perform classification, and obtain increased performance compared to previous accelerometer-only approaches. Our initial results suggest that users can be reliably identified during the pick-up movement before interaction commences

    Investigating Machine Learning Techniques for Gesture Recognition with Low-Cost Capacitive Sensing Arrays

    Get PDF
    Machine learning has proven to be an effective tool for forming models to make predictions based on sample data. Supervised learning, a subset of machine learning, can be used to map input data to output labels based on pre-existing paired data. Datasets for machine learning can be created from many different sources and vary in complexity, with popular datasets including the MNIST handwritten dataset and CIFAR10 image dataset. The focus of this thesis is to test and validate multiple machine learning models for accurately classifying gestures performed on a low-cost capacitive sensing array. Multiple neural networks are trained using gesture datasets obtained from the capacitance board. In this paper, I train and compare different machine learning models on recognizing gesture datasets. Learning hyperparameters are also adjusted for results. Two datasets are used for the training: one containing simple gestures and another containing more complicated gestures. Accuracy and loss for the models are calculated and compared to determine which models excel at recognizing performed gestures

    Remote capacitive sensing in two-dimension quantum-dot arrays

    Get PDF
    We investigate gate-defined quantum dots in silicon on insulator nanowire field-effect transistors fabricated using a foundry-compatible fully-depleted silicon-on-insulator (FD-SOI) process. A series of split gates wrapped over the silicon nanowire naturally produces a 2×n2\times n bilinear array of quantum dots along a single nanowire. We begin by studying the capacitive coupling of quantum dots within such a 2×\times2 array, and then show how such couplings can be extended across two parallel silicon nanowires coupled together by shared, electrically isolated, 'floating' electrodes. With one quantum dot operating as a single-electron-box sensor, the floating gate serves to enhance the charge sensitivity range, enabling it to detect charge state transitions in a separate silicon nanowire. By comparing measurements from multiple devices we illustrate the impact of the floating gate by quantifying both the charge sensitivity decay as a function of dot-sensor separation and configuration within the dual-nanowire structure.Comment: 9 pages, 3 figures, 35 cites and supplementar

    Non-destructive evaluation of an infusion process using capacitive sensing technique

    Get PDF
    In this study, a capacitive sensing based non-destructive evaluation technique is applied to a vacuum assisted resin infusion process for the fabrication of glass fibre reinforced composites, as such different steps of the fabrication process (the injection of resin, the curing and the post curing) can be better understood to increase the quality of the fabricated part and reduce the fabrication costs. An interdigital coplanar capacitive sensor was designed, fabricated, and embedded in the glass fibre reinforced composites. Experimental data clearly shows different stages of the resin infusion process: wetting of the glass fibres marked by rapid increase of capacitance; domination of ionic conduction at the early stage of the cure when the resin is still in a liquid state; the vitrification point, indicating a transition of the resin from a gelly state to a glassy state, marked by the relatively big decrease in capacitance; further polymerization during post-curing, marked by a peak in capacitance at the beginning of post-curing cycle, and finally the completion of the cure marked by the saturation of capacitance to a final value. The different phenomena observed during the experiment can be used as a tool for in situ on-line monitoring of composites cure

    Effects of diesel contamination on capacitance values of crude palm oil

    Get PDF
    Measurement of crude palm oil (CPO) contamination is a major concern in CPO quality monitoring. In this study, capacitive sensing technique was used to monitor diesel contamination levels in CPO. A low cost capacitive sensing system was developed by using AD7746 capacitance to digital converter. The capacitance value of CPO samples with different contamination levels (v/v%) ranged from 0% to 50% was collected at a room temperature (25°C). The objective of this study is to find a relationship between capacitance values and diesel contamination levels in CPO. The results showed that capacitance value decreased as the diesel contamination levels increased. For the 0% to 50% contamination range, the regression equation was y = 0.0002x 2 - 0.0125x + 0.936 with R 2 value of 0.96. For the 0% to 10% contamination range (where the percentage was the representative of potential contaminations levels found in CPO) the correlation equation was y = -0.02x + 0.95 with R 2 value of 0.95. These results indicated that capacitive sensing technique has potential for CPO quality monitoring

    Acceleration disturbances and requirements for ASTROD I

    Full text link
    ASTRODynamical Space Test of Relativity using Optical Devices I (ASTROD I) mainly aims at testing relativistic gravity and measuring the solar-system parameters with high precision, by carrying out laser ranging between a spacecraft in a solar orbit and ground stations. In order to achieve these goals, the magnitude of the total acceleration disturbance of the proof mass has to be less than 10−13 m s−2 Hz−1/2 at 0.1 m Hz. In this paper, we give a preliminary overview of the sources and magnitude of acceleration disturbances that could arise in the ASTROD I proof mass. Based on the estimates of the acceleration disturbances and by assuming a simple controlloop model, we infer requirements for ASTROD I. Our estimates show that most of the requirements for ASTROD I can be relaxed in comparison with Laser Interferometer Space Antenna (LISA).Comment: 19 pages, two figures, accepted for publication by Class. Quantum Grav. (at press
    corecore