
 

  

Title Page 

Optimal Design and Operation of WHO-EPI Vaccine Distribution Chains 

 

 

 

 

 

 

 

by 

 

Yuwen Yang 

 

Bachelor of Engineering, Beihang University, 2013 

Master of Science, University of Pittsburgh, 2016 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

 

Swanson School of Engineering in partial fulfillment 

  

of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/334609372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

Committee Page 

UNIVERSITY OF PITTSBURGH 

 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

Yuwen Yang 

 

 

It was defended on 

 

July 15, 2020 

 

and approved by 

 

Hoda Bidkhori, Ph.D., Assistant Professor, Department of Industrial Engineering  

Bo Zeng, Ph.D., Associate Professor, Department of Industrial Engineering 

Jennifer Shang, Ph.D., Professor, Joseph M. Katz Graduate School of Business 

Dissertation Director: Jayant Rajgopal, Ph.D., Professor, Department of Industrial Engineering 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Yuwen Yang 

 

2020 

 

 

 

 



 iv 

Abstract 

Optimal Design and Operation of WHO-EPI Vaccine Distribution Chains 

 

Yuwen Yang, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

Vaccination has been proven to be the most effective method to prevent infectious diseases 

and in 1974 the World Health Organization (WHO) established the Expanded Programme on 

Immunization (EPI) to provide universal access to all important vaccines for all children. However, 

there are still roughly 20 million infants worldwide who lack access to routine immunization 

services and remain at risk, and millions of additional deaths could be avoided if global vaccination 

coverage could improve. The broad goal of this research is to optimize the design and operation 

of the WHO-EPI vaccine distribution chain in underserved low- and middle-income countries. We 

first formulate a network design problem for a general WHO-EPI vaccine distribution network as 

a mixed integer program (MIP). We then present three algorithms for typical problems that are too 

large to be solved using commercial MIP software. We test the algorithms using data derived from 

four different countries in sub-Saharan Africa and show that with our final algorithm, high-quality 

solutions are obtained for even the largest problems within a few minutes. Next, we discuss the 

problem of outreach to remote population centers when direct clinic service is unavailable. We 

formulate the problem as an MIP that is a combination of a set covering problem and a vehicle 

routing problem and then incorporate uncertainty to study the robustness of the worst-case 

solutions and the value of information. Finally, we study a variation of the outreach problem that 

combines set covering and the traveling salesmen problem and provides an MIP formulation. 

Motivated by applications where the optimal policy needs to be updated repetitively and where 

solving this via MIP can be computationally expensive, we propose a machine learning approach 



 v 

to effectively learn from historical optimal solutions. We also present a case study and show that 

while the proposed mechanism generates high quality solution repeatedly for problems that 

resemble instances in the training set, it does not generalize as well on a different set of problems. 

These mixed results indicate that there are promising research opportunities to use machine 

learning to achieve tractability and scalability. 
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1.0 Introduction 

The broad goal of this dissertation is to optimize the design and operation of WHO-EPI 

vaccine distribution networks. The dissertation has three specific problems that it addresses. First, 

we develop a general model for designing the network that is applicable across all countries and 

propose mixed integer programming based algorithms for optimizing the model. Second, we 

address the issue of optimal outreach policies when resources are limited and direct clinic service 

is unavailable. Third, we discuss a variation of the outreach problem as a combination of the Set 

Covering Problem and the Traveling Salesmen Problem, and we propose and study an exploratory 

learning-based mechanism for solving this combined problem.  

1.1 Motivation and Research Objective 

Vaccines are biological preparations that can provide active acquired immunity against 

infections. Typically, a body's immune system is active against a certain disease once the immune 

system recognizes the disease-causing microorganism as a threat and tries to destroy it. To mimic 

a specific microorganism, a vaccine usually contains an agent that is made from the 

microorganism’s toxins, surface protein, or its weakened or killed forms. The agent can thus 

stimulate the immune system to recognize the agent and then recognize this microorganism once 

it encounters it at a later time. The body is then equipped with this active acquired immunity to 

destroy the disease-causing microorganism and prevent the infection. Vaccines can be classified 

as prophylactic vaccines that can prevent or ameliorate the effect of a natural pathogen, or as 
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therapeutic vaccines such as the potential future cancer vaccines (Bol et al., 2016; Frazer, 2014). 

According to the World Health Organization (WHO), the current suite of licensed vaccines (e.g., 

Pentavalent, Oral Polio, Yellow Fever, Tetanus Toxoid) can provide immunity to over twenty-five 

preventable infections (World Health Organization, 2017).  

The term “vaccination” refers to the administration of vaccines. The words vaccine and 

vaccination are derived from Variolae vaccinae (smallpox of the cow). This term was first devised 

by Edward Jenner to denote cowpox in his famous Inquiry that was published 200 years ago in 

1798 (Baxby, 1999). In Inquiry into the Variolae vaccinae known as the Cow Pox, he introduced 

the protective effect of cowpox to prevent against smallpox. In honor of Jenner, the term has since 

been extended to refer to all protective inoculation. 

Vaccination of children includes routine immunization and supplemental immunization. 

Routine immunization is prescribed according to the national immunization schedule and WHO 

guidelines. It is administered based on the individual vaccination history of each child. Once a 

child has received all routine immunizations, he/she is counted as a fully immunized individual, 

and this activity must be recorded on his/her immunization cards and register. General, routine 

immunization targets people from infants after birth to children five years of age. On the other 

hand, supplemental immunization works as a supplement to routine immunization by providing 

additional opportunities to develop the immune system. Supplemental immunization is generally 

implemented in the form of targeted campaigns when there are outbreaks of diseases. The schedule 

and policies of supplemental immunization are often determined based on estimates of future 

disease occurrence (World Health Organization, 2020b).  

Vaccination has been widely studied and proven to be the most effective method to prevent 

illness, disability and death from infections such as HPV (Chang et al., 2009; Fu et al., 2014), 
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chicken pox (Liesegang, 2009), influenza (Fiore, Bridges, & Cox, 2009; Wolff, 2020), cervical 

cancer, diphtheria, hepatitis B, measles, mumps, pertussis (whooping cough), pneumonia, polio, 

rabies (Fooks, Banyard, & Ertl, 2019; O’Brien & Nolan, 2019), rotavirus diarrhea, rubella and 

tetanus. More recently, unprecedented effort has been exerted toward COVID-19, Ebola, Measles, 

and Polio vaccines (World Health Organization, 2020a). In 2018, the world immunization 

coverage rate for 3 doses of diphtheria-tetanus-pertussis (DTP3) vaccine was 86% (116.5 million 

infants), and 129 countries had reached 90% DTP3 vaccine coverage. This has averted an 

estimated 2 to 3 million deaths in every single year.  

However, millions of additional deaths could be avoided if global vaccination coverage 

could improve, and it is estimated that there are still 19.4 million infants worldwide who lack 

access to routine immunization services and remain at risk for vaccine-preventable diseases, even 

in the 21st century (World Health Organization, 2019c). This problem is especially pronounced in 

low and middle-income countries (LMICs) (Gavi, 2019). Among all these children worldwide, 

roughly 60% are in only 10 countries. The reasons responsible for the low vaccination rates in 

these countries are varied and include limited resources, a deficiency of scientific health systems 

management, competing health priorities, and inadequate monitoring and supervision (de Oliveira, 

Martinez, & Rocha, 2014; Shen, Fields, & McQuestion, 2014; Yadav, et al., 2014). Even when 

vaccination services are available, there are cases where patients sometimes refuse vaccines, or 

delay getting vaccinated based upon complacency, convenience and confidence (Hotez, Nuzhath, 

& Colwell, 2020; Jarrett et al., 2015; MacDonald et al., 2015). 

To address this problem, the WHO established the Expanded Programme on Immunization 

(EPI) in 1974 with the goal of providing universal access to all important vaccines for all children, 

with a special focus on underserved developing countries (Bland & Clements, 1998). The program 
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was then expanded with the formation of the Global Alliance for Vaccines and Immunization 

(Gavi) in 2000 to accelerate access to new vaccines in the poorest countries. EPI and Gavi together 

have successful contributed to saving millions of lives worldwide by reducing deaths and even 

eliminating some diseases like measles in high-risk countries (Gavi, 2020; World Health 

Organization, 2013).    

With the help of international organizations and new technological developments, many 

vaccines can now be produced at low-cost and in mass quantities. However, shipping, storing and 

delivering vaccines in a cost-efficient fashion while ensuring that vaccines are reliably available 

to end-users remains a major challenge. The primary characteristic that is responsible for the 

relatively high cost of vaccine distribution is the fact that most vaccines require narrowly defined 

temperatures of between 2 and 8 C during storage and transportation. This vaccine supply chain 

is also referred to as a cold chain. Many of the challenges to get vaccines delivered to children 

arise from the poor operation and management of the vaccine supply chain; in particular, poor 

infrastructure, inefficient assignment and use of vaccine storage and transportation devices, a rigid 

distribution structure and constraints, and mandated replenishment policy are all factors (Acosta, 

Hendrickx, & McKune, 2019; Yadav et al., 2014; Zaffran, 1996).  

In particular, in many LMICs vaccines are usually distributed via a hierarchical legacy 

medical network, with locations and shipping routes of this network often determined by political 

boundaries and history. The overarching goal is to ensure that every child has access to vaccines, 

and along with this, in most LMICs the objective is to design a system that can be operated without 

the need for sophisticated logistics personnel and at minimum cost. 

This fact motivates our study to propose an improved vaccine distribution chain. As an 

alternative to the current structure, the proposed vaccine distribution chains could be separated 
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from the current legacy health network, while using some appropriate subset of these facilities and 

with vaccine flows along routes that differ from the current ones. However, the operation of the 

chain must not deviate from established WHO guidelines and needs to be simple because of the 

relative lack of sophisticated vaccine management abilities in LMICs. 

In particular, this dissertation first focuses on redesigning a complete vaccine network in 

Chapter 2. The main consideration in redesigning the network includes decisions on the choice of 

the best set of intermediate hubs from the set of current distribution center locations, obtaining 

optimal replenish frequencies for each hub, deciding on hub-to-hub connections and the clinic 

allocations to each hub, determining the actual vaccine flow along all connections, and lastly, 

selecting the types of storage and transportation devices to use at each location and along each 

flow path. The re-designed network is not required to follow the four- (or sometimes, three- or 

five-) tiered hierarchical structure that is currently the norm, nor are they required to follow the 

replenishment policy currently associated with a particular tier. We present a mixed-integer 

optimization model and develop methods to get solutions for large scale problems while 

conducting numerical tests using real data from different LMICs to study the performance of the 

algorithms. Because of the computational expense and tractability issues of the optimization 

model, Chapter 3 further present a new algorithm for typical problems that are too large to be 

solved using commercial MIP software. We test the algorithm using data derived from four 

different LMICs in sub-Saharan Africa and show that the algorithm is able to obtain high-quality 

solutions for even the largest problems, within a few minutes. 

In addition to the suboptimal structure and operations of a vaccine distribution network, 

another situation that could cause low vaccination rates is when resources are limited and there are 

population centers without access to direct clinic services. In this case, an approach known as 
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outreach is typically utilized where a team of clinicians and support personnel is sent from an 

existing clinic to visit one or more of these locations to vaccinate residents there and at other such 

locations their immediate surrounding area. In Chapter 4 we focus on the problem of outreach. We 

model the problem of optimally designing outreach efforts as a mixed integer program that is a 

combination of a set covering problem and a vehicle routing problem. In addition, because 

elements relevant to outreach (such as populations and road conditions) are often unstable and 

unpredictable, we incorporate uncertainty to study the robustness of the worst-case solutions and 

the related issue of the value of information. 

Finally in Chapter 5, we looked at the outreach problem defined in Chapter 4 from a 

different viewpoint and reformulate it as a combination of a Set Covering Problem and a Traveling 

Salesmen Problem. The Traveling Salesman Problem itself is one of the most intensively studied 

combinatorial optimization problems due both to its range of real-world applications and its 

computational complexity. When combined with the Set Covering Problem, it raises even more 

issues related to tractability and scalability. We provided a mixed integer programming 

formulation to solve the problem. In many applications where the optimal policy needs to be 

updated on a regular basis, repetitively solving this via MIP can be computationally expensive. 

We therefore explore a machine learning approach to effectively deal with this problem by 

providing an opportunity to learn from historical optimal solutions that are derived from the MIP 

formulation. We also present a case study using the World Health Organization’s vaccine 

distribution chain, and provided numerical results with data derived from four LMICs in sub-

Saharan Africa. 
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 Related Prior Work 

There has been some prior research in exploring and improving vaccine distribution via 

mathematical programming. As early as 1978, Longini et al. developed a deterministic model to 

describe a single wave of influenza A. The model was then used to generate optimal vaccine 

distribution patterns among various age groups when vaccine is limited (Longini, Ackerman, & 

Elveback, 1978). In 1999, Jacobson et al. optimized the procurement of children’s immunization 

vaccines via an integer programming model that minimized the total cost of clinic visits, vaccine 

purchase and injection costs to fully immunize a child (Jacobson el al., 1999). In 2002, Kaplan et 

al. used an optimization model to estimate the impact of a smallpox bioterrorist attack in a large 

U.S. urban area and compared various vaccination policies to alleviate the impact (Kaplan, Craft, 

& Wein, 2002). Kaplan and Merson proposed a policy that considers both efficiency and equity in 

allocating federal resources to prevent against HIV (Kaplan & Merson, 2002). Ferguson et al. 

reviewed the use of mathematical models in smallpox planning within the context of broader 

epidemiology (Ferguson et al., 2003). Hill and Longini developed a method to generate policies 

which minimize the quantity of vaccine allocated in order to prevent an epidemic, with 

heterogeneous subgroups (Hill & Longini, 2003). Earnshaw and Hick utilized a linear 

programming framework to generate an optimal policy to allocate HIV prevention resources by 

maximizing the population averted from HIV transmission infections (Earnshaw et al., 2007).  

Besides these mathematical modeling approaches, recent research on related topics has 

used other approaches such as lean, simulation and Markov decision process (MDP) models. 

Rajgopal et al. developed a spreadsheet model to evaluate the potential impact of several ordering 

policies at the clinic level in a LMIC. The model identified the optimal policy and correct number 

of routine vaccines that a health clinic should order (Rajgopal et al., 2011). Norman et al. designed 
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a spreadsheet model to evaluate the impact of different packing schemes and utilized this model 

to compare the current packing scheme to a proposed modular packing scheme (Norman et al., 

2015). To improve and simplify the vaccine inventory system, Lim et al. proposed a set of 

alternative ordering policies based on lean related concepts that have been used for long in the 

manufacturing industry (Lim, Norman, & Rajgopal, 2017). The analyses showed that the proposed 

polices only require a very modest increase in fixed storage and transport requirements. Several 

comprehensive discrete event simulation models have been presented to describe vaccine networks 

with consideration of vaccines, storage devices, and transport mechanisms. These experiments 

have examined various issues such as the impact of switching from 10-dose measles vial size to 

smaller doses (Assi et al., 2011), changing the current four-tier (central, regional, district, and 

integrated) to a modified three-tier structure (Assi et al., 2013), and reducing open-vial waste 

(Heaton et al., 2017; Lee, Assi, Rookkapan, Wateska, et al., 2011; Lee, Assi, Rookkapan, Connor, 

et al., 2011; Lee et al., 2010). More recently, Mofrad et al. formulated a Markov decision process 

model that determines the optimal time to conserve vials according to the current vial inventory, 

time of day, and the remaining clinic-days until the next replenishment. The authors minimize 

open-vial waste while administering sufficient vaccinations and then present a practical heuristic 

(Mofrad et al., 2014). Building on this result, Mofrad et al. evaluated several operating strategies 

to maximize coverage while controlling open vial waste and comparaed optimal and heuristic 

policies in the presence of random vial yield (Mofrad et al., 2016). A easy-to-implement decision 

support tool was also generated and made avialible online. 

Mathematical models that address the EPI vaccine distribution chain are relatively few in 

number. Lee et al. presented a mathematical model in 2012 to optimize the existing vaccine 

distribution network for Niger when considering new vaccines (Lee et al., 2012). Chen et al. 
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developed and adapted a planning model for typical vaccine distribution with an expanded 

discussion of several issues (Chen et al., 2014). Lim et al. presented four quantitative models to 

determine optimal outreach locations in order to maximize coverage rate and contrasted the models 

using real world data derived from the state of Bihar in India (Lim et al., 2016). Lim also proposed 

an initial mixed integer programming model to address the problem of designing an optimal EPI 

vaccine distribution network (Lim, Norman, & Rajgopal, 2019). Vaccine manufacturers and 

vaccine supply chain policy makers can also consult these comprehensive studies and review 

(Chen, 2012; De Boeck, Decouttere, & Vandaele, 2019; Lim, 2016; Mofrad, 2016) to examine 

optimal vaccine network structures and operational decisions such as order time, order size and 

production vial size. We will discuss some of these studies in detail and compare them with our 

approaches in the literature review sections of each chapter. 

1.2 Contribution 

This dissertation aims to provide additional mathematical models to analyze the issues 

raised above and develops algorithms to solve these problems. Our major contributions include: 

• A general mathematical programming formulation for the design of a WHO-EPI vaccine 

distribution network in any LMIC, with the goal of minimizing costs while providing the 

opportunity for universal coverage.  

• A column generation based algorithm to solve the MIP model.  

• An iterative heuristic that cycles between solving restrictions of the original problem and the 

associated numerical experiments to show that it can find very good solutions in reasonable 

time for larger problems that are not directly solvable. 
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• A novel algorithm for extremely large problems, that solves a sequence of increasingly larger 

MIP problems and uses insights into the problem structure and principles from cluster analysis 

to limit the size of each MIP in the sequence, along with related numerical tests using data 

derived from several different countries in sub-Saharan Africa to illustrate that the algorithm 

works very well with solution times that scale up in a roughly linear fashion. 

• A mathematical programming formulation for the problem of optimally designing outreach 

efforts as a mixed integer program that is a combination of a set covering problem and a 

vehicle routing problem.  

• Incorporation of uncertainty to study the robustness of the worst-case solutions and the related 

issue of the value of information. 

• The study of a combined Set Covering and Traveling Salesman Problem and a mixed integer 

programming formulation to solve the problem. 

• Design of a machine learning based mechanism to effectively deal with the combined Set 

Covering and Traveling Salesman Problem by learning from historical optimal solutions that 

are derived from the MIP formulation. This methodology aims at providing one of the early 

approaches for an end-to-end learning algorithm for a particular combinatorial optimization 

problem via deep learning. 

• A case study using the World Health Organization’s vaccine distribution chain and numerical 

results with data derived from four countries in sub-Saharan Africa for the machine learning 

based mechanism to show that it is able to generate high quality results repeatedly for 

problems that resemble instances in the training set. 
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• Encouraging proof-of-concept results and definition of new research opportunities to 

generalize the mechanism to supplement the current exploratory approaches of incorporating 

machine learning with optimization. 
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2.0 Optimizing Vaccine Distribution Networks in Low and Middle-income Countries 

In this chapter, we formulate a mathematical programming model for the design of a typical 

WHO-EPI network with the goal of minimizing costs while providing the opportunity for universal 

coverage. Since it is only possible to solve small versions of the model to optimality, we develop 

a column generation algorithm to solve the MIP model, and an iterative heuristic that cycles 

between solving restrictions of the original problem and show that that this heuristic can find very 

good solutions in reasonable time for larger problems that are not directly solvable. A significant 

portion of the remainder of Chapter 2 appears in (Yang & Rajgopal, 2020a). 

