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Abstract 

Machine learning has proven to be an effective tool for forming models to make predictions 

based on sample data. Supervised learning, a subset of machine learning, can be used to map 

input data to output labels based on pre-existing paired data. Datasets for machine learning can 

be created from many different sources and vary in complexity, with popular datasets including 

the MNIST handwritten dataset and CIFAR10 image dataset. The focus of this thesis is to test 

and validate multiple machine learning models for accurately classifying gestures performed on 

a low-cost capacitive sensing array. Multiple neural networks are trained using gesture datasets 

obtained from the capacitance board. In this paper, I train and compare different machine 

learning models on recognizing gesture datasets. Learning hyperparameters are also adjusted 

for results. Two datasets are used for the training: one containing simple gestures and another 

containing more complicated gestures. Accuracy and loss for the models are calculated and 

compared to determine which models excel at recognizing performed gestures. 
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1.0 Introduction 

Over the past several decades, the use of machine learning for classifying datasets has 

increased, with applications including image recognition [1] and predictions of an author’s 

emotions based on text [2]. Supervised training, a subset of machine learning, maps input data 

to output labels based on an inferred function developed from a training dataset. Neural 

networks can be used to achieve a simple mapping in supervised training. However, as datasets 

become more complex by having multiple dimensions, additional machine learning techniques 

must be introduced to accurately train these datasets. Several machine learning strategies are 

used for learning complex datasets, including implementing recurrent neural networks for 

modeling temporal data and convolutional neural networks for modeling spatial data. 

This paper will focus on the testing of multiple differing machine learning models using 

various machine learning strategies for training gesture datasets created on a capacitive sensing 

board. The original focus of this paper was to use machine learning with capacitive sensing to 

recognize gestures in adaptive gaming. The machine learning was to be implemented with 

datasets consisting of gestures performed by individuals with disabilities. However, due to 

unforeseen circumstances, the scope of this project was refocused for understanding the 

accuracy of machine learning with capacitive sensing. 

 

2.0 Related Work 

Gesture recognition – the technology for understanding and classifying human motion as 

input – is a vast field of research with application to many different endpoints. This work will 
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focus on touch-based gesture interaction. Pen- and touch-based interactions (“Pen 

Computing”) began in the late 1950s/early 1960s, actually predating the mouse and graphical 

display. The application of this technology to handwriting recognition (as demonstrated in [3, 4, 

5]) lays the foundation for classifying arbitrary single- or multi-touch unistroke gestures. One 

such application is Graffiti, a handwriting recognition system based on single stroke inputs [3]. 

Graffiti is used in PDAs based on the Palm OS and was designed to be drawn with a stylus on a 

touch-sensitive pad without visual feedback. The $1 Unistroke Recognizer is a simple project 

that offers gesture recognition in multiple different environments including design-oriented, 

scripting, and off-desktop prototyping environments [4]. The $1 Unistroke Recognizer is simple 

and inexpensive, yet it offers high accuracy in recognizing gestures when few template gestures 

are stored. EdgeWrite is another unistroke text entry method designed for recognizing 

characters using minimal sensing [5]. This application uses four corners arranged in a square for 

the input, where the character being drawn is determined by the order of corners that are 

entered.  

Machine learning has more recently become a popular tool for constructing and improving 

models to recognize datasets and has been incorporated in numerous applications for gesture 

recognition. As shown by Mitra and Archarya [6], multiple different machine learning 

approaches have been used for classifying gestures, including applications involving hidden 

Markov models, finite state machines, particle filtering and condensation, and artificial neural 

networks.  

Hidden Markov models (HMMs), which are double embedded stochastic processes, have 

been found to efficiently model spatiotemporal information and have been used in applications 
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such as hand and face recognition [6] and speech recognition [7]. HMMs have been used to 

improve the recognition of real-time American Sign Language [8]. Using a tracking camera to 

record video data, an HMM can be trained to detect hand signs with an overall low error rate. 

Similar to HMMs, finite state machines have also been used for hand gesture recognition [9]. 

