196 research outputs found

    Network design under uncertainty and demand elasticity

    Get PDF
    Network design covers a large class of fundamental problems ubiquitous in the fields of transportation and communication. These problems are modelled mathematically using directed graphs and capture the trade-off between initial investment in infrastructure and operational costs. This thesis presents the use of mixed integer programming theory and algorithms to solve network design problems and their extensions. We focus on two types of network design problems, the first is a hub location problem in which the initial investments are in the form of fixed costs for installing infrastructure at nodes for them to be equipped for the transhipment of commodities. The second is a fixed-charge multicommodity network design problem in which investments are in the form of installing infrastructure on arcs so that they may be used to transport commodities. We first present an extension of the hub location problem where both demand and transportation cost uncertainty are considered. We propose mixed integer linear programming formulations and a branch-and-cut algorithm to solve robust counterparts for this problem. Comparing the proposed models' solutions to those obtained from a commensurate stochastic counterpart, we note that their performance is similar in the risk-neutral setting while solutions from the robust counterparts are significantly superior in the risk-averse setting. We next present exact algorithms based on Benders decomposition capable of solving large-scale instances of the classic uncapacitated fixed-charge multicommodity network design problem. The method combines the use of matheuristics, general mixed integer valid inequalities, and a cut-and-solve enumeration scheme. Computational experiments show the proposed approaches to be up to three orders of magnitude faster than the state-of-the-art general purpose mixed integer programming solver. Finally, we extend the classic fixed-charge multicommodity network design problem to a profit-oriented variant that accounts for demand elasticity, commodity selection, and service commitment. An arc-based and a path-based formulation are proposed. The former is a mixed integer non-convex problem solved with a general purpose global optimization solver while the latter is an integer linear formulation with exponentially many variables solved with a hybrid matheuristic. Further analysis shows the impact of considering demand elasticity to be significant in strategic network design

    Vehicle routing and location routing with intermediate stops:A review

    Get PDF

    Liner Service Network Design

    Get PDF

    Routing Optimization Under Uncertainty

    Get PDF
    We consider a class of routing optimization problems under uncertainty in which all decisions are made before the uncertainty is realized. The objective is to obtain optimal routing solutions that would, as much as possible, adhere to a set of specified requirements after the uncertainty is realized. These problems include finding an optimal routing solution to meet the soft time window requirements at a subset of nodes when the travel time is uncertain, and sending multiple capacitated vehicles to different nodes to meet the customers’ uncertain demands. We introduce a precise mathematical framework for defining and solving such routing problems. In particular, we propose a new decision criterion, called the Requirements Violation (RV) Index, which quantifies the risk associated with the violation of requirements taking into account both the frequency of violations and their magnitudes whenever they occur. The criterion can handle instances when probability distributions are known, and ambiguity when distributions are partially characterized through descriptive statistics such as moments. We develop practically efficient algorithms involving Benders decomposition to find the exact optimal routing solution in which the RV Index criterion is minimized, and we give numerical results from several computational studies that show the attractive performance of the solutions

    Facility Location Planning Under Disruption

    Get PDF
    Facility Location Problems (FLPs) such as the Uncapacitated Facility Location (UFL) and the Capacitated Facility Location (CFL) along with the k-Shortest Path Problem (k-SPP) are important research problems in managing supply chain networks (SCNs) and related operations. In UFL, there is no limit on the facility serving capacity while in CFL such limit is imposed. FLPs aim to find the best facility locations to meet the customer demands within the available capacity with minimized facility establishment and transportation costs. The objective of the (k-SPP) is to find the k minimal length and partial overlapping paths between two nodes in a transport network graph. In the literature, many approaches are proposed to solve these problems. However, most of these approaches assume totally reliable facilities and do not consider the failure probability of the facilities, which can lead to notably higher cost. In this thesis, we investigate the reliable uncapacitated facility location (RUFL)and the reliable capacitated facility location (RCFL) problems, and the k-SPP where potential facilities are exposed to disruption then propose corresponding solution approaches to efficiently handle these problems. An evolutionary learning technique is elaborated to solve RUFL. Then, a non-linear integer programming model is introduced for the RCFL along with a solution approach involving the linearization of the model and its use as part of an iterative procedure leveraging CPLEX for facility establishment and customer assignment along with a knapsack implementation aiming at deriving the best facility fortification. In RUFL and RCFL, we assume heterogeneous disruption with respect to the facilities, each customer is assigned to primary and backup facilities and a fixed fortification budget allows to make a subset of the facilities totally reliable. Finally, we propose a hybrid approach based on graph partitioning and modified Dijkstra algorithm to find k partial overlapping shortest paths between two nodes on a transport network that is exposed to heterogeneous connected node failures. The approaches are illustrated via individual case studies along with corresponding key insights. The performance of each approach is assessed using benchmark results. For the k-SPP, the effect of preferred establishment locations is analyzed with respect to disruption scenarios, failure probability, computation time, transport costs, network size and partitioning parameters