2.1 Problem Development and Literature Review 

In most LMICs, vaccines are distributed via a four-tier hierarchical legacy medical network 

such as the one depicted in Figure 1. Typically, EPI vaccines are purchased in bulk and shipped in 

by air once or twice a year, then stored in a national distribution center in the capital (or other large 

city). Required vaccine volumes are transported every three months to regional distribution centers 

using a specialized vehicle such as a large cold truck. Each regional distribution center delivers 

vaccines to its surrounding district centers every month using a smaller cold truck or more 

commonly, 4 × 4 trucks with cold storage boxes. Finally, the vaccines are transported from district 

centers in a vaccine carrier/cooler using locally available means of transportation such as trucks, 

cars, motorbikes, bicycles, boats, or sometimes even by foot, to local clinics where infants, 

children and pregnant women come to receive vaccinations. This last step is typically, a “pull” 
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operation with monthly pickup by the clinic. A characteristic of EPI vaccines is that they must be 

stored/transported while maintaining appropriate temperatures (2–8 °C), so that this vaccine 

distribution chain is often referred to as a cold chain. 

 

 

Figure 1 A typical four tier legacy medical network 

 

To develop an optimal vaccine distribution network design along with optimal operational 

policies for a country that also follow WHO guidelines, we separate this from the existing legacy 

medical supply chain of which it is typically a component, and model the cold chain independently. 

Our objective is to minimize the overall cost of transportation, facilities and storage over the whole 

network, while guaranteeing universal access and following WHO operational guidelines. In the 

model, vaccines flow from the national center (source node) to clinics (sink nodes), usually via 

one or more intermediate hubs (transshipment nodes). Although multiple (usually 6 to 8) vaccines 

are handled in the cold chain, transportation and storage capacities are only affected by the overall 

space required. Therefore, we only consider the total volume of vaccines shipped or stored. Hub 

locations are chosen from the current locations of legacy intermediate nodes (regional or district 

distribution center), and while we retain the choices of monthly or quarterly replenishments as per 

WHO guidelines, we allow a hub to freely select either option. The model determines the clinics 

assigned to each hub, the national center-to-hub and hub-to-hub connections, the actual vaccine 
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flows on these connections, and the types of storage and transportation devices to be deployed at 

each location and for each flow. 

We make the following assumptions to model the EPI vaccine network: 

(1) The network should be capable of meeting all demand that can arise at each clinic, and this 

demand is determined by the estimated population that the particular clinic serves. 

(2) The locations of the clinics and the national distribution center are fixed but we can choose 

hub distribution centers freely from the current set of regional and district centers. 

(3) Each clinic is assigned to a hub for its vaccines (although clinics close to the national center 

could be directly supplied by it), and replenished once a month. Each hub is supplied by the 

national center or by another hub. 

(4) The national center is the root node of the network and all other nodes (hubs and clinics) 

have exactly one inbound arc. 

(5) As per WHO guidelines, a hub is replenished either quarterly or monthly. 

(6) Every open facility has an appropriately sized storage device, to be selected from the WHO's 

pre-qualified list of devices. 

(7) As per WHO guidelines, there is a 25% safety buffer at each clinic location so that the total 

demand volume is inflated by this factor. 

We now discuss these assumptions. First, universal access is a primary goal of the WHO 

and our model's constraints explicitly capture this. Second, our model is based on using the existing 

facilities for hubs as opposed to building new ones. Third, in most LMICs, operational simplicity 

is a driving requirement because resources are very constrained and it can be a challenge to find 

qualified logisticians and trained personnel who can deal with multiple suppliers and different 

types of equipment. We therefore retain the current approach of restricting each facility location 
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to having a single supplier, and a single type of storage device that is selected from the WHO's 

pre-qualified list (World Health Organization, 2009). Finally, for the same reason of operational 

ease, we do not attempt to determine optimal safety buffers at clinics or reorder points by location; 

hub locations are restricted to one of two replenishment intervals (monthly or quarterly) and all 

clinics have the same 25% buffer inventory levels as per WHO guidelines. 

Several variations of this class of network design problems have been addressed by the 

operations research community, including the p-median problem, the uncapacitated and 

capacitated facility location problems (Melo, Nickel, & Saldanha-da-Gama, 2009; Mirchandani, 

1990; Şahin & Süral, 2007) and extensions to include transportation cost (Geoffrion & Graves, 

1974). The facility location problem is often combined with the vehicle routing problem and 

typically uses heuristics (Wu, Low, & Bai, 2002). It has also been extended with consideration of 

risk pooling (Shen, Coullard, & Daskin, 2003) and facility failures (Snyder & Daskin, 2005), with 

Lagrangian relaxation being a common solution strategy (Daskin, Snyder, & Berger, 2005). Klose 

and Drexl (Klose & Drexl, 2005) review several facility location models for distribution system 

design. 

As an extension to these facility location problems, the hub selection problem considers 

the situation where one or more nodes are designated as facilities that serve as consolidation, 

switching or transshipment points and connect to origin/destination nodes. It has received attention 

in applications ranging from airlines and emergency services to intermodal logistics and postal 

delivery services. Interested readers are referred to the surveys on hub location problems presented 

in (Campbell & O’Kelly, 2012; Farahani et al., 2013). Models for these problems address a variety 

of objectives and combinations of various problem environments (Farahani et al., 2013). These 

include the domain of the hub nodes (all network nodes, discrete subset or anywhere along a 
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continuous plane), the number of nodes to be designated as hubs (pre-specified vs. unspecified), 

hub capacity (limited vs. unlimited), cost of locating hubs (none, fixed or variable), allocation of 

non-hub nodes to hubs (single vs. multiple) and allocation costs (none, fixed or variable). In 

particular, our formulation chooses an unspecified number of hubs from a discrete subset of 

capacitated hub locations that incur fixed costs, and each non-hub location is assigned to a single 

hub, with allocation costs that are exogenous to the model. 

In studying the literature for exact algorithms to find the optimum solution to models 

similar to ours (capacitated, single allocation, p-hubs; albeit with differing objectives), approaches 

include bi-criteria integer linear programming (Costa, Captivo, & Clímaco, 2008), mixed integer 

programming (Correia, Nickel, & Saldanha-da-Gama, 2010; Kratica et al., 2011), generalized 

Benders’ decomposition (de Camargo & Miranda, 2012), and fuzzy integer linear programming 

(Taghipourian et al., 2012). The largest problem size solved is reported as having “up to 10,000 

integer variables” (de Camargo & Miranda, 2012). Given the limits to the size of the problems that 

can be solved optimally, many others have resorted either to metaheuristics (Ernst & 

Krishnamoorthy, 1999), heuristics based on Lagrangean relaxation or Benders’ decomposition 

(Contreras, Díaz, & Fernández, 2009; de Camargo, de Miranda, & Ferreira, 2011), or heuristics 

designed for specific formulations (Chen, 2008). 

A unique aspect of our model is that replenishment frequencies as well as capacities at hubs 

and for transportation along arcs are limited to multiple discrete options. This greatly increases the 

number of binary variables to well over 10,000 even for medium sized problems, and while most 

of the prior work looks at under 20 hubs, our formulation for an entire country has a number of 

hubs as well as a total number of binary variables that are an order of magnitude higher. Thus, 

solving full-country problems using an exact approach is not a viable option. Results from our 
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initial experiments with using Lagrangean relaxation were also not encouraging. Therefore, we 

develop approaches that are designed for the application domain and the specific class of problems 

that we study. These and related computational issues are discussed in detail in Sections 2.5 and 

Section 2.6. 

In terms of work specific to vaccine distribution networks, Chen et al. (Chen et al., 2014) 

were the first to model the network in 2014 as a planning model to maximize the number of 

children being fully immunized under current network capacity; they then extended it to the case 

where capacity expansion is allowed. However, this work addresses operations in an existing 

network as opposed to its design. In 2019, Lim et al. (Lim et al., 2019) proposed a model to design 

a minimum cost vaccine distribution network, and utilized an evolutionary strategy to solve this 

problem. Their model assumes that deliveries to hubs are coordinated and done using vehicle loops 

and fixes the storage devices; thus, multiple trips might have to be made along a route if the volume 

cannot be handled in a single trip. 

In Section 2.2 we present a mixed integer programming model that draws on the initial 

work by Lim et al. (Lim et al., 2019) but allows for flexibility in replenishment, allows storage 

devices to be selected in the required size, does not require delivery coordination during 

replenishment and ensures that all deliveries to a node are made in a single trip as is typically the 

case in practice. We then provide a column generation algorithm to solve the problem in Section 

2.3 and also develop a mathematical programming based iterative heuristic that cycles between 

solving restrictions of the original problem in Section 2.4; numerical results for this are provided 

in Section 2.5. As discuss in Section 2.6, we show that it can serve as a simple alternative to solving 

the formulation directly when a good solution is required quickly. 
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2.2 Formulation 

We now develop our model formulation. 

Index sets: 

𝑁: National distribution center ={0} 

𝐻: Potential hub distribution centers = {1, 2… ℎ} 

𝐶: Local clinics = {ℎ+1… 𝑛}, where 𝑛 = |𝐻| + |𝐶| 

𝑉: Vertices: 𝑁 ∪ 𝐻 ∪ 𝐶 

𝐴: Arcs:(𝑖, 𝑗)|𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶; 𝑖 ≠ 𝑗 

𝑇: Transportation vehicles 

𝑅: Storage devices 

𝐹: Replenishment frequency: {quarterly (=0), monthly (=1)}  

Parameters:  

𝑐𝑖𝑗𝑡
𝑇 : Transportation cost per km of vehicle type 𝑡  between locations 𝑖  and 𝑗  ; (𝑖, 𝑗) ∈

𝐴; 𝑡 ∈ 𝑇 

𝑐𝑗𝑟
𝑆 : Annual facility cost when facility j is open and uses storage device 𝑟; 𝑟 ∈ 𝑅 

𝑝𝑡
𝑇: Transportation capacity per trip of vehicle 𝑡; 𝑡 ∈ 𝑇 

𝑝𝑟
𝑆: Storage capacity of device 𝑟; 𝑟 ∈ 𝑅 

𝑔𝑓: Annual number of replenishments; 𝑓 ∈ 𝐹 (𝑔𝑓 = 4 if f = 0; 𝑔𝑓 = 12 if f = 1) 

𝑑𝑖𝑗: Driving distance (km) between location 𝑖 and location 𝑗; (𝑖, 𝑗) ∈ 𝐴 

𝑏𝑗: Annual demand volume at location 𝑗, 𝑗 ∈ 𝐶 
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Variables:  

𝑈𝑖𝑗𝑡𝑓 ∈ {0,1}: 1 if vaccines flow from location 𝑖 to location 𝑗 using vehicle type 𝑡 ∈ 𝑇 

and with replenishment frequency 𝑓 ∈ 𝐹, 0 otherwise; 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶 

𝑊𝑖𝑟𝑓 ∈ {0,1}: 1 if hub location 𝑖 ∈ 𝐻 is open and uses storage device of type 𝑟 ∈ 𝑅 and 

replenishment frequency 𝑓 ∈ 𝐹, 0 otherwise 

𝑋𝑖𝑗: Annual flow (volume) of vaccines from location 𝑖 to location 𝑗; 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶 

 

The mixed integer program for designing the optimal network may then be formulated as 

follows: 

Program MIP-1: 

 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑗𝑟
𝑆 𝑊𝑗𝑟𝑓 +

𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻

∑ ∑ ∑ 2𝑐𝑖𝑗𝑡
𝑇 𝑔𝑓𝑑𝑖𝑗𝑈𝑖𝑗𝑡𝑓 

𝑓∈𝐹𝑡∈𝑇(𝑖,𝑗)∈𝐴

 (2-1)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

 ∑ ∑ 𝑊𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅

≤ 1  𝑗 ∈ 𝐻 (2-2)  

 ∑ ∑ 𝑈𝑖𝑗𝑡1

𝑡∈𝑇𝑖∈𝑁∪𝐻

= 1 𝑗 ∈ 𝐶  (2-3)  

∑ ∑ ∑ 𝑈𝑖𝑗𝑡𝑓  

𝑓∈𝐹𝑡∈𝑇𝑖∈𝑁∪𝐻

≤ 1 𝑗 ∈ 𝐻  (2-4)  

∑ 𝑊𝑗𝑟𝑓

𝑟∈𝑅

− ∑ ∑ 𝑈𝑖𝑗𝑡𝑓  

𝑡∈𝑇𝑖∈𝑁∪𝐻

= 0  𝑗 ∈ 𝐻, 𝑓 ∈ 𝐹  (2-5)  

∑ 𝑋𝑖𝑗

𝑖∈𝑁∪𝐻

− ∑ 𝑋𝑗𝑘

𝑘∈𝐻∪𝐶

= 0 𝑗 ∈ 𝐻 (2-6)  

∑ 𝑋𝑖𝑗

𝑖∈𝑁∪𝐻

= 𝑏𝑗 𝑗 ∈ 𝐶 (2-7)  
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∑ ∑ 𝑝𝑟
𝑆𝑊𝑗𝑟𝑓 − 

𝑓∈𝐹 𝑟∈𝑅

(1/𝑔𝑓) ∑ 𝑋𝑖𝑗

𝑖∈𝑁∪𝐻

 ≥ 0 𝑗 ∈ 𝐻 (2-8)  

∑ ∑ 𝑝𝑡
𝑇𝑈𝑖𝑗𝑡𝑓

𝑓∈𝐹𝑡∈𝑇

− (1/𝑔𝑓)𝑋𝑖𝑗 ≥ 0 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶 (2-9)  

𝑋𝑖𝑗 ≥ 0 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶 (2-10)  

𝑊𝑗𝑟𝑓 ∈ {0, 1} 𝑗 ∈ 𝐻, 𝑟 ∈ 𝑅, 𝑓 ∈ 𝐹 (2-11)  

𝑈𝑖𝑗𝑡𝑓 ∈ {0, 1} 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶, 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (2-12)  

 

The objective function (2-1) has two components: annual hub facility costs and total annual 

round-trip transportation costs. Constraints (2-2) ensure that every open hub  𝑗  has a single 

replenishment frequency and a single type of storage device, while Constraints (2-3) ensure that 

each clinic has exactly one inflow and a monthly replenishment frequency. Constraints (2-4) 

ensure that each hub has at most one inflow with unique associated replenishment frequency and 

transport device. Constraints (2-5) ensure there is no flow associated with a hub that is not open 

and Constraints (2-6) and (2-7) are standard flow balance equations at hubs and clinics. Constraints 

(2-8) ensure that in each hub there is a sufficiently large storage device to store the vaccines 

required within each replenishment interval. Finally, Constraints (2-9) ensure that a transportation 

mode with sufficient capacity is selected to carry the required volume of vaccines for 

replenishment. Constraints (2-10) – (2-12) are self-explanatory. 

 Limitations with Solving MIP-1 

To explore the solution of the model described by MIP-1 we tested it with a standard off-

the-shelf mixed integer programming solver (IBM ILOG CPLEX 12.6) on a 3.20 GHz processor 
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with 8 GB of memory. Problems of various sizes were generated using data that were derived from 

information we could access for four different countries in sub-Saharan Africa. While all of these 

countries currently have a similar four-tiered distribution architecture, they have significantly 

different demographic characteristics (size, population density, etc.) and also differ in the number 

of potential hub locations. In general, the effort required for a problem depends largely on the total 

number of nodes as well as potential hub locations. However, it also depends on the population 

distribution and the costs, and we were unable to arrive at a systematic way to specify the limits to 

what is solvable. Our numerical tests are described in more detail in Section 2.5, but as a gross 

generalization, only problems with about 200-250 nodes or fewer, and a maximum of 15-20 

potential hub locations can be solved in reasonable time. Most problems for an entire country are 

larger than this. 

A key fact that makes MIP-1 hard to solve is that the model has a large number of 0-1 

decision variables. For example, if we can choose from three types of transport vehicles and four 

types of storage devices (i.e., {|𝑇|=3, |𝑅|=4), Table 1 illustrates the number of decision variables 

in MIP-1. Thus, in order to solve the full problem for one of our instances with 685 nodes and 41 

candidate hubs, we end up with 168,838 integer variables. Even for a mid-sized problem with 100 

nodes and 15 candidate hubs, the number of binary decision variables is close to 10,000. This 

clearly calls for heuristics or other approaches. 

 

Table 1 Number of decision variables in MIP-1 with 𝒏 nodes and 𝒉 potential hubs 

Decision Variables 𝑊𝑗𝑟𝑓 𝑈𝑖𝑗𝑡𝑓  𝑋𝑖𝑗  

Type Integer Integer Continuous 

Number 8ℎ 6ℎ𝑛 ℎ𝑛 
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2.3 A Column Generation Algorithm  

Our first approach was to develop a column generation algorithm to solve the MIP-1 

formulation in Section 2.2, which we now describe. Consider the variable 𝑊𝑗𝑟𝑓. In any feasible 

solution we will have some subset of these variables being equal to 1, and for each hub location 

𝑗𝐻 that is selected (i.e., 𝑊𝑗.. = 1) we will have an associated value of 𝑟𝑅 and an associated 

replenishment frequency 𝑓𝐹. We will call any such solution an enumeration. Let us define the 

following in addition: 

Index sets: 

𝐾: All Possible Enumerations 

Parameters: 

𝑎𝑗𝑟𝑓
𝑘 : Indicator parameter that is 1 if enumeration 𝑘  has hub 𝑗  being open along with 

storage device 𝑟 and replenishment frequency 𝑓; 0 otherwise.  

Variables: 

𝑉𝑘: 1 if enumeration 𝑘𝐾 is chosen; 0 otherwise 

 

Note that 𝑎𝑗𝑟𝑓
𝑘  satisfies the following conditions for an enumeration 𝑘:  ∑ ∑ 𝑎𝑗𝑟𝑓

𝑘
𝑓∈𝐹𝑟∈𝑅 ≤

1 for 𝑗 ∈ 𝐻. The condition states that if hub 𝑗 is not open in enumeration 𝑘 we have 𝑎𝑗𝑟𝑓
𝑘 = 0 and 

if hub 𝑗 is open then only one 𝑎𝑗𝑟𝑓
𝑘 =1 across all 𝑟 and 𝑓 for that 𝑗. 