However, while the HMM requires a predefined structure of the states, the finite state machine 

aligns the training data and simultaneously produces the gesture model [9]. The condensation 

algorithm is another technique for gesture recognition and builds upon concepts of particle 

filtering. Particle filters are sequential methods that use point mass representation of 

probability densities to solve filtering problems [10]. The condensation algorithm, an algorithm 

that uses weighted samples and observed data to approximate a curve, has been shown to be 

effective with matching temporal trajectories and recognizing gestures based on stored models 

[11]. 

The artificial neural network has also seen use in the field of gesture recognition. Model 

architectures such as the recurrent neural network and convolutional neural network have 

proven to be effective in accurately classifying hand gestures [12, 13]. Recurrent neural 

networks have been used with accelerometer data and signal predictors for the classification of 

gestures [12], whereas camera images of human task activities can be recognized using 

convolutional neural networks [13]. 

The research presented in this thesis is similar to the provided related work in that the 

gestures will need to be recognized in real time. However, this research will differ by using 

gesture inputs created using a low-cost capacitive sensing array device with neural network 

architectures such as convolutional and recurrent neural networks. 
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3.0 Background 

3.1 Capacitive Sensor Board 

A custom capacitance sensor board is used for constructing the dataset. This board 

features 64 buttons controlled with 16 microcontroller pins, and a recording rate of greater 

than 100 samples per second. The capacitance board is connected to a low-power MSP430 

microcontroller designed for low-power sensing. The board can detect changes in sensor 

capacitance due to human interaction, known as capacitive touch sensing.  The design of the 

capacitance board is an 8 by 8 array of capacitive buttons. Figure 2 illustrates the design of the 

capacitance sensor board. 

 

 

Figure 2. Capacitive Sensor Pad (4” x 4”) courtesy of Haoyan Liu 
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 Each button located on the board is designed with a mutual capacitance sensor [14]. 

The sensor is formed with two separate electrode structures, each acting as a separate 

capacitor plate. The electrodes are separated into the transmit electrode (Tx) and the receive 

electrode (Rx), with interaction measured from the difference in the electrode’s capacitance 

values. To help prevent noise in the system, the board is designed to reduce parasitic mutual 

and parasitic ground capacitance. Parasitic mutual capacitance is formed when the Rx and Tx 

traces are close to each other. This can be reduced by keeping the Rx and Tx traces separated, 

and if they need to cross, crossing them at a 90-degree angle to minimize the trace area 

overlap. Parasitic ground capacitance is formed between ground pours and trace lines and is 

reduced by keeping the electrode and microcontroller trace routing at a minimal length. 

Figure 3 below provides an example of the mutual capacitance sensor design. The Tx 

and Rx are designed in a rectangular shape around the sensor. Noise reduction is achieved by 

removing parts of the Rx electrode, forcing the electric field lines to concentrate to the corners 

of the sensor [14].  
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Figure 3: Design of Mutual Capacitance Sensor [14] 

 

The mutual capacitance sensors are placed on the board to form an 8 x 8 grid. Figure 4 

identifies the layout of each sensor on the board. Tightly coupled electric fields reside within 

each mutual capacitive sensor, allowing the sensors to be grouped together without sensor 

cross-coupling occurring. There are 8 column and 8 row electrodes that are used to form a 

mutual capacitance matrix, where each unique Rx and Tx pair form a sensor. The matrix allows 

the capacitance board to be controlled by 16 microcontroller input pins. 
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Figure 4: Layout of the Mutual Capacitance Sensors [14] 

 

3.2 Machine Learning Concepts 

The focus of this project is utilizing machine learning for classifying the gesture dataset. 

Machine learning, a sub-set of artificial intelligence, is used to construct a mathematical model 

based on training data to correctly classify each gesture with its corresponding label. Depending 

on the task being solved, multiple different types of machine learning can be used, including 

supervised, unsupervised, and reinforcement learning. In supervised learning, the training data 

contains both the inputs and the desired output for each set of data. For this thesis, each input 

sequence of data is paired with a gesture label, classifying the learning as supervised learning. 

Unsupervised learning takes the input data and finds common features to provide structure. 