    Optimal Design and Operation of WHO-EPI Vaccine Distribution Chains

    Get PDF
    Vaccination has been proven to be the most effective method to prevent infectious diseases and in 1974 the World Health Organization (WHO) established the Expanded Programme on Immunization (EPI) to provide universal access to all important vaccines for all children, with a special focus on underserved low- and middle-income countries. However, there are still roughly 20 million infants worldwide who lack access to routine immunization services and remain at risk, and millions of additional deaths could be avoided if global vaccination coverage could improve. The broad goal of this research is to optimize the design and operation of the WHO-EPI vaccine distribution chain in these underserved low- and middle-income countries. We first present a network design problem for a general WHO-EPI vaccine distribution network by developing a mathematical model that formulates the network design problem as a mixed integer program (MIP). We then present three algorithms for typical problems that are too large to be solved using commercial MIP software. We test the algorithms using data derived from four different countries in sub-Saharan Africa and show that with our final algorithm, high-quality solutions are obtained for even the largest problems within a few minutes. We then discuss the problem of outreach to remote population centers when resources are limited and direct clinic service is unavailable. A set of these remote population centers is chosen, and over an appropriate planning period, teams of clinicians and support personnel are sent from a depot to set up mobile clinics at these locations to vaccinate people there and in the immediate surrounding area. We formulate the problem of designing outreach efforts as an MIP that is a combination of a set covering problem and a vehicle routing problem. We then incorporate uncertainty to study the robustness of the worst-case solutions and the related issue of the value of information. Finally, we study a variation of the outreach problem that combines Set Covering and the Traveling Salesmen Problem and provides an MIP formulation to solve the problem. Motivated by applications where the optimal policy needs to be updated on a regular basis and where repetitively solving this via MIP can be computationally expensive, we propose a machine learning approach to effectively deal with this problem by providing an opportunity to learn from historical optimal solutions that are derived from the MIP formulation. We also present a case study on outreach operations and provide numerical results. Our results show that while the novel machine learning based mechanism generates high quality solution repeatedly for problems that resemble instances in the training set, it does not generalize as well on a different set of optimization problems. These mixed results indicate that there are promising research opportunities to use machine learning to achieve tractability and scalability

    Vehicle routing on real road networks

    Get PDF
    The vehicle routing problem (VRP) has received particular attention, in the field of transportation and logistics. Producing good solutions for the problem is of interest both commercially and theoretically. Reliable solutions to real life applications require an approach based on realistic assumptions that resemble real-world conditions. In that respects, this thesis studies vehicle routing problems on real road networks addressing aspects of the problem that need to be modelled on the original road network graph and aims to provide appropriate modelling techniques for solving them. As a preliminary step, chapter 2 studies the travelling salesman problem (TSP) on real road networks, referred to as the Steiner TSP (STSP) and proposes alternative integer programming formulations for the problem and some other related routing problems. The performances of formulations is examined both theoretically and computationally. Chapter 3 highlights the fact that travel speeds on road networks are correlated and uses a real traffic dataset to explore the structure of this correlation. In conclusion, it is shown that there is still significant spatial correlations between speeds on roads that are up to twenty links apart, in our congested road network. Chapter 4 extends chapter 2 and incorporates the findings of chapter 3 into a modelling framework for VRP. The STSP with correlated costs is defined as a potentially useful variant of VRP that considers the costs in the STSP to be stochastic random variables with correlation. The problem is then formulated as a single-objective problem with eight different integer programming formulations presented. It is then shown how to account for three different correlation structures in each of the formulations. Chapter 5 considers the VRPs with time windows and shows how most of the exact algorithms proposed for them, might not be applicable if the problem is defined on the original road network graph due to the underlying assumption of these algorithms that the cheapest path between a pair of customers is the same as the quickest path. This assumption is not always true on a real road network. Instead some alternative pricing routines are proposed that can solve the problem directly on the original graph

    A Two-Stage Approach for Routing Multiple Unmanned Aerial Vehicles with Stochastic Fuel Consumption

    Full text link
    The past decade has seen a substantial increase in the use of small unmanned aerial vehicles (UAVs) in both civil and military applications. This article addresses an important aspect of refueling in the context of routing multiple small UAVs to complete a surveillance or data collection mission. Specifically, this article formulates a multiple-UAV routing problem with the refueling constraint of minimizing the overall fuel consumption for all of the vehicles as a two-stage stochastic optimization problem with uncertainty associated with the fuel consumption of each vehicle. The two-stage model allows for the application of sample average approximation (SAA). Although the SAA solution asymptotically converges to the optimal solution for the two-stage model, the SAA run time can be prohibitive for medium- and large-scale test instances. Hence, we develop a tabu-search-based heuristic that exploits the model structure while considering the uncertainty in fuel consumption. Extensive computational experiments corroborate the benefits of the two-stage model compared to a deterministic model and the effectiveness of the heuristic for obtaining high-quality solutions.Comment: 18 page

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front
    • …
    corecore