The MIP-1 formulation in Section 2.2 can be then reformulated as: 
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Program MP: 

 

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ 𝑐𝑗𝑟
𝑆 𝑎𝑗𝑟𝑓

𝑘 𝑉𝑘

𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻𝑘∈𝑉

+ ∑ ∑ ∑ 2𝑐𝑖𝑗𝑡
𝑇 𝑔𝑓𝑑𝑖𝑗𝑈𝑖𝑗𝑡𝑓  

𝑓∈𝐹𝑡∈𝑇(𝑖,𝑗)∈𝐸

 (2-13)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ 𝑉𝑘

𝑘∈𝐾

= 1  (2-14)  

∑ ∑ 𝑈𝑖𝑗𝑡1

𝑡∈𝑇𝑖∈𝑁∪𝐻

= 1 𝑗 ∈ 𝐶  (2-15)  

∑ ∑ ∑ 𝑈𝑖𝑗𝑡𝑓  

𝑓∈𝐹𝑡∈𝑇𝑖∈𝑁∪𝐻

≤ 1 
𝑗 ∈ 𝐻  (2-16)  

∑ ∑ 𝑎𝑗𝑟𝑓
𝑘 𝑉𝑘

𝑟∈𝑅𝑘∈𝐾

− ∑ ∑ 𝑈𝑖𝑗𝑡𝑓  

𝑡∈𝑇𝑖∈𝑁∪𝐻

= 0 
𝑗 ∈ 𝐻, 𝑓 ∈ 𝐹 (2-17)  

∑ 𝑋𝑖𝑗

𝑖∈𝑁∪𝐻

− ∑ 𝑋𝑗𝑘

𝑘∈𝐻∪𝐶

= 0 𝑗 ∈ 𝐻 (2-18)  

∑ 𝑋𝑖𝑗

𝑖∈𝑁∪𝐻

= 𝑏𝑗 
𝑗 ∈ 𝐶 (2-19)  

∑ ∑ ∑ 𝑝𝑟
𝑆𝑎𝑗𝑟𝑓

𝑘 𝑉𝑘

𝑓∈𝐹

−

𝑟∈𝑅𝑘∈𝐾

(1/𝑔𝑓) ∑ 𝑋𝑖𝑗

𝑖∈𝑁∪𝐻

 ≥ 0 𝑗 ∈ 𝐻 (2-20)  

∑ ∑ 𝑝𝑡
𝑇𝑈𝑖𝑗𝑡𝑓

𝑓∈𝐹𝑡∈𝑇

− (1/𝑔𝑓)𝑋𝑖𝑗 ≥ 0 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶 (2-21)  

𝑋𝑖𝑗 ≥ 0 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶 (2-22)  

𝑉𝑘 ∈ {0, 1} 𝑘 ∈ 𝐾 (2-23)  

𝑈𝑖𝑗𝑡𝑓 ∈ {0, 1} 𝑖 ∈ 𝑁 ∪ 𝐻, 𝑗 ∈ 𝐻 ∪ 𝐶, 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (2-24)  

 

Here Constraints (2-14) ensure that we pick exactly one enumeration. Constraints (2-17) 

ensure that the inbound frequency of an open hub in the enumeration is identical to its 

replenishment frequency. Constraints (2-20) ensure that for the enumeration selected the 
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associated storage device has enough capacity. The remaining constraints are similar to MIP-1 and 

are self-explanatory.  

Our column generation algorithm (Algorithm 1) is as follows: 

STEP 1: Initialization of LRMP 

Consider the restricted problem where we only consider a subset of all enumerations in 

MP indexed by 𝐾′ ⊂ 𝐾, and with binary constraints (2-23) and (2-24) replaced by their linear 

relaxations. Let us refer to this relaxed restricted problem as LRMP. 

 

STEP 2: Solving PP 

Suppose we solve this linear program LRMP and obtain the optimal vector of simplex 

multipliers. Let us denote the |𝐻| simplex multipliers corresponding to (2-20) by the vector , the 

|𝐻|×|𝐹| multipliers corresponding to (2-17) by the vector , and the multiplier corresponding to 

(2-14) by .  

In order to find a column (location combination) that could improve the current optimal 

solution of LRMP, the following pricing problem PP is solved to find a column with a negative 

reduced cost: 

Variables: 

𝑎𝑗𝑟𝑓: Indicator parameter that is 1 if the new column that corresponds to a new 

enumeration is set to have hub 𝑗  being open along with storage device 𝑟  and 

replenishment frequency 𝑓; 0 otherwise. 
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Program PP: 

 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑗𝑟
𝑆 𝑎𝑗𝑟𝑓 

𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻

− ∑ 𝜋𝑗 ∑ ∑ 𝑝𝑟
𝑆𝑔𝑓𝑎𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻

− ∑ ∑ 
𝑗𝑓

∑ 𝑎𝑗𝑟𝑓

𝑟∈𝑅𝑓∈𝐹𝑗∈𝐻

− 𝜇 

=  𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑗𝑟
𝑆 𝑎𝑗𝑟𝑓 

𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻

− ∑ ∑ ∑ 𝜋𝑗𝑝𝑟
𝑆𝑔𝑓𝑎𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻

− ∑ ∑ ∑
𝑗𝑓

𝑎𝑗𝑟𝑓

𝑟∈𝑅𝑓∈𝐹𝑗∈𝐻

− 𝜇 

=  𝑀𝑖𝑛 ∑ ∑ ∑(𝑐𝑗𝑟
𝑆 − 𝜋𝑗𝑝𝑟

𝑆𝑔𝑓 − 
𝑗𝑓

)𝑎𝑗𝑟𝑓 
𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻

− 𝜇 

(2-25)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

 ∑ ∑ 𝑎𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅

≤ 1  (2-26)  

𝑎𝑗𝑟𝑓 ∈ {0, 1} 𝑗 ∈ 𝐻, 𝑟 ∈ 𝑅, 𝑓 ∈ 𝐹 (2-27)  

 

Note that PP has a closed form solution: for any hub 𝑗𝐻 we pick the device 𝑟𝑅 and 

replenishment frequency 𝑓𝐹 that has the smallest value for the coefficient of 𝑎𝑗𝑟𝑓 in (2-25) and 

if the result of subtracting 𝜇 from it is negative, then we set the value of this 𝑎𝑗𝑟𝑓 = 1, and all other 

𝑎𝑗𝑟𝑓 to zero for that 𝑗. For any 𝑗𝐻 where we cannot find a negative value as above we set all 𝑎𝑗𝑟𝑓 

= 0. If the coefficients minus 𝜇  are all nonnegative for every 𝑗  then there are no promising 

enumerations and we stop. The process may be formalized as shown in Table 2:  
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Table 2 Algorithm 1.1 

Input:  

Parameter 𝑐𝑗𝑟
𝑆 , 𝑝𝑟

𝑆, 𝑔𝑓 

Optimal vector of simplex multipliers 𝜋𝑗, 
𝑗𝑓

, 𝜇 

for 𝑗 = 1, 2…, ℎ: 

Find the smallest 𝑐𝑗𝑟
𝑆 − 𝜋𝑗𝑝𝑟

𝑆𝑔𝑓 − 
𝑗𝑓

 for ∀𝑟, 𝑓  

if 𝑐𝑗𝑟
𝑆 − 𝜋𝑗𝑝𝑟

𝑆𝑔𝑓 − 
𝑗𝑓

− 𝜇 < 0: 

Set 𝑎𝑗𝑟𝑓 = 1 for this particular 𝑟, 𝑓  

Set 𝑎𝑗𝑟𝑓 = 0 for all other 𝑟, 𝑓  

else: 

Set 𝑎𝑗𝑟𝑓 = 0 ∀𝑟, 𝑓 

 

 

STEP 3: Column generation  

Add the column corresponding to the enumeration generated in the previous step and repeat 

it until no enumeration is generated in Step 2, i.e., all ∑ ∑ ∑ (𝑐𝑗𝑟
𝑆 − 𝜋𝑗𝑝𝑟

𝑆𝑔𝑓 −𝑓∈𝐹𝑟∈𝑅𝑗∈𝐻


𝑗𝑓

)𝑎𝑗𝑟𝑓 − 𝜇  0 

 

STEP 4: Obtain integer solution  

We convert the fractional variables into integer variables as follows to obtain a feasible integer 

solution: 

a. If there are multiple 𝑉𝑘 that are greater than 0, choose the largest value to set to 1 and the 

rest to zero. 
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b. For any node j that is closed in the previous step, set 𝑋𝑖𝑗 = 0 for all 𝑖 and link each clinic 

associated with this node to its closest open hub, and choose the smallest feasible device at 

the hub. 

c. For 𝑈𝑖𝑗𝑡𝑓, choose the frequencies specified by the final enumeration 𝑉𝑘 , if this is infeasible 

for vehicle type 𝑡, choose the cheapest feasible vehicle.  

  Limitations of the Column Generation Algorithm 

We explored the performance of the column generation algorithm using examples derived 

from the data we had for four different LMICs as discussed in Section 2.2.1; the results are 

summarized in Table 3. We include results for the 27 test problems that we were able to solve 

optimally using a standard off-the-shelf mixed integer programming solver (IBM ILOG CPLEX 

12.6) on a 3.20 GHz processor with 8 GB of memory. We list the number of potential hub 

locations, the total number of nodes, the number of binary variables, and a label that identifies the 

population in the area as being dense, moderate or sparse. The number of nodes and potential hub 

locations in these problems ranged from 10 to 333, and from 1 to 26, respectively, while the total 

number of binary variables in the full problem ranged from 68 for the smallest problem to 52,156 

for the largest problem we were able to solve optimally. We also list the CPU times for the CPLEX 

solver to find the optimum solution and for Algorithm 1 to converge, along with the percentage 

gap between the cost of the solution from the algorithm and the true optimum cost.  
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Table 3 Computational results for Algorithm 1 

No. Hubs Nodes 0/1 Variables Pop. Density CPU: Optimum  CPU: Algorithm 1 Gap % 

1 1 10 68 sparse <1s <1s 0% 

2 1 18 116 moderate <1s <1s 0% 

3 2 11 148 sparse <1s <1s 0% 

4 3 22 420 sparse 2s <1s 0% 

5 2 49 604 sparse <1s <1s 0% 

6 3 39 726 moderate 2s <1s 0% 

7 4 44 1,088 sparse 3s <1s 0% 

8 4 48 1,184 moderate <1s <1s 0% 

9 4 55 1,352 moderate 4s 2s 0% 

10 4 64 1,568 moderate 7s 2s 0.1% 

11 4 65 1,592 dense 8s 3s 0.2% 

12 5 77 2,350 moderate 1.6s <1s 0% 

13 8 56 2,752 sparse 16s 21s 0.3% 

14 7 99 4,214 dense 4.4s 3s 0.33% 

15 11 96 6,424 moderate 10s 37s 0.6% 

16 10 117 7,100 moderate 146s - - 

17 14 101 8,596 sparse 119s - - 

18 12 128 9,312 dense 116s - - 

19 8 206 9,952 dense ~10h 76s 0.71% 

20 14 148 12,544 moderate 103s - - 

21 17 141 14,518 moderate 79s - - 

22 16 162 15,680 dense 1,304s - - 

23 13 210 16,484 moderate ~1d - - 

24 14 235 19,852 dense ~2d - - 

25 19 176 20,216 moderate 4,649s - - 

26 20 295 35,560 moderate 387s - - 

27 26 333 52,156 moderate 2,748s - - 

 

Unfortunately, it turns out that Algorithm 1 does not address our needs and is actually 

unable to solve several problems that the off-the-shelf solver is able to. In fact there is only one 

problem (instance 19 in the table) where it shows any real benefit, as it offers us an excellent 

solution in about a minute (as opposed to about 10 hours by the solver). More importantly, we 

found that it could not solve any problem that cannot be directly solved by the solver. One reason 

that it has no advantage in speed is that as discussed in Section 2.2.1, our difficulty comes from 

the number of integer solution variables. Although a column generation algorithm addresses this 

by limiting the enumeration, it is still not sufficiently effective in our case. Second, even with the 
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examples that the algorithm does give solutions to, with STEP 4 that obtains the integer solution, 

we cannot guarantee optimality. Given that we have many choices of transportation and storage 

devices, the solutions of LRMP tend to be highly fractional. Choosing the largest 𝑉𝑘 and setting 

it to 1 and the remaining to 0 often fails to give high quality results due to a large integrality gap. 

In short, better algorithms are needed to solve the problem. We will discuss this in the next section.  

2.4 An Iterative Cyclic Algorithm 

In Section 2.3.1, we saw that the column generation algorithm has no clear benefit to being 

able to overcome the limitations of an off-the-shelf solver. Thus, a more powerful algorithm is 

desirable for larger problems. As discussed in Section 2.2.1, the key fact that makes the MIP-1 

hard to solve, besides the natural difficulty of MIP, is that the model has too many decision 

variables. In this section, we describe an easy-to-implement MIP-based heuristic that solves a 

sequence of MIP problems, each of which is a restricted version of Program MIP-1 that is 

relatively easy to solve. These restrictions are with respect to either the replenishment frequencies 

used at hubs or the total number of hubs that are open. 

The method is motivated by initial experiments where we tested the MIP-1 when some 

variables are fixed, thereby reducing the number of decision variables. First, we formulated a 

restricted version by fixing all replenishments at hubs to be done either once a month or all 

replenishments at hubs to be done once a quarter. For smaller problems, these restricted versions 

yielded solutions in a very short amount of time and with values less than 1% larger than the true 

optimum. Table 4 demonstrates a sample problem with 385 nodes and 20 candidate hubs when we 

fixed the replenishment frequency of all hubs to be identical. In the second column, we show 
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results from running model MIP-1 without any restrictions. In the third column, we show results 

for the model when we only allow monthly replenishments while in the fourth column, all hubs 

are restricted to be replenished quarterly. Clearly, the restricted versions yielded solutions in a very 

short amount of time and with costs only around 0.6% above the complete initial MIP-1 model. 

In fact, all examples we tested yielded costs that were within 1% of the optimum value (when it 

could be obtained).  

 

Table 4 A sample problem when the replenishment frequency is fixed 

 MIP Fix Monthly Fix Quarterly 

Cost $602,133 $605,646 $605,942 

Time 202,158s 102s 1,060s 

 

Next, we formulated an alternative restriction where we fixed the total number of hubs to 

be open, and the results obtained for a small sample problem are illustrated in Table 5, where the 

last row corresponds to the original MIP in which we determine how many and which hubs will 

be open at the optimum. Once again, fixing a portion of the network structure generally yields 

solutions much more quickly (although as we force more hubs to be open the time does increase). 
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Table 5 An example when the number of open hubs is fixed 

No. Open Hubs  CPU time Cost  

<6 infeasible - 

6 <1 $281,111 

7 2s $259,209 

8 3s $240,800 

9 3s $235,743 

10 10s $229,967 

11 12s $225,300 

12 18s $222,214 

13 35s $224,922 

14 440s $227,541 

MIP-1 103s $222,214 

 

Based on these observations, our cyclic algorithm starts by solving a restricted version of 

Program 1 with an initial vector of fixed replenishment frequencies at the hubs, to obtain a locally 

optimal set of open locations under this frequency vector. The algorithm then fixes these open hub 

locations and solves another restricted version of Program 1 (with other hubs kept closed) to find 

the corresponding optimal frequencies. The procedure iterates until we cannot improve the 

solution. In order to formalize the algorithm, let us denote: 

 : a suitably small constant 

𝒇: a vector of order |𝐻| indicating the replenishment frequency at hubs; if the ith element is 1 then 

hub 𝑖 is set to be replenished quarterly and a frequency-fixing constraint ∑ 𝑊𝑗𝑟1𝑟∈𝑅 = 0 is added 

to the model; alternatively if the ith element is 2 then hub 𝑖 is set to be replenished monthly, and 
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the frequency-fixing constraint ∑ 𝑊𝑗𝑟0𝑟∈𝑅 = 0 is added; if a hub is closed the corresponding 

element is set to 0. 

𝒍: a binary vector of order |𝐻| indicating the status of each hub; if the ith element equals 0, hub 𝑖 is 

forced to be closed and we add a location-fixing constraint ∑ ∑ 𝑊𝑗𝑟𝑓𝑓∈𝐹𝑟∈𝑅 = 0 to the model; if 

the ith element is equal to 1, hub 𝑖 is set to be open, and we add the location-fixing constraint 

∑ ∑ 𝑊𝑗𝑟𝑓𝑓∈𝐹𝑟∈𝑅 = 1 to the model. 

𝑍𝑓
𝑘: locally optimum objective value at step 𝑘 when frequencies are fixed 

𝑍𝑙
𝑘: locally optimum objective value at step 𝑘 when locations are fixed 

 

Algorithm 2 may then be specified as follows: 

STEP 1: Initialization 

Generate a random vector of length |𝐻| where every entry is one of either 1 or 2 and define 

it to be 𝒇1. Note that initially, every hub is allowed to be open, and if it is open it must use the 

replenishment frequency specified via 𝒇1. Let 𝑘 = 1.  

 

STEP 2: Local optimum with fixed frequencies 

Set 𝒇 ←  𝒇𝑘 and solve Program 1 under this fixed frequency vector with the corresponding 

frequency-fixing constraints. Let 𝑍𝑓
𝑘 be the local optimum value obtained, with corresponding hub 

locations defined by the vector 𝒍𝑘 . If 𝑘 = 1 go to STEP 3 after deleting the frequency-fixing 

constraints added at this step, else if 𝑍𝑙
𝑘−1 − 𝑍𝑓

𝑘 ≤  𝜀, i.e., there is no improvement, stop the 

algorithm with objective value  𝑍𝑓
𝑘. Otherwise, it means that the algorithm is still improving the 

solution, so we delete the frequency-fixing constraints added in this step and continue on to STEP 

3. 
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STEP 3: Local optimum with fixed open locations 

Set 𝒍 ←  𝒍𝑘 and solve Program 1 under this fixed location vector with the corresponding 

location-fixing constraints, let 𝑍𝑙
𝑘  be the local optimum value obtained with corresponding 

replenishment frequencies. If 𝑍𝑓
𝑘 − 𝑍𝑙

𝑘 ≤  𝜀, there is no improvement; stop the algorithm with 

value 𝑍𝑙
𝑘. Otherwise, delete the location-fixing constraints added in this step and go to STEP 4. 

 

STEP 4: Update frequency 

Update the frequency vector via 𝒇𝑘+1 to be the same as the corresponding replenishment 

frequencies obtained in STEP 3. In the case that a hub (say, the ith) is not open in the solution 

obtained at STEP 2, the ith element of 𝒇𝑘+1
 is set to 0.  

Set 𝑘 ← 𝑘 + 1 and then return to STEP 2. 

 

The algorithm is summarized in Table 6: 
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Table 6 Algorithm 2  

Input:  

MIP-1  

𝐻: the set of all candidate hubs 

ℎ = |𝐻| 

STEP 1. Initialization 

 Generate a random binary vector 𝒇𝑘 of order ℎ 

Set 𝑘 = 1 

STEP 2. Local optimum with fixed frequencies 

 Set 𝒇 ←  𝒇𝑘 

Solve the MIP with fixed frequency 𝒇 and obtain optimal value 𝑍𝑓
𝑘 

if 𝑘 > 1 and 𝑍𝑙
𝑘−1 − 𝑍𝑓

𝑘 ≤  𝜀: 

Stop 

else: 

Obtain 𝒍𝑘
 

Delete all frequency-fixing constraints. 