This type of learning is used in applications such as improving computer networking [15] and 

pattern recognition applications [16]. 
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One of the simplest forms of machine learning architectures for supervised learning is 

the basic neural network. Neural networks consist of an input layer, a number of hidden layers, 

and a final layer. The input layer is built from the values obtained from a sample of data in the 

dataset. For example, the input layer for training a model for image recognition might contain 

the normalized grayscale value for each pixel flattened into a one-dimensional array. The 

hidden layers consist of artificial neurons, also known as hidden nodes, where each neuron in 

the layer is connected with every neuron in the previous and following layer. Each connection 

between the layers is assigned a weight that is adjusted during the training process. The 

number of neurons in each hidden layer is assigned when creating the model, and represents a 

feature extracted from the dataset. The greater the number of hidden nodes, the more 

complex features that can be modeled with the neural network. However, the training time 

also increases with additional hidden nodes. Research shows that the number of hidden nodes 

for optimal performance and computational cost with large datasets is equal to log(N), where N 

is the number of samples used for training [17]. Lastly, the output layer is constructed with the 

number of neurons equal to the number of desired output classifications. The output of each 

neuron can be calculated with the following equation (1): 

 
𝑦𝑦 = 𝜑𝜑(𝐵𝐵 +∑𝑤𝑤𝑗𝑗

𝑚𝑚

𝑗𝑗=1
𝑥𝑥𝑗𝑗) 

 

(1) 

 

where y is the neuron’s output, wj is the weight from signal j to the neuron, xj is the output 

from signal j, B is the neuron’s bias, and 𝜑𝜑 is the activation function.  
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An important property for maintaining high accuracy in complex neural networks is the 

activation function. The activation function takes the neuron’s intermediate signal and converts 

it into the final output signal. By using an activation function that transforms the linear input 

into a non-linear output, complex datasets can be modeled and trained more effectively and 

will have an advantage over linear outputs in high-dimensional settings [18]. Multiple activation 

functions were tested with the gesture dataset, including the linear, sigmoid, hyperbolic 

tangent, and rectified linear unit (ReLU) function. The simplest of the four activation functions 

is the linear function, such as the identity function. This function maps the input using the 

following equation (2): 

 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 (2) 

   

Next, the sigmoid activation function is a non-linear, S shaped function with a range between 0 

and 1, and is defined by the following equation (3): 

 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥
𝑒𝑒𝑥𝑥 + 1 (3) 

   

The hyperbolic tangent function is similar to the sigmoid activation function in having a 

sigmoidal shape, but instead ranges from -1 to 1. The equation (4) is shown below: 

 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥
𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥  (4) 

 

Lastly, the ReLU activation calculates the max of 0 and input x, resulting in only positive values 

being output from the neuron. This function features the properties of being non-linear and 
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having a more efficient computation time due to the use of simple mathematical operations. 

The equation (5) is shown below: 

 𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥) (5) 

   

 A neural network adjusting itself to reduce error generated is known as learning. One of 

the main methods used for learning is backpropagation, the process of altering the weights and 

biases in an attempt to reduce the amount of error generated. Backpropagation is split into two 

main parts, a forward pass and backwards pass. During the forward pass, data from the input 

layer is used to calculate each neuron’s output in the hidden layers. This is completed through 

equation (1) using preset weights and biases. Finally, the output layer’s neuron values are 

calculated, and the correct output vector is compared with these values to calculate loss. Loss, 

a performance metric for neural networks, is calculated using a loss function such as mean 

square error or quadratic loss.  The backwards pass is performed by calculating the loss 

function’s gradient and using this data to update the weights and biases through a form of 

stochastic gradient descent [19]. Hyperparameters such as number of epochs and batch size are 

used during the backpropagation. In every epoch, the entire dataset is passed through the 

forward and backward pass once. The batch size is the number of training examples per 

iteration, where the gradient and neural network parameters are updated after each iteration. 

Adam, an algorithm for gradient-based optimization, was used in all models to execute the 

backpropagation due to its low memory requirements and efficient computation speed [20]. 

 Problems can arise when training neural networks such as overfitting and overtraining. 