Go to STEP 3 

STEP 3. Local optimum with fixed open locations 

Set 𝒍 ←  𝒍𝑘 

Solve the MIP with fixed location 𝒍 and obtain optimal value 𝑍𝑙
𝑘 

if 𝑍𝑓
𝑘 − 𝑍𝑙

𝑘 ≤  𝜀: 

Stop 

else 

Obtain the corresponding replenishment frequencies 

Delete all location-fixing constraints. 

Go to STEP 4 

STEP 4. Update frequency 

Update 𝒇𝑘+1 and set 𝑘 ← 𝑘 + 1 

Go to STEP 2 
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Observation: In STEP 2, if 𝑘 ≥ 1, then 𝑍𝑙
𝑘−1 ≥  𝑍𝑓

𝑘 for all 𝑘. In STEP 3, 𝑍𝑓
𝑘 ≥  𝑍𝑙

𝑘 for all 𝑘. In 

other words, the local optima are always nonincreasing. 

At every step before it stops, the method is always improving. From the computational 

results, we found that the algorithm works best if we start with a frequency where “all hubs are 

equal,” i.e., the initial replenishment frequencies are the same at all hubs. The next section will 

provide with a detailed computational result. 

2.5 Computational Results 

We tested Algorithm 2 using a number of problems; as stated in Sect. 2.2.1 we generated 

these from the data we had for four different LMICs. Based on experiments we conducted, Table 

7 summarizes computational results for the 27 test problems that we were able to solve optimally. 

We also report on two problems (Nos. 26 and 28) for which optimal solutions are not available.  
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Table 7 Computational results for Algorithm 2 

No. Hubs Nodes 0/1 Variables Pop. Density CPU: Optimum  CPU: Algorithm Gap % 

1 1 10 68 sparse <1s <1s 0% 

2 1 18 116 moderate <1s <1s 0% 

3 2 11 148 sparse <1s <1s 0% 

4 3 22 420 sparse 2s <1s 0% 

5 2 49 604 sparse <1s <1s 0% 

6 3 39 726 moderate 2s <1s 0% 

7 4 44 1,088 sparse 3s <1s 0% 

8 4 48 1,184 moderate <1s <1s 0% 

9 4 55 1,352 moderate 4s <1s 0% 

10 4 64 1,568 moderate 7s <1s 0% 

11 4 65 1,592 dense 8s <1s 0.27% 

12 5 77 2,350 moderate 1.6s <1s 0% 

13 8 56 2,752 sparse 16s 4s 0% 

14 7 99 4,214 dense 4.4s <1s 0% 

15 11 96 6,424 moderate 10s 5s 0% 

16 10 117 7,100 moderate 146s 29s 0.56% 

17 14 101 8,596 sparse 119s 32s 0.28% 

18 12 128 9,312 dense 116s 29s 0.17% 

19 8 206 9,952 dense ~10h 43s 0.17% 

20 14 148 12,544 moderate 103s 49s 0% 

21 17 141 14,518 moderate 79s 50s 0% 

22 16 162 15,680 dense 1,304s 46s 0.46% 

23 13 210 16,484 moderate ~1d 76s 0.52% 

24 14 235 19,852 dense ~2d 83s 0.62% 

25 19 176 20,216 moderate 4,649s 207s 0.24% 

26 11 366 24,244 dense - 62s - 

27 20 295 35,560 moderate 387s 89s 0.32% 

28 28 271 45,752 moderate - 11s - 

29 26 333 52,156 moderate 2,748s 126s 0.54% 

 

Similar to Table 3, for each problem we list the number of potential hub locations, the total 

number of nodes in the network, the number of binary variables in the MIP-1 formulation, and a 

label that identifies the population in the area as being dense, moderate or sparse. The number of 

nodes and potential hub locations in these problems ranged from 10 to 333, and from 1 to 28, 

respectively, while the total number of binary variables in the full problem ranged from 68 for the 

smallest problem to 52,156 for the largest problem we were able to solve optimally. We also list 

the CPU times for the CPLEX solver to find the optimum solution and for our algorithm to 
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converge, along with the percentage gap between the cost of the solution from the algorithm and 

the true optimum cost.  

2.6 Discussion 

We now discuss the results from the previous section. First, it is clear that there is no 

obvious, direct relationship with any one specific factor listed in the tables (nodes, hubs, binary 

variables, and population density); rather, the effort required to solve a problem optimally depends 

on the combination of these factors. However, as might be expected, the total number of 0/1 

variables seems significant. Smaller problems with under (say) 15,000 binary variables are directly 

solvable in a matter of seconds. 

Second, with larger problems, solution times start to increase; there is one problem (no. 

18) that took almost 10 h to solve, and in at least two instances (nos. 23 and 24) the solution time 

was on the order of days. However, there was also a problem (no. 6) that was larger than either of 

these and that could be solved in a little over 6 min. In general, it is hard to pinpoint what specific 

characteristics make the problems harder to solve optimally, and if we are presented with a 

relatively large new problem there does not appear to be any obvious way to say how CPLEX 

might perform on it. 

Third, the iterative cyclic approach of our algorithm appears to be much more stable in its 

performance when compared to CPLEX. Convergence is achieved in under one minute for 22 of 

the 27 problems tested, and the longest it took (no. 19) was about 3.5 min. More importantly, the 

solution that it finds has a cost that is always within 1% (and most often within about 0.5%) of the 

true minimum cost. 
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Finally, we also generated much larger problems (including problems that represented the 

complete network for each country) which could not be solved optimally by CPLEX; our algorithm 

also failed to converge on most of these because solving even the restricted problems in steps 2 

and 3 becomes impossible. , The method did converge to a solution for two instances ((26 and 28 

in Table 7) that could not be solved optimally. While a cost comparison is obviously not possible, 

based on how it does for smaller problems, we can speculate though that these are probably decent 

solutions. 

Overall, Algorithm 2 generates high quality solutions with a substantially smaller amount 

of computation time than direct solution. Due to the ease with which it can be implemented, it can 

serve as a simple alternative to solving MIP-1 directly when a good solution is required quickly, 

especially when the number of hub candidate locations is not large. 

2.7 Summary 

The problem of designing a distribution network for WHO-EPI vaccines is a complex one 

and one that becomes increasingly harder to solve as the problem size grows. We first formulated 

a mathematical programming model for the design of a typical WHO-EPI network with the goal 

of minimizing costs while providing the opportunity for universal coverage and developed a 

column generation algorithm to solve the formulation. We first explore a column generation 

algorithm to solve the MIP-1 formulation, but its performance is not very good and it has no real 

advantage over directly solving the MIP-1 via off-the-shelf solver. We then present another 

algorithm that generates high quality solutions within a fraction of one percent of optimality while 

using a substantially smaller amount of computation time than direct solution. Due to the ease with 
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which it can be implemented, it can serve as a simple alternative to solving MIP-1 directly when 

a good solution is required quickly. However, this method – like direct solution – cannot handle 

country-level problem formulations. Thus it is clear that we need another heuristic approach that 

can generate high quality solutions for these larger problems, and we will discuss this in the 

following chapter. 
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3.0 A Disaggregation-and-merging Approach to Solve the Network Design Problem  

In this chapter we develop a novel algorithm that solves a sequence of increasingly larger 

MIP problems. To maintain tractability, the approach uses insights into the problem structure and 

principles from cluster analysis to limit the size of each MIP in the sequence. In order to study the 

performance of the algorithm, numerical tests using data derived from several different countries 

in sub-Saharan Africa are conducted. Comparisons with the optimal solution when one is available 

indicate that the algorithm works very well with solution times that scale up in a roughly linear 

fashion. The remainder of this chapter appears in (Yang, Bidkhori, & Rajgopal, 2020). 

3.1 Problem Development 

In Chapter 2 we developed a mixed integer programming (MIP) model MIP-1 to optimize 

the design of the distribution network. The model allows for a more appropriate design than current 

networks, while following the WHO guidelines for operational simplicity. As discussed in Section 

2.2.1, to explore the solution of the model described by MIP-1 we tested it with a standard 

commercial solver using data derived from the EPI networks in four different countries in sub-

Saharan Africa; specifics on the data, as well as the hardware and software used are discussed in 

Section 3.4, where we describe our numerical experiments in full detail. 

As explored in Section 2.2.1, a key fact that makes MIP-1 hard to solve is that the model 

has a large number of 0-1 decision variables. For example, if we can choose from three types of 

transport vehicles and four types of storage devices (i.e., {T|=3, |R|=4), recall that in Section 2.2.1, 
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Table 1 illustrates the number of decision variables in MIP-1. Thus, in order to solve the full 

problem for one our instances with 685 nodes and 41 candidate hubs, we end up with 168,838 

integer variables. Even for a typical 100-node, mid-sized problem with 15 candidate hubs, the 

number of binary decision variables is close to 10,000. 

As the first approach to address this issue, we proposed a heuristic cyclic approach in 

Section 2.4. Unfortunately, this heuristic can only handle problems with a maximum of roughly 

200 nodes. As the problem size increases it starts to slow down dramatically. More importantly, 

for most large problems with more hub candidates, there are too many combinations of hub 

locations and hub-to-hub connections for the algorithm to handle. Furthermore, because 

information on replenishment frequency is available only for open hubs, for some LMICs where 

there are a large number of candidate hubs but only a small number of these are open in the optimal 

solution, the heuristic fails to fix the frequency at the next step for a large number of locations, and 

starts to slow down. In short, the resulting formulation for a national network is too large to solve 

optimally using standard commercial software or even with the heuristic cyclic approach of the 

previous chapter. A more powerful algorithm is required to handle large, country-level problem 

formulations. 

To further explore the limits of the problem size that could be solved using a standard 

solver we also experimented with subsets of the data from each country. That is, we considered 

successively larger problems: first, with the national center along with a single region (based on 

how a region is currently defined in the country), then problems with a combination of two regions, 

three regions, etc. In general, the difficulty associated with a particular problem depends on several 

factors including the total number of nodes and potential hubs in the problem, as well as the 

population distribution, transportation cost, and storage cost across the network. Unfortunately, 
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despite extensive computational experimentation it was impossible to pinpoint the limiting 

characteristics of a tractable problem or establish any clear monotonicity, because of the 

interrelationships between the problem parameters. Our numerical tests are discussed in more 

detail in Section 3.4, but as a general rule of thumb, we found that most problems with over 200–

250 nodes and over 15–20 potential hubs are impossible to solve directly. Given that in the network 

for an entire country these limits are almost always exceeded, there is clearly a need for good 

algorithm if one aims to design an optimal network for the country. 

 In the next few sections, we propose a sequential MIP-based disaggregation-and-merging 

algorithm that divides the problem on the entire graph for the distribution network into several 

subproblems on smaller subgraphs that can be solved with relative ease. The algorithm then 

intelligently merges the subgraphs together sequentially to obtain a solution to the whole graph. 

We present numerical comparisons in Section 3.4 and show that the algorithm is able to yield good 

solutions for even the largest problems. 

3.2 Motivation  

Our algorithm is motivated by the observation that in a large network, the optimal 

subnetwork structures in regions that are relatively far apart will tend to be independent of each 

other. For example, the characteristics of a local clinic are unlikely to have any significant 

influence on the network structure in locations that are far away, and if a hub is added or removed 

at some distant location it is unlikely to affect the clinic’s supply. The same is also true of a hub 

that is distant from some other hub whose disposition is changed. Therefore, for larger problems 

we propose a divide-and-conquer approach where we first divide the whole network into portions 
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that each yield smaller problems that can be solved independently with relative ease. We then 

systematically merge these smaller problems and solve a sequence of increasingly larger problems. 

Each of these is formulated using MIP-1, but with the key difference that parts of the structure are 

fixed based on the optimal solutions to the smaller problems as well as the spatial relationship 

between the current subnetwork and the new portion being added on. To clarify our approach, we 

first provide an overview of the method and then provide all of the details. 

We start by dividing the entire network into 𝑃 smaller subnetworks. One could always use 

existing political boundaries as a natural disaggregation of the network, i.e., each region (or 

province, or state) of the country is an “independent” network; larger existing regions could be 

split into smaller ones. Alternatively, we could apply a clustering algorithm to determine the 

subnetwork nodes. Although the average cluster size will be smaller as we form more clusters, the 

number of clusters that would give us problems that are small enough to yield a tractable version 

of MIP-1 is problem dependent, so that it is difficult to prescribe a general value for 𝑃 in advance. 

We therefore chose to use hierarchical clustering rather than a simpler method such as K-means 

clustering, whereby we can continue to disaggregate the network until each region is small enough 

for a standard MIP solver to handle; the interested reader is referred to (Aggarwal, 2015) for more 

details on hierarchical clustering. 

Once the independent regions are created we start with the one that contains the national 

center and optimize its structure via MIP-1 to obtain an initial subnetwork. We now pick a 

neighboring region to merge with this subnetwork, formulate MIP-1 for the combined set of nodes 

and solve this (larger) consolidated problem to get a new subnetwork structure with both regions. 

This process continues until all of the independent regions have been merged into our network. 

While we will specify details on how each step is executed, the critical thing to note is that at each 
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successive iteration we handle a larger collection of nodes, and therefore have to solve a larger 

problem. Clearly, the effort required at each stage has to be reasonable; otherwise we are defeating 

the purpose of the original disaggregation! To ensure that this is the case, we refer to our initial 

observations on the motivation for this approach, and at each iteration we fix a portion of the 

current subnetwork, so that we are only using variables associated with a subset of all the nodes 

corresponding to the current iteration’s network. This is done by retaining the locally optimal 

structure for portions of the subnetwork while allowing for changes in others. In addition, we also 

use a “shrinking” scheme whereby some of the nodes are aggregated and replaced by a single 

dummy node so as to further reduce the size of the problem being solved. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Hub classification during consolidation 

 

To decide upon how to fix parts of the structure at each iteration, we classify all hubs for 

the current network into three categories. We overview these categories here using the example 

shown in Figure 2; more mathematically precise definitions are provided when the algorithm is 
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detailed. The lower part of Figure 2 shows the subnetwork we currently have. The seven solid 

squares represent open hubs while the empty squares denote potential hub locations that were not 

selected for opening. The dashed lines within the area covered by this subnetwork divide it into 

eight discrete sections corresponding to the national center and the seven open hubs, and clinics 

within each section (not shown) are supplied by the corresponding open hub (or national center). 

Note that some open hubs are supplied directly by the national center while others receive their 

vaccines from some other open hub. The upper portion of Figure 2 represents the new, neighboring 

region that we wish to merge with the current subnetwork, along with five potential hub locations 

within it. 

• The first category, which we call Critical Hubs, are hub locations “close to” the boundary 

between the current subnetwork and the new region being merged. The dispositions of these 

hubs are likelier to change after merger; currently open hubs might close and vice-versa. Clinic 

assignments to a hub might also change as new hubs might be introduced at geographically 

proximal locations. In our illustration, nodes (a), (d) and (e) might be critical hubs. 

• The second category, which we call Intermediate Hubs, are hub locations in the existing 

subnetwork that are in some sense “in between” the national center and hubs in the new region 

that is being merged with the existing subnetwork (e.g., hubs labeled (a), (b) and (c) in Figure 

2). Since they are en route from the center to a possible hub in the new region, such hubs could 

potentially serve as intermediate transshipment points (while continuing to serve their current 

clinics if they are currently open). Thus their storage requirements could be larger after 

merging and/or their replenishment frequencies could possibly change.  

• The third category of hub locations, which we call Non-critical Hubs can be considered as 

“independent” during merger. These are locations that are not near the common boundaries or 
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en route to a potential new hub and we fix their dispositions (open or closed); for the open 

hubs, their clinic assignments, hub-to-hub connections, storage devices, transportation routes 

and frequencies are also fixed. In Figure 2 all non-labeled nodes might be non-critical hubs. 

We now overview the process to sequence regions for merger. To start with, after the initial 

set of regions is formed, we solve a sub-problem for each of these regions by applying MIP-1 just 

to the nodes in that region along with the national center. This yields a locally optimal structure 

for each region. At each iteration, the region we choose for merger is the one with minimum cluster 

distance between it and other regions that has already been merged into the consolidated network. 

Here, we define the cluster distance as the minimum distance between two points that are in 

different clusters; based on our computational experiments we found that this worked best among 

the common measures of cluster distance.  

3.3 A Disaggregation-and-merging Algorithm 

We now formally outline the steps in our algorithm in this section. 

Algorithm 3: 

STEP 1: Disaggregation 

Consider the directed graph 𝐺 of nodes indexed in V and arcs indexed in A. Divide the set 

of potential hubs 𝐻 into 𝑃 mutually exclusive subsets 𝐻1,..., 𝐻𝑝..., 𝐻𝑃 using a clustering algorithm 

or heuristically. If using a clustering algorithm, to determine whether a cluster of potential hubs 

indexed in 𝐻𝑝 is small enough, define set 𝐶𝑝 to be the set of clinics whose closest hub nodes are 

in 𝐻𝑝 and define set 𝑄𝑝  =𝐻𝑝 ∪ 𝐶𝑝 ∪ {0} as the complete node set of the region defined by hub 

nodes in cluster 𝐻𝑝. While there is no obvious way to prescribe the value of 𝑃 in advance, it is 
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important for the number of nodes in each set 𝑄𝑝  to be small enough that MIP-1 on the subgraph 

generated by nodes in this set is readily solved. Therefore, define a suitable number 𝑀 (we suggest 

a value under 200 based upon our computational experiments) and check whether |𝑄𝑝  | ≤ 𝑀 for 

all 𝑝 ; if not, further divide the corresponding cluster 𝐻𝑝 , again by using existing political 

boundaries (such as districts within the region), a clustering algorithm, or heuristically based on 

the distribution of nodes within the cluster. Continue until the number of nodes in each of 𝐻1, 𝐻2, 

..., 𝐻𝑃 is no larger than 𝑀. Note that depending on the demographic characteristics, the number of 

nodes in each cluster 𝐻𝑝 could be quite different. 

Define 𝐻′ as the set of potential hubs that are currently not merged into the consolidated 

network; thus, at the end of STEP 1, 𝐻′ =  𝐻 = {𝐻1, 𝐻2, ..., 𝐻𝑃}.  

 

STEP 2: Sub-problem solution and initialization 

Consider the subgraph 𝐺[𝑄𝑝] that is induced by nodes in 𝑄𝑝 . For each 𝑝 {1,2,…𝑃} 

formulate and solve MIP-1 on subgraph 𝐺[𝑄𝑝] to meet demand optimally at all clinic locations in 

set 𝑄𝑝 . 

Denoting the cluster distance between clusters 𝐻𝑝  and 𝐻𝑞  (i.e., distance between the 

nearest pair of nodes 𝑖  and 𝑗 , where 𝑖 ∈ 𝐻𝑝  and 𝑗 ∈ 𝐻𝑞 ) as  𝐷(𝐻𝑝, 𝐻𝑞) , compute 𝑝∗ ∈

𝐴𝑟𝑔𝑚𝑖𝑛𝑝∈1,2,…,𝑃 𝐷(𝐻𝑝, 𝑁), where cluster 𝑁 = {0} is an artificial cluster with just the national 

center in it. Thus cluster 𝐻𝑝 has the smallest cluster distance to {0}.  

To start the iterative process set 𝑘 = 0, define 𝐼0 = 𝑄𝑝∗ =  𝐻𝑝 ∪ 𝐶𝑝 ∪ {0} as the index set 

of all nodes in the initial subnetwork, with corresponding subgraph 𝐺0 =  𝐺[𝐼0]. Update 𝐻′ ← 

𝐻′\{𝐻𝑝∗}. 
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STEP 3: Subset Selection 

Set 𝑘 = 𝑘 + 1 and compute 𝑝∗ ∈ 𝐴𝑟𝑔𝑚𝑖𝑛𝑝|𝐻𝑝∈𝐻′  {𝐷(𝐻𝑞 , 𝐻𝑝)|𝐻𝑞 ∉ 𝐻′} 

Here 𝑞 and 𝑝 correspond respectively, to clusters that have and have not yet been merged 

into the consolidated network, and among the clusters not yet merged 𝑝∗ has the smallest cluster 

distance to a cluster that has already been merged. Define 𝐼𝑘 = 𝐻𝑝∗ ∪ 𝐶𝑝∗ ∪ 𝐼𝑘−1
 as the complete 

node set for the consolidated network at iteration 𝑘. Define the graph 𝐺𝑘  =  𝐺[𝐼𝑘] and update 𝐻′ 

← 𝐻′\{𝐻𝑝∗}. 

 

STEP 4: Classification 

Compute 𝑑𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖,𝑗∈𝐻𝑝∗ 𝑑𝑖𝑗. That is, 𝑑𝑚𝑎𝑥 is the largest distance between any pair of 

hub locations within the new cluster of potential hubs that was just merged. Let 𝐶𝑜𝑛𝑣𝑝∗ be the 

convex hull of {0} and all hub nodes in 𝐻𝑝∗: 𝐶𝑜𝑛𝑣𝑝∗ = 𝐶𝑜𝑛𝑣(𝐻𝑝∗{0}), and define a positive real 

number 𝛼 ∈ (0,1). Classify the hubs in 𝐼𝑘 into three categories as follow: 

a. Critical Hubs (𝐻𝐶): Identify all pairs of nodes (𝑖, 𝑗), such that 𝑖𝐼𝑘−1 ∩ 𝐻 and 𝑗𝐻𝑝∗, with 

𝑑𝑖𝑗 < 𝛼𝑑𝑚𝑎𝑥, and define 𝑖 and 𝑗 as critical hubs. That is, we consider all potential hub pairs 

with one from the previous consolidated set of regions and one from the new region, and 

define the two as being critical if they are separated by less than some fraction of the 

maximum distance between two hub locations in the region being merged. Larger values 

for 𝛼 result in more hubs being identified as critical so that the structure of the consolidated 

network is more flexible, but the associated model formulation is also more difficult to 

solve. Conversely, when 𝛼 is smaller, the consolidated problem is easier to solve but a 
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larger portion of the network is fixed. Based upon our computational experiments we 

suggest a value for 𝛼 between 0.1 and 0.3. 

b. Intermediate Hubs ( 𝐻𝐼 ): Define 𝑖  as an intermediate hub if 𝑖(𝐼𝑘−1 ∩ 𝐻) ∋  𝑖 ∉

𝐻𝐶 , 𝑖𝐶𝑜𝑛𝑣𝑝∗ . That is, these are hub locations (open or closed) in the previous set of 

consolidated regions that also lie within the convex cone containing the national center and 

all potential hubs in the new region to be merged. 

c. Non-critical Hubs (𝐻𝑁): Defined as hubs in 𝐼𝑘 ∩ 𝐻 that do not belong to 𝐻𝐶 or 𝐻𝐼 . 

 

STEP 5: Reduced form of MIP-1 

In this step we add constraints to MIP-1 based upon our classification of hubs: 

a. Critical Hubs (𝐻𝐶): Since the disposition of such a hub is more likely to change during 

consolidation, we impose no further restrictions on these. 

b. Intermediate Hubs (𝐻𝐼): For every intermediate hub, add constraints that maintain the 

same clinic assignments that it had in the current solution (if it was open), i.e., for 𝑗𝐻𝐼  

add: 

 

∑ ∑ 𝑊𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅

= ∑ ∑ 𝑤𝑗𝑟𝑓
∗

𝑓∈𝐹𝑟∈𝑅

 𝑗𝐻𝐼  (2-28)  

 

and for all 𝑖𝐶, 𝑡𝑇 

 

𝑋𝑗𝑖 =  𝑥𝑗𝑖
∗  𝑖𝐶, 𝑗𝐻𝐼  (2-29)  

𝑈𝑗𝑖𝑡1 = 𝑢𝑗𝑖𝑡1
∗  𝑖𝐶, 𝑗𝐻𝐼 , 𝑡𝑇 (2-30)  
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where 𝑢𝑗𝑖𝑡𝑓
∗ , 𝑥𝑗𝑖

∗ , and 𝑤𝑗𝑟𝑓
∗  are from the solution to the MIP defined on 𝐺[𝐼𝑘−1]. Here (2-

28) ensures that open intermediate hubs remain open and closed ones remain closed. Note 

that since such a hub can potentially supply other hubs, the required capacity of its own 

storage device and of the inbound transport device might increase, and the replenishment 

frequency at the hub might also change. Constraints (2-29) and (2-30) ensure the same 

flow into a clinic with the same device and replenishment frequency. 

c. Non-critical Hubs (𝐻𝑁): Add constraints for each open hub 𝑗𝐻𝑁 to fix replenishment 

frequency, storage device, inbound and outbound volumes and vehicle types, and clinic 

assignment to be the same as they are in the solution to (i) the MIP defined on 𝐺[𝐼𝑘−1] if 

𝑗 ∈ 𝐼𝑘−1 ∩ 𝐻 , or (ii) MIP-1 defined on 𝐺[𝑄𝑗∗] if 𝑗 ∈ 𝐻𝑗∗  (in STEP 2) and ensure that 

closed hubs remain closed. That is, for 𝑗𝐻𝑁, 𝑖𝐶, 𝑙𝑁 ∪ 𝐻, 𝑟𝑅, 𝑡𝑇, 𝑓𝐹, add: 

 

𝑋𝑗𝑖 =  𝑥𝑗𝑖
∗  𝑗𝐻𝑁, 𝑖𝐶 (2-31)  

𝑈𝑗𝑖𝑡1 = 𝑢𝑗𝑖𝑡1
∗  𝑗𝐻𝑁, 𝑖𝐶, 𝑡𝑇 (2-32)  

𝑊𝑗𝑟𝑓 = 𝑤𝑗𝑟𝑓
∗  𝑗𝐻𝑁, 𝑟𝑅, 𝑓𝐹 (2-33)  

𝑋𝑙𝑗 =  𝑥𝑙𝑗
∗  𝑙𝑁 ∪ 𝐻, 𝑗𝐻𝑁 (2-34)  

𝑈𝑙𝑗𝑡𝑓 = 𝑢𝑙𝑗𝑡𝑓
∗  𝑙𝑁 ∪ 𝐻, 𝑗𝐻𝑁, 𝑡𝑇, 𝑓𝐹 (2-35)  

 

where 𝑤𝑗𝑟𝑓
∗ , 𝑥𝑗𝑖

∗ , 𝑢𝑗𝑖𝑡𝑓
∗ , 𝑥𝑙𝑗

∗ , 𝑢𝑙𝑗𝑡𝑓
∗  are values obtained from the solution to the MIP defined 

on 𝐺[𝐼𝑘−1] if 𝑗 ∈ 𝐼𝑘−1 ∩ 𝐻, or the MIP on 𝐺[𝑄𝑗∗] if 𝑗 ∈ 𝐻𝑗∗. 

Note that (2-33) maintains the open/closed status of a hub, (2-31) and (2-32) maintain the 

same flow into and the same transport device and replenishment frequency for each clinic served 
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by a hub, while (2-34) and (2-35) do the same for the inbound flow into the hub (note that this last 

feature is different than with intermediate hubs). 

 

STEP 6: Consolidation 

With the constraints added in STEP 5, solve the MIP defined on subgraph 𝐺[𝐼𝑘]. If 𝐻′ =

, we have merged all hubs; stop and return the solution. Otherwise, delete all new constraints 

added in STEP 5, return to STEP 3 to add a new region, and repeat the process at the next iteration. 

 A Refinement to Algorithm 3 

In STEP 5, there could potentially be hundreds of constraints added at each iteration. We 

can further manipulate the formulation at this step to obtain the same outcome but with fewer 

nodes in the graph. Instead of directly formulating the MIP on 𝐺[𝐼𝑘] with the constraints added in 

STEP 5, we could use information previously obtained from the solutions to problems defined on 

𝐺[𝐼𝑘−1] (in STEP 6 at the previous iteration) and 𝐺[𝑄𝑝∗] (in STEP 2) in order to restrict the 

problem size. Consider an open intermediate or non-critical hub 𝑗 that will be restricted to remain 

open at the next iteration along with the same clinic assignments. To reduce the number of nodes 

(and hence, the number of binary variables) we could collapse all clinics associated with the hub 

into a single dummy clinic 𝑚 with a demand equal to the sum of the demands at these clinics, 

locate it at the same location as the hub (so that 𝑑𝑗𝑚 = 0) and assign it to hub 𝑗. This ensures that 

the outflows to clinics served by 𝑗 are the same, so that the solution to the new problem will be the 

same as the one to the MIP on 𝐺[𝐼𝑘]. The only difference is that in the modified problem the total 
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transportation cost to the clinics served by 𝑗 is zero; however, we can simply add the true cost to 

the final value obtained by the new MIP. 

More formally, consider a hub 𝑗𝐻𝐼 ∪ 𝐻𝑁  that is open in the solution to the MIP on 

𝐺[𝐼𝑘−1] or MIP-1 on 𝐺[𝑄𝑝∗]. Define a dummy clinic 𝑚 with demand 𝐷𝑗
𝑇  equal to the total demand 

across all clinics served by hub 𝑗 in this solution.  

 

𝐷𝑗
𝑇 = ∑ ∑ 𝑏𝑖𝑢𝑗𝑖𝑡1

∗

𝑡∈𝑇𝑖∈𝑐

  (2-36)  

 

Also, define the new index set 𝐶− by removing from set 𝐶 the indices of all of the clinics 

serviced by hub 𝑗. Then we have the following proposition. 

Proposition 1: Given that hub 𝑗𝐻𝐼𝐻𝑁 is open in the solution to 𝐺[𝐼𝑘−1] or 𝐺[𝑄𝑝∗], MIP-1 

with the additional Constraints (2-29) and (2-30) for all 𝑖𝐶, 𝑡𝑇 is equivalent to MIP-1 with the 

following three additional constraints: 

 

𝑋𝑗𝑚 =  𝐷𝑗
𝑇   (2-37)  

∑ 𝑈𝑗𝑚𝑡1

𝑡∈𝑇

= 1  𝑡𝑇  (2-38)  

∑ ∑ 𝑈𝑗𝑙𝑡1

𝑡∈𝑇𝑙∈𝐶−

= 0  (2-39)  

 

Proof:  

Since hub 𝑗 is open in the solution to 𝐺[𝐼𝑘−1] or 𝐺[𝑄𝑗∗], we have : 
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∑ ∑ 𝑊𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅

= 1.  (2-40)  

 

First, suppose that for this 𝑗 and all 𝑖𝐶, 𝑡𝑇 we add the constraints given by (2-29) and 

(2-30). This is equivalent to partially fixing the network structure. Specifically, we fix the clinic 

assignments for hub 𝑗. With Constraint (2-7) we have for all 𝑖𝐶 that are served by hub 𝑗: 

 

𝑋𝑗𝑖 =  𝑥𝑗𝑖
∗ =  𝑏𝑖  (2-41)  

 

Therefore, the total volume that goes out of hub 𝑗 and goes into all of its clinics is also 

fixed: 

 

∑ 𝑋𝑗𝑖

𝑖∈𝐶

= ∑ 𝑋𝑗𝑖 ∑ 𝑈𝑗𝑖𝑡1

𝑡∈𝑇𝑖∈𝐶

= ∑ ∑ 𝑋𝑗𝑖𝑈𝑗𝑖𝑡1

𝑡∈𝑇𝑖∈𝐶

=  ∑ ∑ 𝑏𝑖𝑢𝑗𝑖𝑡1
∗

𝑡∈𝑇𝑖∈𝐶

= 𝐷𝑗
𝑇 .  (2-42)  

 

Note that the second and third equalities above hold because of Constraint (2-2). 

Now, suppose instead that we delete all clinics assigned to 𝑗 to obtain the index set 𝐶− and 

add a dummy clinic 𝑚 with demand given by (2-36), then add Constraints (2-37), (2-38) and (2-

39) to MIP-1. From these constraints and Constraint (2-6) of MIP-1, once again the total volume 

that goes out of hub 𝑗 is fixed, i.e., we have: 

 

∑ 𝑋𝑗𝑙

𝑙∈𝐶

= 𝑋𝑗𝑚 =  𝐷𝑗
𝑇   (2-43)  
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Since we are not altering any other constraints, this is equivalent to the first case with fixed 

clinic assignments and the only difference is that the same total outflow is sent to a single clinic. 

Thus the optimal solutions with either approach are identical.  

            

By using Proposition 1, for every open intermediate or non-critical hub, we could replace 

the {|𝐶| + |𝐶| × |𝑇|} constraints in (2-29) and (2-30) with the 3 Constraints (2-37), (2-38) and (2-

39). Similarly, we could replace {|𝑇| × |𝐶|} binary variables associated with selecting devices 

used to send vaccines from the hub to all of its clinics, with |𝑇| binary variable associated with the 

dummy clinic at the hub and |𝑇| × |𝐶−| binary variables associated with each of the clinics not 

consolidated into the dummy. This results in a reduction of {|𝑇| × (|𝐶| − |𝐶−| − 1)}  in the 

number of binary variables. As a direct consequence of Proposition 1, we have the following: 

Proposition 2: For any hub 𝑗𝐻𝐼  that is open in the solution to 𝐺[𝐼𝑘−1] , MIP-1 with the 

constraints added in STEP 5(b) is equivalent to MIP-1 with constraints given by (2-37), (2-38) 

and (2-39) along with (2-28). 

Proposition 3: For any hub 𝑗𝐻𝑁 that is open in the solution to 𝐺[𝐼𝑘−1] or 𝐺[𝑄𝑝∗], MIP-1 with 

the constraints added in STEP 5(c) is equivalent to MIP-1 with constraints given by (2-37), (2-38) 

and (2-39), along with the Constraints (2-33), (2-34) and (2-35) for 𝑙𝑁 ∪ 𝐻, 𝑟𝑅, 𝑡𝑇, 𝑓𝐹. 

Note that if we use Propositions 2 and Propositions 3 to solve the modified formulation 

(as opposed to the one in STEP 5), we will need to add to the final objective value the following 

outbound transportation cost (𝐶𝑗
𝑃) for each hub 𝑗 that has its clinics consolidated as above: 

 

𝐶𝑗
𝑃 = ∑ ∑ 2𝑐𝑗𝑖𝑡

𝑃 𝑔1𝑑𝑗𝑖𝑢𝑗𝑖𝑡1
∗

𝑡∈𝑇𝑖∈𝐶

  (2-44)  
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Based on the preceding discussion, we have the following refined Algorithm 3*: 

Algorithm 3*: 

STEPS 1* to 4*: Identical to STEPS 1 to 4 in Algorithm 3. 

 

STEP 5*: Shrinkage 

As in STEP 5, we first formulate MIP-1 for 𝐺[𝐼𝑘] but then add constraints and operations 

based on the category of the hub as follows: 

a. Critical Hubs (𝐻𝐶): No additional action or restrictions. 

b. Intermediate Hubs (𝐻𝐼): If hub 𝑗 ∈ 𝐻𝐼  is open in the solution to 𝐺[𝐼𝑘−1], delete all clinics 

assigned to that hub, add a dummy clinic 𝑚 with demand 𝐷𝑗
𝑇  computed via (2-36), and 

add the constraints given by (2-28), (2-37), (2-38) and (2-39) for that hub. 

On the other hand, if hub 𝑗 is closed in the corresponding solution, add constraints to keep 

the hub closed: 

 

∑ ∑ 𝑊𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅

= 0  (2-45)  

 

c. Non-critical Hubs (𝐻𝑁): if a hub 𝑗𝐻𝑁 is open in the solution to the problem on 𝐺[𝐼𝑘−1] 

or 𝐺[𝑄𝑝∗], delete all clinics assigned to that hub, add a dummy clinic 𝑚 with demand 𝐷𝑗
𝑇  

computed via (36), and add the constraints given by (2-33), (2-34), (2-35), (2-37), (2-38) 

and (2-39) for that hub. 

If hub 𝑗 is closed, add constraints to keep the hub closed: 
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∑ ∑ 𝑊𝑗𝑟𝑓

𝑓∈𝐹𝑟∈𝑅

= 0  (2-46)  

 

STEP 6*: Consolidation 

Identical to STEP 6 except that we use (2-25) to add the total cost of additional 

transportation (𝐶𝑇𝑜𝑡𝑎𝑙
∗ ) to the optimal value to account for the clinics deleted and consolidated in 

STEP 5*: 

 

𝐶𝑇𝑜𝑡𝑎𝑙
∗ = ∑ 𝐶𝑗

𝑃

𝑗∈𝐻𝐼

+ ∑ 𝐶𝑗
𝑃

𝑗∈𝐻𝑁

 
 (2-47)  

3.4 Numerical Experiments 

We tested Algorithm 3* as well as a standard commercial solver on a suite of 43 different 

problems that are derived from the EPI networks in four different countries in sub-Saharan Africa. 

Due to data confidentiality issues, we denote these as Countries A, B, C and D. Several geographic 

and demographic characteristics of these four countries are shown in Table 8; for areas and 

population densities we have normalized the largest values to 1.0 and expressed the other values 

as respective fractions of these. As one can observe, there are significant differences in these. 

Countries A and B are relatively large but the population densities are relatively low. Most of the 

population in Country A is concentrated in a few regions with the remainder being sparsely 

distributed over the rest of the country in remote desert areas). In contrast, Countries C and D are 
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smaller in area but densely populated and have many more existing vaccination facilities per km2 

of land. 