Overfitting and overtraining both occur when the neural network models learn the training data 
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too accurately, causing the model to perform well on the training dataset but not the test 

dataset. Overfitting is caused due to the artificial network size (number of hidden layers and 

nodes) being too large and complex. Similarly, overtraining is caused by training the data for 

too many epochs [21].  

 The convolutional neural network is a class of neural networks that excels in 

applications such as image recognition [22] and video detection [23]. Convolutional neural 

networks are constructed from convolutional layers, pooling layers, and fully connected layers. 

In the convolutional layers, a kernel matrix is convolved with the data input at a specified stride 

to produce a feature map. Hyperparameters such as filter size, stride length, and output 

dimensionality can be changed to transform the output from the convolutional layer. A pooling 

layer is used to reduce the dimensionality of the output from convolutional layers. Pooling 

layers can act either on a small subsection of the feature map, such as a 2x2 grid, or can pool 

the entire map. There are many different ways of conducting the pooling for the layers, 

including max pooling, sum pooling, and average pooling. Max pooling takes the artificial 

neuron’s max value from the chosen subsection and outputs the reduced matrix. In sum 

pooling, the subsections values are added together for the final matrix, and in average pooling, 

the average of the subsection is calculated for the matrix.  Different pooling techniques can be 

combined for a neural network model, such as alternating max pooling and average pooling, 

and can assist with overfitting in the neural network [24]. 

 Another important class of neural networks is the recurrent neural network (RNN). 

RNNs excel at modeling sequence data and are used in applications such as speech recognition 

[25] and natural language processing [26].  RNNs model data using timesteps, where each step 
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has the output fed into the next timestep. A major disadvantage to RNNs is that they suffer 

greatly from the vanishing gradient problem during backpropagation [27]. The vanishing 

gradient problem occurs during learning when the calculated gradient becomes very small, 

preventing the weight from updating its value. To help solve this problem, a special type of RNN 

architecture called the long short-term memory (LSTM) was developed. LSTM architectures can 

avoid the vanishing gradient problem using a stored hidden state value that is passed between 

LSTM cells [28]. Figure 5 shows the layout of an LSTM cell. 

 

Figure 5: Long short-term memory cell [19] 
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A LSTM cell is composed of an input gate, output gate, and forget gate, which all control 

the information provided by the cell. Each gate is controlled by a sigmoid function, outputting a 

value between 0 and 1. The following equations (6 - 10) are described by Graves et al [29]. 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (6) 
 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 +𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (7) 
 

 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡tanh⁡(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (8) 
 

 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 +𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (9) 
 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh⁡(𝑐𝑐𝑡𝑡) (10) 
 
 
The input gate decides which values of the cell state are updated and is represented by 

equation (6). The forget gate controls what is lost from the cell state and is shown through 

equation (7). Using the values calculated for the input gate and forget gate, equation (8) can be 

used to calculate the cell state. In this equation, a candidate value for the cell state is calculated 

and multiplied by the input gate scaling to determine how much of each state value should be 

updated. Lastly, the output gate controls which parts of the cells state are filtered for the cell’s 

output and can be calculated with equation (9). In the gate equations, a peephole value is 

calculated, represented by a weight multiplied by the cells internal value. However, for the 

implementations in this paper, a peephole value is excluded from the calculations. Equation 

(10) represents the LSTM cell’s final output (ht) for Figure 5 using the output gate and cell state 

values. 

 A major drawback of using an LSTM is that the input needs to be flattened to a 1D 

vector, losing the spatial aspect of the data. To solve this problem, convolution can be used in 

the input to-state and state-to-state transitions within the LSTM network. This network, known 
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as a convolutional LSTM network, excels at modeling spatiotemporal sequences and is used in 

applications such as the prediction of rainfall intensity through precipitation nowcasting [30]. 