 

Table 8 Characteristics 

Country A B C D 

Area (103 km2)  0.99 1.00 0.09 0.45 

Population density 

(United Nations, 2017) 

(per km2) 

0.17 0.12 1.00 0.88 

No. of potential hubs (h)  41 60 87 141 

Total no. of nodes (n+1) 685 933 746 2875 

 

We summarize detailed information on facilities, storage, transportation devices and 

vaccines in Tables 9 through 12. Note that each country might have different transportation and 

storage devices to choose from and there can be significant differences in costs as well. For the 

problem instances that we considered, it happened that |T|=3 and |R|=4, although there were 

differences in the specific transport/storage device options in each country as shown in Tables 10 

and 11. There are also minor differences in the EPI vaccine regimens within the countries. To 

obtain the total demand volume at each clinic we first estimate the number of newborns it must 

serve by multiplying the estimated population in the area served by the clinic and the 

corresponding national birth rate published by the World Bank. This is then multiplied by the 

number of required doses and the volume of each dose for each vaccine in the regimen, and 

adjusted upward to account for anticipated open-vial waste. Finally, the volumes are added across 

all vaccines. 
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Table 9 Facility cost ($/year) 

Facility type Country A Country B Country C Country D 

National  40,000 14,870 52,500 158,191 

Hub 4,500 450 2,389 20,992 

Clinic 800 150 140 1,825 

 

Table 10 Storage details 

Country Device Type Capacity (L) Cost ($/year) 

A 

Cold Room 1 18,000 8,116 

Cold Room 2 1,200 1,200 

Refrigerator 1 700 900 

Refrigerator 2 340 610 

B 

Cold Room 1 5,000 17,534 

Cold Room 2 1,500 1,800 

Refrigerator 1 700 900 

Refrigerator 2 504 624 

C 

Cold Room 1,500 1,500 

Refrigerator 1 340 650 

Refrigerator 2 200 550 

Refrigerator 3 53 462 

D 

Cold Room 5,000 17,534 

Refrigerator 1 504 624 

Refrigerator 2 340 510 

Refrigerator 3 84 394 
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Table 11 Transportation details 

Country Vehicle Type Capacity (L) Cost ($/km) 

A 

Cold truck 9,293 0.97 

44 truck 172 0.54 

Motorbike 5 0.23 

B 

Cold truck 9,500 0.78 

44 truck 308.44 0.51 

Motorbike 3.4 0.1 

C 

Truck 1 331.2 1.4 

Truck 2 110.4 0.4667 

Motorbike 3 0.13 

D 

Cold truck 15,000 1.12 

44 truck 82.8 0.38 

Motorbike 3 0.12 
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Table 12 Vaccine details 

Country Name 
Pharmaceutical 

Form 

Open-

vial 

waste 

Dose 

Volume (cc) 

Required 

Dosage 

 Tuberculosis Lyophilized 0.5 1.2 1 

 Tetanus Toxoid Liquid 0 3 3 

 Measles Lyophilized 0.4 2.1 1 

A 
Oral Polio Liquid 0 1 4 

Yellow Fever Lyophilized 0.4 2.5 1 

 DTC-HepB-Hib  Liquid 0 16.8 3 

 Rotavirus Liquid 0 45.9 3 

 PCV13 Liquid 0 12 3 

 Tuberculosis Lyophilized 0.5 1.2 1 

 Tetanus Toxoid Liquid 0.15 3 2 

 Measles Lyophilized 0.45 3.5 1 

B 
Oral Polio Liquid 0.17 1 4 

Yellow Fever Lyophilized 0.45 2.5 1 

 DTC-HepB-Hib Liquid 0.1 11 3 

 Rotavirus Liquid 0 17.1 2 

 PCV13 Liquid 0.05 12 3 

 Tetanus Toxoid Liquid 0.05 3 2 

 Measles Lyophilized 0.45 3.5 1 

 Oral Polio Liquid 0.17 1 4 

C Yellow Fever Lyophilized 0.1 2.5 1 

 BCG Lyophilized 0.5 1.2 1 

 Pentavalent Liquid 0.15 5.3 3 

 Pentavalent Liquid 0.45 12.9 3 

 Tetanus Toxoid Liquid 0.1 2.5 2 

 Measles Lyophilized 0.45 3.5 1 

 Oral Polio Liquid 0.17 2 4 

D Yellow Fever Lyophilized 0.05 2.46 1 

 PCV10 Liquid 0.45 4.8 3 

 BCG Lyophilized 0.5 1.2 1 

 Pentavalent Liquid 0.15 9.7 3 
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We tested the algorithm using a computer with an Intel Core i5-6500 CPU and 3.20 GHz 

processor with 8.0 GB memory. For solving MIP-1 directly we used IBM ILOG CPLEX 12.6. 

Since none of the complete problems for any of the four countries could be directly solved, we 

started with smaller subproblems and worked on successively larger ones based on how a region 

is currently defined in the country. Detailed results for each of the four countries studied may be 

found in Tables 13 through 16. Each entry in a table corresponds to a problem over a region, part 

of a region, or a set of regions in the corresponding country. The last row in each table denotes the 

problem with the full set of nodes across all regions of the country. We summarize the number of 

potential hubs, the total number of nodes, total number of binary variables and a qualitative 

characterization of the population density associated with each instance, in order to illustrate the 

diversity of the problems that we formulated. To further interpret the results we also subjectively 

label our test problems as “large” or “small” using a cutoff of 20,000 binary variables. For the 

problems whose optimal solutions could be obtained via CPLEX, we report the percentage gap 

between the optimum cost and the objective value for the solution returned by Algorithm 3*. For 

a design problem such as this, computational times are obviously less relevant than being able to 

solve the problem; nevertheless, as a matter of record we also list the solution times for MIP-1 

using the commercial software (when an optimum solution is available) and for the solution found 

by Algorithm 3*. 
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Table 13 Computational results for Country A 

No. Hubs Nodes Binary 

Variables 

Population 

Density 

Size 

Label 

Gap CPU Times 

 MIP-1 Algorithm 3* 

1 1 10 68 sparse small 0% <1s <1s 

2 2 49 604 sparse small 0% <1s <1s 

3 4 48 1,184 moderate small 0% <1s <1s 

4 5 77 2,350 moderate small 0% 1.6s <1s 

5 7 99 4,214 dense small 0% 4.4s 2s 

6 8 206 9,952 dense small 0% ~10h 15s 

7 14 148 12,544 moderate small 0% 103s 14s 

8 13 210 16,484 moderate small 0% ~1d 24s 

9 14 235 19,852 dense small 0% ~2d 25s 

10 19 176 20,216 moderate large 0% 4,649s 16s 

11 20 384 46,240 dense large 0.29% ~1.1w 51s 

12 33 599 118,866 moderate large - - 81s 

Full 41 685 168,838 moderate large - - 127s 

 

Table 14 Computational results for Country B 

No. Hubs Nodes Binary 

Variables 

Size 

Label 

Population Density Gap CPU Times 

MIP-1 Algorithm 3* 

1 8 56 2,752 small sparse 0% 16s 1s 

2 14 101 8,596 small sparse 0% 119s 12s 

3 12 128 9,312 small dense 0% 116s 13s 

4 16 162 15,680 small dense 0% 1,304s 15s 

5 28 271 45,752 large dense+moderate - - 41s 

6 41 372 91,840 large moderate  - - 64s 

7 57 510 174,876 large moderate - - 79s 

8 65 591 231,010 large moderate+sparse - - 104s 

Full 87 746 390,108 large moderate+sparse - - 191s 

 

 

 

 



 63 

Table 15 Computational results for Country C 

No. Hubs Nodes Binary 

Variables 

Size 

Label 

Population 

Density 

Gap CPU Times 

MIP-1 Algorithm 3* 

1 1 18 116 small moderate 0% <1s <1s 

2 2 11 148 small sparse 0% <1s <1s 

3 3 22 420 small sparse 0% 2s <1s 

4 3 39 726 small moderate 0% 2s <1s 

5 4 44 1,088 small sparse 0% 3s <1s 

6 4 55 1,352 small moderate 0% 4s <1s 

7 4 64 1,568 small moderate 0% 7s <1s 

8 4 65 1,592 small dense 0% 8s <1s 

9 11 96 6,424 small moderate 0.07% 10s <1s 

10 17 141 14,518 small moderate 0.15% 79s 2s 

11 20 295 35,560 large moderate 0.42% 387s 3s 

12 26 333 52,156 large sparse+moderate 0.69% 2,748s 37s 

13 34 601 122,876 large moderate+dense - - 218s 

Full 60 933 336,360 large sparse+dense - - 476s 

 

Table 16 Computational results for Country D 

No. Hubs Nodes Binary 

Variables 

Size 

Label 

Population 

Density 

Gap CPU Times 

MIP-1 Algorithm 3* 

1 10 117 7,100 small moderate 0.25% 146s 6s 

2 14 270 22,792 large dense - - 19s 

3 11 366 24,244 large dense - - 23s 

4 27 540 87,696 large dense - - 72s 

5 38 906 206,872 large dense - - 168s 

6 83 1,718 856,228 large dense+moderate - - 453s 

Full 141 2,875 2,433,378 large moderate - - 713s 

 

As the tables show, the number of nodes, potential hubs, and binary variables in the largest 

problem that CPLEX could solve directly vary with each country. While problem size is certainly 

a factor, the geographical and population characteristics of the underlying network for a problem 

also play a role in determining whether it can be solved optimally. Based on extensive testing, it 

is our conclusion that (with a few exceptions) direct solution of MIP-1 using commercial software 



 64 

is feasible only in problems with fewer than approximately 200 nodes and 15 potential hubs, which 

is much smaller than the full network for almost all countries.  

While the results indicate that the ability (and the effort) required to solve a problem 

optimally depends on the combination of factors listed in the tables, there is no systematic 

relationship with any one specific factor that could be established. However, as might be expected, 

the total number of binary variables seems significant. Based upon our characterization of the test 

problems as “large” or “small” (using a cutoff of 20,000 binary variables), we have a total of 24 

small and 19 large instances (including the full problem for each country) in our test set; the 

distribution of these labels for each country was different and depended on the specific 

characteristics of that country. The results show that while all the small instances could be solved 

optimally, MIP-1 corresponding to 15 of the 19 large instances could not be solved to optimality. 

In particular, countries C and D which have denser populations with more nodes per unit area 

proved harder to handle. Even for the instances that could be solved to optimality, the required 

effort can be inconsistent. For example, there are a couple of small instances (instances 8, 9 for 

Country A) that took a long time to solve, and while three of the four large instances that could be 

solved yielded solutions in reasonable times, one (instance 11, Country A) took over a week to 

solve (which incidentally, was also the largest problem that we were able to solve to optimality). 

Also, in the case of the problems that could not be solved, there was no pattern to the integrality 

gap when the solver failed. 

On the other hand, the disaggregation-and-merging approach of Algorithm 3* was robust 

and able to generate solutions for every problem that we formulated (and in well under about 5 

minutes in almost all cases; even the largest problem that we tested, with over 2 million variables, 

took only approximately 12 minutes). In the 28 instances where the optimal solution was available 
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for comparison, Tables 13-16 show that Algorithm 3* also converged to the optimal solution in 

22 instances while finding a solution with a cost within 0.5% of the optimum value for five of the 

six remaining instances; our cost for the largest problem that could be solved optimally was 0.69% 

higher than the optimal cost. Moreover, even though the demographic characteristics also have an 

effect, Figure 3 shows that the computational effort appears to be approximately linear in the 

number of binary variables (the data point for the full Country D problem with over 2 million 

binary variables is omitted in the graph to maintain a better visual scale; the effort for this problem 

is actually proportionately smaller). 

 

 

Figure 3 Computational times with Algorithm 3* 

 

With the 15 problems for which the optimal solutions to MIP-1 are not available there was 

no way to compute the cost difference between the solution from Algorithm 3* and the optimum 

value. We could visually verify that the network structures generated were reasonable in all 

instances, and while there is no guarantee that they are optimal, they are certainly better than 
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anything that could be derived by inspection or ad hoc methods. One comparison that we can do 

is to compare the cost of the solution generated by our algorithm (the last row in each of Tables 

13-16) against the current cost for the entire country, since this is an existing network. To compute 

the country-wide costs for the current structure, we used the same unit costs for facilities, transport 

and storage as those used in our numerical tests. The results are shown in Table 17. Note that the 

total costs in both cases include identical operational costs for the national center as well as the 

clinics. The difference is that for the existing structure we have operational costs for regional and 

district centers and transportation costs from the national center to regions, regions to districts, and 

districts to clinics; while in our case, we have operational costs for the selected hubs and transport 

costs into the hubs and from the hubs to clinics (as captured by cost expression (2-1) in the 

formulation). Also note that we do not consider all the costs associated with the existing network 

in the comparison; rather we compare only the storage and transport costs currently incurred for 

EPI vaccines, with the corresponding costs in the redesigned network. The results indicate that 

even though we do not have a guarantee of optimality our distribution network produces overall 

savings ranging from approximately 6% to 27% for the four countries studied.  

 

Table 17 Network cost for Country A, B, C, D 

Country A B C D 

Original Cost ($) 2,453,690 791,164 5,239,822 8,674,722 

Optimized Cost ($) 1,844,129 743,903 3,819,622 7,869,399 

Savings 24.84% 5.97% 27.10% 9.28% 
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3.5 Summary and Directions for Future Work 

The WHO-EPI vaccine distribution network is of critical importance in low and middle-

income countries, and designing it optimally can be of significant economic and social benefit to 

these countries. In this paper we present a general MIP formulation of the design problem that is 

applicable to any country. While this problem can be solved optimally when the network is small, 

it rapidly becomes intractable as the problem size grows and a different solution approach is 

needed to address the problem for an entire country. We present a novel MIP-based 

disaggregation-and-merging algorithm that is based on the simple observation that changes to the 

structure in a part of the network are unlikely to have a significant effect on the structure in other 

parts that are far away. The algorithm thus uses a divide-and-conquer approach to intelligently 

generate and solve a sequence of MIPs. Extensive tests based on real-world data derived from four 

different countries in sub-Saharan Africa show that it yields solutions that are optimal or within 

0.5% of the best cost where optimality can be verified, and for large instances that are impossible 

to solve optimally, it is uniformly robust and yields good solutions in a few minutes. 

There are several directions for future work. First, a possible limitation of our approach is 

the fact that it is designed for problems where it is reasonable to assume that structures for 

subnetworks that are physically distant will tend to be independent of each other. While this is 

generally true if costs are uniform, it might not be true in other networks. For example, it might be 

appropriate to locate the hub serving a portion of the network at a location that is far away if the 

facility costs there are substantially lower, and transportation costs are also low. It would be 

interesting to see what degradation is obtained in the results when our approach is applied to such 

networks. Second, one could consider and model uncertainty, which could be associated with both 

demand and supply. Finally, a related direction would be to develop more sophisticated vaccine 
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inventory management policies than the current practice of using an across-the-board buffer of 

25% with a fixed monthly/quarterly replenishment interval. From an implementation standpoint 

though, the challenge here is twofold. First, to quantify and evaluate stochasticity we would need 

much more data than is currently available. Second, from a personnel standpoint, it would require 

far more sophistication in vaccine inventory management than is currently available in most 

LMICs. 
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4.0 Outreach and Mobile Clinic Strategies for Vaccine Distribution  

In Chapter 2 and 3, we addressed the network design problem of vaccine distribution chains 

and once the network is fixed, targeted populations are assumed to travel to the clinics in the 

network. However, in many low and middle-income countries with geographically dispersed and 

nomadic populations, last-mile vaccine delivery can be extremely complex. Because newborns in 

remote locations within these countries often do not have direct access to clinics and hospitals, 

they face significant risk from diseases and infections. An approach known as outreach is typically 

utilized to raise immunization rates in these situations. A set of these remote population centers is 

chosen, and over an appropriate time horizon, teams of clinicians and support personnel are sent 

from a depot (a district center or hub, or an existing health clinic) to set up mobile clinics at these 

locations to vaccinate people there and in the immediate surrounding area. In this paper, we model 

the problem of optimally designing outreach efforts as a mixed integer program that is a 

combination of a set covering problem and a vehicle routing problem. In addition, because 

elements relevant to outreach (such as populations and road conditions) are often unstable and 

unpredictable, we incorporate uncertainty to study the robustness of the worst-case solutions and 

the related issue of the value of information. The remainder of Chapter 4 may also be found in 

(Yang & Rajgopal, 2019). 
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4.1 Introduction 

As a biological preparation against infectious disease, vaccines have averted 2 to 3 million 

deaths annually (World Health Organization, 2019b), and coverage rates have improved 

significantly over the years under the guidance of the World Health Organization’s Expanded 

Programme on Immunization (WHO-EPI) and the Global Alliance for Vaccines and Immunization 

(Gavi) (Gavi, 2020; World Health Organization, 2013). However, in many of the poorest countries, 

getting childhood vaccines delivered to their final destinations can be an extremely complex 

process. Although many low and middle-income countries (LMICs) can often obtain vaccines at 

low cost, operating a vaccine distribution system can be a challenge. Many vaccines require a 

narrow temperature range of between 2 and 8C during storage and transportation, which in turn 

brings with it high distribution and storage costs. In addition to the challenge of planning for 

storage devices and transportation capabilities to distribute vaccines throughout the country, 

geographically dispersed or nomadic populations also present a major challenge. As a result, in 

many countries significant portions of the population have no direct access to health clinics.  

Inadequate infrastructure and geographic barriers such as poor road conditions or limited 

access to transportation can further compound this problem. For example, in Niger, around 90% 

of the roads are not paved (Blanford et al., 2012). A recent study published in The Lancet Global 

Health estimated that across 48 sub-Saharan countries, 28.2% of women of child-bearing age are 

more than 2 hours travel time (combined walking and motorized) away from the nearest hospital 

(Ouma et al., 2018). The study also found wide variations with the percentage ranging from under 

25% in South Sudan to over 90% in several countries including Nigeria, Kenya, Swaziland and 

Burundi. Another recent study in Uganda (Malande et al., 2019) concluded that difficulty in access 

to immunization centers due to poor road terrain has a significant effect and results in low 
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immunization coverage. Thus, people living in remote locations in LMICs often face significant 

difficulty in obtaining routine vaccinations, and the WHO estimates that almost 20 million infants 

worldwide are at high risk from vaccine-preventable diseases such as polio, measles, yellow fever 

and tuberculosis (World Health Organization, 2019c). 

To supplement the fixed vaccine distribution network, an approach known as outreach is 

typically utilized to raise immunization rates, especially in remote areas where direct access to 

clinic services is limited or unavailable. Clinicians and support personnel are sent from an existing 

clinic location to render services at one or more of these remote population locations. While the 

exact terminology varies from country to country we will refer to the existing location as a depot 

and the remote location as a mobile clinic. People at the location of the mobile clinic and other 

locations that are within a reasonable distance from it come there to get vaccinated. Note that this 

service is distinct from a campaign (a one-time attempt), in that outreach is periodic and repeated 

at regular time intervals. This interval might range from 1 month to 6 months in different countries.  

Compared to a fixed clinic, mobile clinics can offer more flexibility and viability when 

treating vulnerable and isolated populations (World Health Organization, 2018; 2019a) and avoid 

unnecessary fixed facility, inventory, and labor cost (Daskin & Dean, 2004). Furthermore, 

outreach is proven to dramatically raise the overall immunization rates in resource-deprived 

countries that suffer from extremely low coverage rates. An early study in Kenya estimated that 

outreach increased the coverage rate in the lowest density zone in Kenya from 25% to 57% and 

from 54% to 82% in the area with greatest population density (World Health Organization, 1977). 

With the support of the WHO, outreach activities encompassing 1,982 mobile clinics and 5,964 

personnel were able to cover 80% of targeted infants in September 2015 in Yemen; 290,498 
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children were vaccinated by these actions; and in 2018, 44 mobile clinics were set up to serve 

populations to hear-to-reach areas in Syrian (World Health Organization, 2019a) 

While Chapters 2 and 3 and other relatively recent work (Chen et al., 2014; Lim et al., 

2019; Yang et al., 2020; Yang & Rajgopal, 2020a) have focused on the network design phase of 

the WHO vaccine distribution chains, it is somewhat surprising that outreach has not received 

more attention in the academic literature and that there are almost no quantitative models available 

to help decision makers create an optimal outreach strategy. Lim et al. were the first to present 

quantitative models to determine optimal outreach locations and policies to maximize coverage 

rate (Lim et al., 2016). The authors contrasted various coverage models using data derived from 

the state of Bihar in India. In more recent work, Mofrad has proposed a mixed integer programming 

model to obtain an optimal mix of fixed and outreach vaccination services under demand 

uncertainty (Mofrad, 2016).  

In the remainder of this chapter we propose a general model for LMICs to build on these 

early studies. Section 4.2 provides some background and our assumptions. We then provide an 

MIP model formulation in Section 4.3. An extension of the model with uncertainty considerations 

is presented in Section 4.4. We introduce the notion of value of information in Section 4.5 and 

present numerical results in Section 4.6. Finally, we discuss the results and summarize our work 

in Section 4.7. 

4.2 Problem Development and Literature Review 

While outreach has been proven to be effective at increasing vaccination rates in resource-

deprived regions of the world, there is no standard structure or process that every country follows. 
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A typical process might be one where a medical team departs from an existing district center or 

clinic in a van or truck, carrying supplies and vaccines in cold boxes. The team then sets up at one 

or more mobile clinic location(s) and vaccinates the area’s residents as well as residents from 

nearby areas. If multiple locations are visited, the team might go to each location sequentially and 

return to the original depot at the end of the day. However, each country has its own outreach 

policy and criteria to conduct outreach. For example, in some countries an outreach team might 

consist of clinicians and workers who come from multiple locations. In some countries, the 

vaccines might be delivered via a truck by a separate logistical team and stored in refrigerators at 

mobile clinics before the clinical team arrives there. In some countries, it might be possible for the 

team to stay in a mobile location overnight. In general, unlike with the operation of fixed clinics 

and the associated distribution system, there are no clear guidelines or standards on how outreach 

should be conducted. 

 Despite significant variations in economy, geography, demography, etc., and thus in how 

outreach is done across all these countries, this chapter aims to provide a relatively rigorous process 

for outreach trips across all countries to meet the WHO’s goal of providing the entire targeted 

population with the opportunity to be vaccinated. We present a mixed integer programming (MIP) 

formulation to optimize the outreach strategies.  

To retain a tractable MIP model while accounting for the various associated complexities 

and diversity as best we can, we include three sets of decisions into our consideration. The first is 

choosing the locations of mobile clinics for outreach as a subset of the existing targeted population 

centers. The second set of considerations is on how to assign population centers to mobile clinics. 

Note that a population center can be assigned to a mobile clinic only if it is closer than the 

maximum coverage distance (MCD) to that mobile clinic. The MCD can be defined as the 
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maximum distance that people must travel to get vaccinated (e.g., 5 km) and is determined by the 

planners in the country. A mobile clinic could have the capability to serve multiple population 

centers, and each population center is assigned to a specific mobile clinic. Third, we determine an 

optimal set of vehicle trips that ensure that all mobile clinic locations are visited once within some 

suitable planning horizon (typically, 3 months or 6 months). Each trip would carry the required 

clinical and support personnel along with the required amount of vaccine for the location(s) served 

by the trip. Note that the vaccine regimens are not identical across countries, and based on the 

demand that is expected at population centers and the vaccine vial volumes, we can estimate the 

total volume associated with expected demand at each population center at each outreach session. 

Within the planning horizon, multiple vehicle trips can be undertaken but each vehicle trip must 

depart from a fixed depot and return to that depot after it visits one or multiple mobile clinic 

locations. The vehicles utilized in outreach trips are typically trucks or vans with several coolers 

or cold boxes and are thus capacitated in terms of how much vaccine can be carried.  

To model a realistic process for outreach, we consider time windows on vehicle trips. There 

is a maximum trip duration (MTD) for each vehicle trip, e.g., 8 to 12 hours if all personnel need 

to return to the depot on the same day. In the case that they could stay overnight at a mobile clinic 

location, the MTD could possibly be longer. We also consider service time. This includes time 

required to set up the mobile clinic and time allocated to vaccinate targeted population members 

who come to the clinic. Different clinics do not always have identical service times; a clinic at a 

location that serves a larger population is likely to have longer service times. Depending on the 

situation, the service time at the originating depot can be set to zero or to the actual time required 

to load vaccines and prepare the team on the day of the trip. The travel times between the depot 
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and clinics are obtained by dividing the corresponding distances by the average vehicle speed (e.g., 

25 km/h).  

We consider two components of cost in our objective function. The first is the direct cost 

associated with running a mobile clinic at a remote location. This cost includes the setup at the 

outreach site, the cost of renting or obtaining space, any labor costs for vaccination operations 

onsite, potential storage and energy consumptions cost, and any other local cost. The second cost 

component is the trip-related cost that is assumed to be proportional to the duration of the trip. 

This might include fuel costs, vehicle depreciation, hourly wages/allowances paid to the team and 

driver, vehicle rental costs, etc. We assume this results in an average cost per hour that is used to 

compute the cost of the trip based on its planned duration. The total cost is thus determined by the 

locations of the mobile clinics and the routes taken by the vehicles on their trips. In summary: 

1) Our objective is to minimize the sum of direct mobile clinic costs and trip costs. 

2) Mobile clinics for outreach are chosen from a set of existing targeted population centers.  

3) A population center is said to be covered by a mobile clinic if it is within the specified 

MCD of the clinic.  

4) A population center can be assigned to a mobile clinic only if it is covered by that mobile 

clinic, and each population center is assigned to one mobile clinic where the entire 

population assigned to the depot has the opportunity to be vaccinated. 

5) Multiple outreach trips are made within the planning horizon, and every mobile clinic must 

be visited once within the planning horizon by an outreach trip. 

6) We consider time windows on outreach trips and assume that a trip cannot be longer than 

some given maximum duration. There is a service time at each mobile clinic and a travel 

time between locations.  
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7) In each outreach trip, the vehicle departs from the depot, visits one or more mobile clinic 

locations, and returns to the depot within the MTD.  

8) The vehicle is capacitated, and we assume the capacity is more than that what is required 

at any single population center. 

The MCD in assumption 3 is assumed to be set to a value that is acceptable in the country 

being considered. Assumption 4 captures the WHO policy of ensuring that every child has the 

opportunity to be vaccinated. Assumptions 5, 6 and 7 are based on the most common practice, and 

assumption 8 is required to ensure feasibility. 

The proposed problem under these assumptions can be viewed as a combination of a set 

covering problem (SCP) and a vehicle routing problem with time windows (VRPTW): the process 

of choosing mobile clinics and assigning population centers to each can be viewed as an SCP while 

the routes to visit these mobile clinics can be viewed as a VRPTW. A typical SCP in this context 

would choose the optimal facility locations with the objective of minimizing cost or maximizing 

the total demand covered (Berman & Krass, 2002; Church & ReVelle, 1974). This is a well-studied 

problem in the operations research community and has been widely applied in the heath care area 

(Daskin & Dean, 2004). The VRPTW is a variation of the Vehicle Routing Problem (VRP), which 

due to its wide application and importance in distribution networks, has also been widely studied 

by researchers. The goal of VRP is to obtain an optimal vehicle trip strategy to serve a set of 

customers. However, due to its complexity, exact algorithms such as branch-and-cut and branch-

and-price usually have a size limit of 50 to 100 nodes; the problem is thus often solved by 

approximation algorithms and heuristics to find high quality solutions (Kumar & Panneerselvam, 

2012; Prins, 2004; Toth & Vigo, 2014; Vidal et al., 2012). 
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 VRPTW has the additional complication that customers need to be served within 

predefined time windows and within total trip time durations at minimum total cost, and belongs 

to the class of NP-hard problems (Lenstra & Kan, 1981). These problems are often solved by 

heuristics such as genetic algorithms (Potvin & Bengio, 1996; Thangiah, Nygard, & Juell, 1990), 

Tabu search (Cordeau, Laporte, & Mercier, 2001; Taillard et al., 1997), evolutionary algorithms 

(Bräysy, Dullaert, & Gendreau, 2004; Homberger & Gehring, 1999; Koç et al., 2015), large 

neighborhood search (Braaten et al., 2017; Bräysy, 2003; De Backer et al., 2000; Shaw, 1998), 

guided local search (Kilby, Prosser, & Shaw, 1999), ant colony algorithm (Balseiro, Loiseau, & 

Ramonet, 2011), and hybrid metaheuristics (Bent & Hentenryck, 2006; Homberger & Gehring, 

2005; Reil, Bortfeldt, & Mönch, 2018; Yu, Yang, & Yao, 2011). Exact solution approaches 

(Qureshi, Taniguchi, & Yamada, 2009) and iterative route construction and improvement 

algorithms (Figliozzi, 2010; 2012) have also been suggested for solving VRPTW with “soft” time 

windows (a relaxation in the length of the time windows). 

4.3 Model Formulation 

In this section we develop our model formulation. 

Parameters:  

𝑛: Total number of targeted population centers  

𝑖: Index of locations. 1 ≤ 𝑖 ≤ 𝑛 if 𝑖 is a population center; 𝑖 = 0, 𝑛+1 if 𝑖 is depot 

𝑘: Index of outreach trips 

𝑏𝑖: Volume of vaccine demanded at population center 𝑖 over the planning horizon 
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𝑓𝑖: Fixed cost of running a mobile clinic at population center 𝑖  

𝑐: Average transportation cost per hour 

𝑑𝑖𝑗: Distance between location 𝑖 and location 𝑗 (with 𝑑𝑖𝑖 = 0) 

𝐷: Maximal coverage distance (MCD) 

𝑎𝑖𝑗∈{0,1}: 1 if location 𝑖 is within a distance D from location 𝑗, 0 otherwise 

𝐾: Maximum number of outreach trips that can be made within the planning horizon 

𝑡𝑖𝑗: Travel time from location 𝑖 to location 𝑗 

𝑠𝑖: Service time at location 𝑖 

𝑟: Maximum trip duration (MTD) 

𝑝: Capacity of vehicle 

Variables:  

𝑋𝑖𝑗  ∈ {0,1}: 1 if population center 𝑗 is assigned to mobile clinic at location 𝑖, 0 otherwise 

𝑌𝑖 ∈ {0,1}: 1 if there is a mobile clinic at location 𝑖, 0 otherwise 

𝑍𝑖𝑗𝑘 ∈ {0,1}: 1 if location 𝑖 is followed by location 𝑗 in outreach trip 𝑘, 𝑘 ≤ 𝐾 

𝑈𝑖𝑘: Cumulative vaccine volume already distributed by outreach trip 𝑘 when arriving at 

mobile clinic location 𝑖, 𝑘 ≤ 𝐾 

𝑊𝑖: Total volume of vaccine sent to mobile clinic at location 𝑖 

 

Program MIP-2: 

 

𝑀𝑖𝑛 ∑ 𝑓𝑖𝑌𝑖

1≤𝑖≤𝑛

+ ∑ ∑ ∑ 𝑐𝑡𝑖𝑗𝑍𝑖𝑗𝑘

𝑗𝑖𝑘

 (4-1)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   
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𝑋𝑖𝑗 ≤ 𝑎𝑖𝑗 ∀𝑖, 𝑗 (4-2)  

𝑋𝑖𝑗 ≤ 𝑌𝑖  0 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 (4-3)  

∑ 𝑋𝑖𝑗 = 1

𝑖≤𝑛

 1 ≤ 𝑗 ≤ 𝑛 (4-4)  

𝑊𝑖 = ∑ 𝑏𝑗𝑋𝑖𝑗

𝑗

 𝑖 ≤ 𝑛 (4-5)  

∑ 𝑍0𝑗𝑘

𝑗

= 1 ∀𝑘 (4-6)  

∑ 𝑍𝑗0𝑘

𝑗

= 0 ∀𝑘 (4-7)  

∑ 𝑍𝑖(𝑛+1)𝑘

𝑖

= 1 ∀𝑘 (4-8)  

∑ 𝑍(𝑛+1)𝑖𝑘

𝑖

= 0 ∀𝑘 (4-9)  

∑ 𝑍𝑖𝑗𝑘

𝑗

= ∑ 𝑍𝑗𝑖𝑘

𝑗

 ∀𝑘, 1 ≤ 𝑖 ≤ 𝑛 (4-10)  

∑ ∑ 𝑍𝑖𝑗𝑘

𝑘𝑗

= 𝑌𝑖 1 ≤ 𝑖 ≤ 𝑛 (4-11)  

𝑈𝑖𝑘 − 𝑈𝑗𝑘 + 𝑝𝑍𝑖𝑗𝑘 ≤ 𝑝 − 𝑊𝑗 ∀𝑖, 𝑗, 𝑘 (4-12)  

𝑊𝑖 ≤ 𝑈𝑖𝑘 ≤ 𝑝 ∀𝑖, 𝑘 (4-13)  

∑ ∑(𝑡𝑖𝑗 + 𝑠𝑖)𝑍𝑖𝑗𝑘

𝑗𝑖

≤ 𝑟 ∀𝑘 (4-14)  

∑ ∑ 𝑍𝑖𝑗𝑘−1

𝑗≤𝑛𝑖

≥ ∑ ∑ 𝑍𝑖𝑗𝑘

𝑗≤𝑛𝑖

 𝑘 ≥ 2 (4-15)  

𝑍𝑖𝑖𝑘 = 0 ∀𝑖, 𝑘 (4-16)  
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𝑋𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 (4-17)  

𝑌𝑖 ∈ {0, 1} ∀𝑖 (4-18)  

𝑍𝑖𝑗𝑘 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 (4-19)  

𝑈𝑖𝑘 ≥ 0 ∀𝑖, 𝑘 (4-20)  

𝑊𝑖 ≥ 0 ∀𝑖 (4-21)  

 

The objective function (4-1) minimizes the overall cost, which has two components: clinic 

operation costs and outreach trip transportation costs. Constraints (4-2) ensure that a mobile clinic 

can only serve population centers within the MCD of the clinic. Constraints (4-3) ensure that a 

location can serve other locations only if a mobile clinic is scheduled there. Constraints (4-4) 

ensure that each population center is assigned to a mobile clinic. Constraints (4-5) compute the 

total vaccine volume handled at a mobile clinic based on the population that the clinic serves. 

These four sets of constraints define a typical facility location problem.  

The next set of constraints relate to the vehicle routing problem. Note that node 0 denotes 

the origin and node (𝑛+1) is the final node at the end of a trip; both represent the depot. Constraints 

(4-6) and (4-7) imply that each vehicle trip departs from the depot (𝑖=0) exactly once, while 

Constraints (4-8) and (4-9) imply that each vehicle trip enters back into the depot (𝑖=𝑛+1) exactly 

once. Constraints (4-10) ensure that the flow that enters and departs any population center i is 

balanced in each outreach trip k. Constraints (4-6) – (4-10) thus ensure that every vehicle trip is 

indeed a (0)-(𝑛+1) path. 

 Constraints (4-11) state that exactly one vehicle enters and departs each population center 

during a planning period if there is a mobile clinic at this location (i.e., 𝑌𝑖 = 1). Constraints (4-12) 

are the vehicle-specific version of MTZ subtour elimination constraints introduced by Miller, 
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Tucker, and Zemlin (Miller, Zemlin, & Tucker, 1960). Note that for a particular vehicle route 𝑘 in 

which 𝑗 follows 𝑖, 𝑍𝑖𝑗𝑘 = 1 implies 𝑈𝑗𝑘 ≥ 𝑈𝑖𝑘 + 𝑊𝑗 > 𝑈𝑖𝑘. Suppose there exists a subtour (𝑖, 𝑗, … 

𝑖), with 𝑖 ≠ 0, 𝑛. Then, 𝑈𝑗𝑘 > 𝑈𝑖𝑘 > 𝑈𝑗𝑘 will lead to a contradiction. Constraints (4-13) ensure that 

a vehicle carries enough vaccine for each mobile clinic but does not exceed its capacity. Note that 

if location 𝑖 is not a part of trip 𝑘 the values of 𝑈𝑖𝑘 are irrelevant to the problem as long as they 

satisfy (4-13). 

Constraints (4-14) state that the total travel time and service time of a route cannot be larger 

than the MTD. Constraints (4-15) are added to avoid degeneracy by ensuring that route 𝑘 is never 

utilized if route 𝑘-1 is not utilized; with Constraints (4-15), we reduce the search space by making 

sure that vehicle routes are chosen in a sequence of 1, 2, 3, etc. In addition, it ensures that vehicle 

trips with more stops will have a lower index value. Constraints (4-16) – (4-21) are self-

explanatory. 

4.4 A Two-period Stochastic Model 

In Sections 4.2 and 4.3 we introduced a model that assumed all parameters are constant 

and deterministic, and the model is solved once. However, conditions in many targeted outreach 

locations are not always stable and predictable. It can often be difficult to obtain accurate estimates 

of all problem parameters ahead of time, and these might change as we get closer to the 

implementation of the outreach trips. For example, because demand is a function of population 

and birth rate, it can be more accurate to think of it as being stochastic, as both the population and 

the birth rate within a location could vary from year to year or even within a year. Similarly, in 

Assumption (7) we estimate the travel time from 𝑖 to 𝑗 as a constant based on the distance and the 
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average vehicle speed. However, traffic and road conditions in the targeted zones can be unstable, 

so that this assumption might also need to be reconsidered. With an extreme event such as a flood 

or a landslide, a road might even be blocked. Conversely, improvements to infrastructure might 

actually reduce travel times. Therefore, it would in general be suboptimal to determine a fully fixed 

strategy ahead of time and simply repeat it in every successive planning period.  

On the other hand, it can also be problematic if we update all parameters and obtain 

completely revised plans for each planning period. Recall that our problem is to minimize costs 

while providing the opportunity for 100% coverage; however, for a variety of reasons, in practice 

not every patient will show up at a clinic. A major goal of the WHO is to make access to 

vaccinations as easy as possible so as to minimize the number of these lost opportunities, and from 

this viewpoint, it is desirable to have a stable set of mobile clinic locations and for the populations 

assigned to each to be aware of when and where clinics will be conducted on a regular basis (e.g., 

the second Tuesday of every month; the first Monday in January, April, July and October; March 

15 and September 15; etc.). We draw a compromise here by fixing locations but allowing for 

flexibility in timings. It is undesirable to move mobile clinic locations because it is disruptive and 

confusing for the populace to be directed to a different location each time for vaccination services. 

In contrast, it is relatively easy to inform people of a change in the timing of a clinic (because of a 

change in how we do the vehicle routing), especially if it is only for some clinics and the new times 

are not too different from those in the previous session.  