The following equations (11-15) are described by Shi et al [30], where ‘*’ denotes the 

convolution operator. 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖 ∗ ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (11) 
 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑓𝑓 ∗ ℎ𝑡𝑡−1 +𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (12) 
 

 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡tanh⁡(𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑐𝑐 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (13) 
 

 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑜𝑜 ∗ ℎ𝑡𝑡−1 +𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (14) 
 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh⁡(𝑐𝑐𝑡𝑡) (15) 
 

4.0 Experiment 

4.1 Data Collection 

Data collection was performed with the capacitance board and microcontroller 

interfaced with CapTIvate Design Center. The recorded gestures were saved into multiple CSV 

files, with each file containing all the recorded attempts of a single gesture type. Each row 

contained data on the timestamp, mutual capacitance sensor ID, long-term average value, and 

raw count value. Subtracting the long-term average from the count yielded a delta value, which 

signified the gestures feature strength located at that capacitance button.  

The dataset was initially divided into frames, where each frame contained the data for 

all 64 capacitance buttons on the board during a timestep. Each gesture recorded was 

constructed from multiple frames. The capacitance board continuously recorded data between 

gestures, resulting in invalid data frames between gestures needing to be removed. To solve 

this problem, all the frames were iterated through and the average delta value for each frame 
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was calculated. A minimum threshold was set, and if the frame’s average was lower than this 

threshold, the frame was removed. This process removed all blank data frames and left only the 

frames associated with the recorded gestures. Next, each gesture’s frames needed to be 

grouped together. The frames were queried and the distance between timestamps for adjacent 

frames was calculated. If this distance between frame values was greater than 100ms, all 

previous frames were grouped and marked as a gesture. While the gestures were being 

marked, the highest number of frames required for a recorded gesture was documented. Using 

this value, the rest of the gesture’s frames were padded to keep each gesture the same length. 

At this stage, the data was formatted to a three-dimensional shape based on gesture count, 

frame count, and capacitance button index for each of the 64 frames. The data was finally 

reshaped to represent the 2D dimensionality of the board, with a shape of gesture count, frame 

count, capacitance button row index, and capacitance button column index.  

Two separate datasets were constructed for testing the machine learning models. The 

first dataset was created with simple gestures for testing the validity of the model. The gestures 

in this dataset included a left to right, right to left, up to down, and down to up swipe. The 

second dataset contained all of the previous gestures in addition to complex gestures, including 

a tap, rub, northwest to southeast swipe, northeast to southwest swipe, counterclockwise 

circle, clockwise circle, V shape made with two fingers, and two I’s made with two fingers. Each 

gesture was recorded 100 times for a total of 400 gestures in the simple dataset and 1,200 in 

the complex dataset.  

 

4.2 Machine Learning Models 
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The machine learning was coded in Python using TensorFlow, an open-source machine 

learning library. With the data collection complete, each gesture dataset was split into a 

training, validation, and testing dataset. Each dataset was shuffled for a random distribution. 

Multiple machine learning models were tested with both the simple and complex dataset. The 

first model tested was a basic neural network, constructed of an input layer, hidden layer, and 

output layer. Next, a recurrent neural network model using an LSTM layer was tested. This 

model was constructed of an LSTM layer which returned the full output sequence, flattening 

layer, hidden layer, and a classification layer. The last model tested was a recurrent neural 

network where the LSTM unit’s matrix multiplication was replaced with 2D-convolution. This 

model was constructed of a 2D-convolution LSTM layer which returned the full output 

sequence, flattening layer, hidden layer, and classification layer. Learning hyperparameters, 

such as number of hidden layers, number of hidden nodes per layer, kernel size, and batch size 

were altered during the training of the models and the accuracy was compared.   

 

5.0 Results 

Each model was tested with the simple gestures dataset to verify that the model worked 

with the constructed datasets. Figure 6 below shows the neural networks accuracy at every 

epoch, final test accuracy, and final test loss. 
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Figure 6: Neural network models trained with the basic dataset 

Each neural network in this first test used hidden layers with 50 nodes. The basic neural 

network and 2D-convolution LSTM network both used ReLU for their activation function, while 

the LSTM used hyperbolic tangent. The 2D-convolution LSTM used a kernel size of 4x4. The 

accuracy for each model increased quickly in the initial epochs, and all models ended with a 

final test accuracy of 100%. 

Next, each model was trained and tested with the complex gesture dataset. The results are 

shown below in Figure 7. 
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Figure 7: Neural network models trained with the complex dataset 

All of the models reached a high test accuracy, with the 2D-convolution LSTM resulting in the 

highest accuracy of 99.33%. 

To observe the effects of kernel size, the LSTM with 2D-convolution model was trained 

and tested on the complex gesture dataset with a 2x2, 3x3, and 4x4 kernel matrix size. Figure 8 

below shows the results of the training. 

 

Figure 8: Effects of kernel size on LSTM with 2D-convolution Neural Network 
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The results from the training show little difference in the final test accuracy for the different 

kernel sizes, with the 4x4 kernel having a slightly higher accuracy than the other two models. 

Different sets of hyperparameters were tested with each machine learning model. The 

effect of changing the number of hidden nodes per layer was observed. Each model was trained 

with the complex gesture dataset and tested with 25, 50, 75, and 100 nodes in each hidden 

layer. The results of each network are shown in figures 9 - 11. 

 

Figure 9: Hidden layer node variance on Basic Neural Network 
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Figure 10: Hidden layer node variance on LSTM Neural Network 

 
 

Figure 11: Hidden layer node variance on LSTM with 2D-convolution Neural Network 

The number of hidden nodes had a minimal effect on the training and accuracy for the basic 

neural network, with the final test accuracy peaking at 75 hidden layer nodes for the basic 

neural network, 50 and 100 for the LSTM network, and 75 and 100 for the 2D-convolution 

network. 
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 Different activation functions for the hidden layer were tested with the basic and LSTM 

with 2D-convoloution models. The activation functions tested were the linear, hyperbolic 

tangent, sigmoidal, and ReLU activation functions. The basic neural network was tested with 10 

hidden nodes and the LSTM with 2D-convolution was tested with 50 hidden nodes. The results 

are shown in figures 12 - 13. 

 

Figure 12: Effects of activation function on basic neural network 

 
Figure 13: Effects of activation function on LSTM neural network 



 25 

 

Figure 14: Effects of activation function on LSTM with 2D-Convololution neural network 

In figures 12-14, the activation function is shown having little affect in the training accuracy and 

final test accuracy. The basic neural network ended with the highest final accuracy when 

utilizing the linear activation function, LSTM network with the linear and sigmoid function, and 

the 2D-convolution network with the tanh and sigmoid. 

 

6.0 Conclusion 

Machine learning can be used for accurately classifying gesture datasets recorded through a 

capacitive sensor board. Neural network architectures such as the long short-term memory and 

convolution layer can both effectively be used to construct machine learning models with high 

training accuracy. Altering the number of hidden layer nodes for the neural networks’ training 

caused minimal differences between the models’ training accuracy. Similarly, different 

activation functions had little effect on the learning rate for the models. Using a 4x4 kernel size 

for the 8x8 gesture input data provided a slightly higher accuracy model compared to the 2x2 

and 3x3 kernels.  
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7.0 Future Work 

There are several parts of this research that can be expanded upon. With respect to 

gestures, the trained machine learning models can be integrated with a microcontroller and 

capacitance board to test real-time classification of gestures. Additional gesture datasets, such 

as datasets created by people with disabilities, can be processed for relevant training. Gesture 

datasets constructed around the capabilities of the adaptive gaming audience can be tested to 

validate the model’s effectiveness. Datasets with noisy and inconsistent gestures can be 

created to see which machine learning models perform best with this data. Further research 

can also be explored in the field of machine learning with capacitive sensing. Data collection 

can be performed on capacitance boards with a varying number of capacitance buttons to 

observe the effect on training accuracy.  

 

7.1 Personal Contribution 

The overall scope of this project is to interface the Xbox Adaptive Gaming Controller with a 

capacitive sensor board to form an input accessory for individuals with disabilities. The 

accessory will be integrated with machine learning to recognize certain gestures applicable to 

the accessory’s user. My main contribution to this project was researching and developing 

multiple machine learning model’s for recognizing gestures. This process included recording 

gestures, forming the gesture data into structured datasets for use in the machine learning, 

creating differing models with varying architectures using the TensorFlow library, and testing 
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each dataset with these models to discover which ones provided high accuracy for the gesture 

recognition.  
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