Suppose we consider our problem using a two-period stochastic model. The two main 

uncertainties we consider during each planning period are (a) with respect to the population (and 

hence the volume of vaccines required) at each location, and (b) with respect to the travel times 

between locations 𝑖 and 𝑗. Suppose that the volume of vaccines demanded at location i within each 
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planning period is stochastic and represented by the random variable 𝑏̃𝑖, but we can constrain it to 

lie within some range (𝑏𝑖, 𝑏𝑖). Similarly, the travel time between 𝑖 and 𝑗 is assumed to be stochastic 

and given by 𝑡̃𝑖𝑗  ∈ (𝑡𝑖𝑗, 𝑡𝑖𝑗). This range might in general, be as wide as desired in order to account 

for inherent uncertainties and the upper bounds would reflect the worst-case scenarios. We can 

then utilize MIP-2 but incorporate this information to now minimize either the expected cost or 

the maximum cost possible. We choose the latter option as it is more desirable in LMICs if the 

goal is to follow the WHO guidelines of reaching every child. As we will see, this also has the 

advantage of not requiring a characterization of the distributions associated with the stochastic 

variables. The solution to this yields the optimal mobile clinic locations, the assignment of 

population centers to these locations, and the associated routes for outreach trips for use within the 

first planning period.  

At the end of the first planning period we review our estimates of the demand and travel 

time parameters and update these based on the most current information. For example, estimates 

of the population in some locations might have changed because of seasonal migrations or because 

of updated information from public health - or other - sources. Similarly, we might perhaps know 

that because of some natural catastrophe certain roads will be unavailable over the next planning 

period, or that driving times along certain routes will be longer or shorter because of changes in 

the season or changes in road conditions. 

In the second period problem, we assume that the locations of mobile clinics and their 

population center assignments are fixed at the values obtained earlier, but we use updated 

parameters (𝑏𝑖
′, 𝑏𝑖

′) and (𝑡𝑖𝑗
′ , 𝑡𝑖𝑗

′ ) to obtain revised routes for outreach trips in the second planning 

period. Typically, the range of parameter values resulting from these updated estimates will be 
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tighter than the ones with the period 1 problem previously solved because of additional information 

that might now be available. 

We illustrate this via a simple example shown in Figure 4. Suppose that we are developing 

the outreach strategy for an area containing a fixed clinic (which serves as the depot) and 15 

population centers that must be served by it via outreach, with a visit every three months. We use 

our initial estimates of the demand and travel time to obtain the mobile clinic locations, along with 

the population assignments to each. We also obtain a set of outreach trips with routes as shown in 

Figure 4, where arrows represent vehicle routes and dotted lines represent assignment of outside 

population centers to a clinic: we have 8 outreach sessions with mobile clinics at locations 2, 5, 6, 

9, 10, 12, 14, 15, spread across three separate outreach trips: trip 1 visits and holds outreach clinics 

at locations 2, 5 and 6 before returning to the depot; trip 2 does the same with locations 10 and 9, 

and trip 3 with locations 12, 14 and 15.. While each mobile clinic serves the population at its 

location, the clinic at location 2 also serves population centers 3 and 4, which are within the MCD 

of location 2. Similarly location 6 also serves 7; 9 also serves 8; 12 also serves 11 and 13; and 

people at location 1 are served by the fixed clinic (location 0).  
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Figure 4 Initial solution 

 

This plan is implemented in the first planning period (e.g., quarter). At the end of the period 

we get updated information and learn that the travel time along each edge will be a lot shorter 

because we have a new vehicle now, but that the roads connecting locations 2 and 5, as well as 0 

and 6 will be closed because of major repairs. Without changing the locations of our mobile clinics, 

if possible we would like to obtain a better set of outreach trips to cover these same locations 

during the next planning period based on the updated information. This results in the strategy 

displayed in Figure 5. We still have our mobile clinics at the same eight locations but now we only 

have two outreach trips (0-12-14-15-2-0 and 0-5-6-9-10-0).  
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Figure 5 Updated solution 

 

This process can then be repeated for subsequent planning periods, and as we obtain new 

information we can obtain updated solutions for the outreach trips each time. In summary, we have 

the following two-period stochastic mixed integer programming models (TS-MIP): 

TS-MIP-1: 

 

𝑍1 =  𝑀𝑖𝑛𝑋,𝑌,𝑍,𝑈,𝑉,𝑊 𝑀𝑎𝑥 ∑ 𝑓𝑖𝑌𝑖

1≤𝑖≤𝑛

+ ∑ ∑ ∑ 𝑐𝑡̃𝑖𝑗𝑍𝑖𝑗𝑘

𝑘𝑗𝑖

 (4-22)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

         Constraints (4-2) – (4-4)   

∑ 𝑊𝑖

𝑖

= ∑ 𝑏̃𝑗𝑋𝑖𝑗

𝑗

 𝑖 ≤ 𝑛 (4-23)  
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         Constraints (4-6) – (4-13) 
  

∑ ∑(𝑡̃𝑖𝑗 + 𝑠𝑖)𝑍𝑖𝑗𝑘

𝑗𝑖

≤ 𝑟 ∀𝑘 (4-24)  

         Constraints (4-15) – (4-21)   

𝑡̃𝑖𝑗 ∈  (𝑡𝑖𝑗 , 𝑡𝑖𝑗) ∀𝑖, 𝑗 (4-25)  

𝑏̃𝑖  ∈  (𝑏𝑖 , 𝑏𝑖) ∀𝑖 (4-26)  

 

Let 𝑌𝑖
∗ be the optimal value of 𝑌𝑖 in the solution to TS-MIP-1. Then we have 

TS-MIP-2: 

 

𝑍2 = ( ∑ 𝑓𝑖𝑌𝑖
∗

1≤𝑖≤𝑛

+) 𝑀𝑖𝑛𝑍,𝑈,𝑉,𝑊 𝑀𝑎𝑥 ∑ ∑ ∑ 𝑐𝑡̃𝑖𝑗𝑍𝑖𝑗𝑘

𝑘𝑗𝑖

 (4-27)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

         Constraints (4-2) – (4-4), with 𝑌𝑖 = 𝑌𝑖
∗in (4-3)   

∑ 𝑊𝑖

𝑖

= ∑ 𝑏̃𝑗𝑋𝑖𝑗

𝑗

 𝑖 ≤ 𝑛 (4-28)  

         Constraints (4-6) – (4-13), with 𝑌𝑖 = 𝑌𝑖
∗in (4-11) 

  

∑ ∑(𝑡̃𝑖𝑗 + 𝑠𝑖)𝑍𝑖𝑗𝑘

𝑗𝑖

≤ 𝑟 ∀𝑘 (4-29)  

         Constraints (4-15) – (4-17), (4-19) – (4-21)   

𝑡̃𝑖𝑗 ∈  (𝑡𝑖𝑗
′ , 𝑡𝑖𝑗

′ ) ∀𝑖, 𝑗 (4-30)  

𝑏̃𝑖  ∈  (𝑏𝑖
′, 𝑏𝑖

′) ∀𝑖 (4-31)  
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Note that TS-MIP-2 is solved with the clinic locations fixed, and optimizes deliveries over 

an updated range of values for the demands 𝑏̃𝑖 and travel times 𝑡̃𝑖𝑗. 

Proposition 4: Assuming feasibility, solving TS-MIP-1 followed by TS-MIP-2 is equivalent 

respectively to (a) solving TS-MIP-1 with 𝑡̃𝑖𝑗 = 𝑡𝑖𝑗 in (4-22), (4-24) and 𝑏̃𝑗 = 𝑏𝑗 in (4-23); and (b) 

solving TS-MIP-2 with 𝑡̃𝑖𝑗 = 𝑡𝑖𝑗
′  in (4-27), (4-29) and 𝑏̃𝑗 = 𝑏𝑗

′ in (28). 

Proof: First, note that from (4-23) or (4-26), as the value of 𝑏̃𝑗 increases, so does the value of 𝑊𝑖. 

This in turn reduces the size of the feasible regions for TS-MIP-1 and TS-MIP-2 by tightening 

the constraints defined by (4-12) and (4-13). Similarly, an increase in 𝑡̃𝑖𝑗 tightens the constraints 

defined by (4-24) or (4-29) while also increasing the cost coefficient for 𝑍𝑖𝑗𝑘 in the objective. So 

with these changes, assuming feasibility, the objective function can only increase from its current 

value (or at best, stay the same). Its maximum value is thus obtained when each 𝑏̃𝑗 and 𝑡̃𝑖𝑗 is at its 

largest possible value. 

                          

 The above result is intuitive: when the population (demand) increases, it is possible that 

limitations arising from the vehicle capacity might increase the number of trips required to cover 

all locations, and when travel times along an arc 𝑖-𝑗 increase, the total travel costs rise; it is also 

possible that the length of a trip might exceed the trip MTD (r), again causing an increase in the 

number of trips. Proposition 4 states that if we are conservative and plan for the worst-case 

scenario with respect to the period 2, then this corresponds to when travel times and populations 

are as large as they could get. We refer to the solutions for these worst-case scenarios as robust 

solutions. 
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4.5 Robustness and the Value of Information 

In Section 4.4 we introduced a two-period procedure to address the unstable outreach 

environment that is typical in practice. In this section we compare, discuss and interpret the costs 

associated with the robust solutions to the period 1 and period 2 problems. 

We can interpret 𝑍1, the optimal value of TS-MIP-1 as the optimal cost associated with 

the conservative strategy at the beginning of the first period that addresses the worst-case scenario. 

The optimal value of TS-MIP-2 given by 𝑍2 is also for a conservative strategy but with an updated 

worst case scenario and with clinic locations fixed based upon the optimal solution to TS-MIP-1 

for the first period. Any difference between 𝑍1 and 𝑍2 is a result of possibly updated outreach trips 

with better vehicle routes. While 𝑍2 could in general be larger or smaller than 𝑍1, if the updated 

upper bounds are the same or smaller than before, then as the following corollary states, 𝑍2 will 

be smaller. 

Corollary 1: If 𝑏𝑖
′  ≤  𝑏𝑖 and 𝑡𝑖𝑗

′  ≤  𝑡𝑖𝑗 , then 𝑍2 ≤ 𝑍1. 

Proof: In proving Proposition 4 we saw that as the values of 𝑏̃𝑖  and 𝑡̃𝑖𝑗  increase, the feasible 

regions for both problems shrink, and when they decrease the region expands. Therefore, 𝑍1 and 

𝑍2 are monotone non-decreasing in both 𝑏̃𝑖𝑗 and 𝑡̃𝑖𝑗. Further, TS-MIP-2 has the same locations as 

the optimal locations in TS-MIP-1 (at 𝑖 corresponding to 𝑌𝑖
∗ = 1), and if 𝑏𝑖

′  ≤  𝑏𝑖 and 𝑡𝑖𝑗
′  ≤  𝑡𝑖𝑗 

it has an expanded feasible region for choosing the delivery routes; so 𝑍2 ≤ 𝑍1. 

                          

Definition 1: The percentage improvement in the robust cost that arises from tighter upper bounds 

is defined as ∆𝑍 =  100 ∗ (𝑍1 − 𝑍2)/𝑍1. 
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Note that the mobile clinic locations used in TS-MIP-2 were obtained by solving TS-MIP-

1, and in general, these need not be optimal with the updated problem parameter estimates. If we 

had the ability to also relocate mobile clinics in each time window, we could design a network and 

an associated outreach strategy with a possibly lower cost than 𝑍2 for the new planning period. To 

see this, we define the following One-Stage Stochastic Mixed Integer Programming model (OS-

MIP): 

OS-MIP: 

 

𝑍0 =  𝑀𝑖𝑛𝑋,𝑌,𝑍,𝑈,𝑉,𝑊 𝑀𝑎𝑥 ∑ 𝑓𝑖𝑌𝑖

1≤𝑖≤𝑛

+ ∑ ∑ ∑ 𝑐𝑡̃𝑖𝑗𝑍𝑖𝑗𝑘

𝑘𝑗𝑖

 (4-32)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

         Constraints (4-2) – (4-4)   

∑ 𝑊𝑖

𝑖

= ∑ 𝑏̃𝑗𝑋𝑖𝑗

𝑗

 𝑖 ≤ 𝑛 (4-33)  

         Constraints (4-6) – (4-13)   

∑ ∑(𝑡̃𝑖𝑗 + 𝑠𝑖)𝑍𝑖𝑗𝑘

𝑗𝑖

≤ 𝑟 ∀𝑘 (4-34)  

         Constraints (4-15) – (4-21)   

𝑡̃𝑖𝑗 ∈  (𝑡𝑖𝑗
′ , 𝑡𝑖𝑗

′ ) ∀𝑖, 𝑗 (4-35)  

𝑏̃𝑖  ∈  (𝑏𝑖
′, 𝑏𝑖

′) ∀𝑖 (4-36)  
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Along the lines of Proposition 4, we have the following Proposition that is related to OS-

MIP: 

Proposition 5: Program OS-MIP is equivalent to solving it with 𝑡̃𝑖𝑗 = 𝑡𝑖𝑗
′  in (4-32), (4-34) and 

𝑏̃𝑗 = 𝑏𝑗
′ in (4-33). 

The following proposition relates OS-MIP to TS-MIP-2: 

Proposition 6: 𝑍0 ≤ 𝑍2. 

Proof: It is clear that OS-MIP is a relaxation of TS-MIP-2, with the option of picking locations 

other than those given by 𝑌𝑖 = 𝑌𝑖
∗. Therefore, 𝑍0 ≤  𝑍2.  

                    

Note that the optimal value of OS-MIP ( 𝑍0 ) is yet another conservative cost, and 

corresponds to the theoretical best robust solution to the outreach problem for the second period. 

Any difference between 𝑍2 and 𝑍0 is due to the fact that in OS-MIP we have the freedom to update 

mobile clinic locations. We may also interpret this reduction as the value of having better 

information on the parameter bounds at the beginning of the first period, as opposed to having to 

wait for it until the beginning of the second period (because we would then have obtained this 

solution for the second period in our initial design for the first period). 

Definition 2: The value of information is defined as 𝑉 = 100 ∗ (𝑍2 − 𝑍0)/𝑍2.  

 Thus 𝑉  is the percentage savings possible (in the worst-case scenario), from obtaining 

information in the form of correct bounds on 𝑡̃𝑖𝑗 and 𝑏̃𝑖 at the beginning of the first period. 
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4.6 Numerical Experiments  

We tested the procedure introduced in the previous sections on data that we adapted from 

four countries in sub-Saharan Africa. Due to issues with data confidentiality we label these 

countries A through D. Country B is smaller and has a high population density. The other three 

are larger in area and have some pockets of dense population with others (such as areas in the 

Sahara desert) where it is much more sparsely populated. To explain our numerical experiments 

and demonstrate some of the insights to be gained, we will first describe in detail an illustrative 

example with data derived from Country D. Following this, we analyze and summarize results 

from a larger set of instances.  

 Our illustrative example has 9 population centers on a 20 km by 20 km graph, with the 

depot is in the middle of the graph. Suppose each population center has an average of 100 newborns 

in a year. For implementation in the first period a robust solution (with value 𝑍1) is obtained for 

problem TS-MIP-1 using initial estimates of upper bounds on demand and travel times. The 

mobile clinic locations and the population centers assigned to each location in this solution are 

then fixed. Next, using the most current information on demands and travel times vehicle routes 

are updated for the second period by obtaining a robust solution (with value 𝑍2) to problem TS-

MIP-2. We also solve OS-MIP to obtain the theoretical best robust solution to the period 2 

problem (with value 𝑍0). Under the assumption that the bounds on the updated estimates are 

always tighter than the initial ones, we study the impact of upper bound changes (i) only in 𝑏 

(demand), (ii) only in 𝑡 (travel times), and (iii) in both 𝑏 & 𝑡. 

We first generated a base case for the period 2 problem with associated values for 𝑏𝑗
′ and 

𝑡𝑖𝑗
′ , and obtained 𝑍0  by solving problem OS-MIP. This solution with a value of 𝑍0 = 619.17 
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represents the best robust solution obtainable for period 2 and is illustrated in Figure 6: it has four 

clinics (at locations 1, 2, 3, and 5) with two trips (0-1-2-0) and (0-3-5-0). The mobile clinics at 

locations 2, 3 and 5 also cover the populations at 7, (4,6) and (8,9) respectively. The cost of 619.17 

is comprised of 290.50 in facility costs and 328.67 in operating costs. 

 

Figure 6 Optimal robust solution for period 2 problem 

 

Next, for each of the three types of parameter changes (𝑏, 𝑡, and 𝑏 & 𝑡) we studied (a) 

small, (b) moderate and (c) large reductions in the initial estimates of the upper bounds before the 

first period (𝑏𝑗 and 𝑡𝑖𝑗). Specifically, for these three cases we assumed that 𝑏𝑗 and 𝑡𝑖𝑗  were on 

average 20%, 80% or 150% larger than their values before the second period (𝑏𝑗
′ and 𝑡𝑖𝑗

′ ). In all 

cases, we first solve problem TS-MIP-1 with the appropriate values of 𝑏𝑗 and/or 𝑡𝑖𝑗 to obtain the 

robust solution for the first period, along with its value 𝑍1. We then fix clinic locations and their 

allocations to solve problem TS-MIP-2 using 𝑏𝑗
′  and 𝑡𝑖𝑗

′  for the bounds, and obtain the robust 
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solution for the second period, along with its value 𝑍2. The results are listed in Table 18, and we 

discuss some of the insights that these offer. 

 

Table 18 Example in Country D 

 
𝑏 𝑡 𝑏 & 𝑡 

Case Small Moderate Large Small Moderate Large Small Moderate Large 

𝑍1 619.17 619.17 1003.68 651.29 714.19 778.49 693.39 831.13 1682.26 

𝑍2 619.17 619.17 817.49 630.32 630.32 642.03 619.35 627.30 923.71 

∆𝑍 0.00% 0.00% 18.48% 3.22% 11.74% 17.53% 10.68% 24.52% 45.09% 

𝑉 0.00% 0.00% 24.26% 1.77% 1.77% 3.56% 0.03% 1.29% 32.97% 

Note: Theoretical best robust optimum for period 2 = 𝑍0=619.17 

 

First, it may be seen that with the tighter bounds, the robust optimum for TS-MIP-2 (=𝑍2) 

shows improvement over that for TS-MIP-1 (=𝑍1) in seven of the nine cases, with the percentage 

improvement (∆𝑍) being much more significant when the upper bounds get significantly tighter 

(i.e., large reductions). While these results are intuitive, it is interesting that the improvements are 

more pronounced with tighter time estimates as compared to tighter demand estimates 

(simultaneous reduction of uncertainty in both parameters further magnifies the savings). 

Next, we look at the issue of what we could have achieved in the second period if we had 

been able to re-optimize locations and allocations. That is, we compare the robust optimum 𝑍2 

from TS-MIP-2 to its theoretical lowest value of 𝑍0 =619.17. In particular, we compute the 

theoretical maximum percentage improvement possible in 𝑍2, i.e., the value of information (𝑉) as 

given by Definition 2. It may be observed that for this example, the updated robust solution to the 

second period problem is actually very close to the theoretical best value in seven of the nine cases. 

The only instances where the value of information is high is when there are large reductions in the 
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estimated upper bounds for demand, especially when there are simultaneous reductions in the 

upper bound on travel times. We visually illustrate some of the results in Figures 7 to 10.  

 

 

Figure 7 Solution in period 1 with initial demand estimates  

 

First, consider demand estimates. If the revised estimates in the upper bounds are only 

slightly or moderately tighter (columns 1 and 2 in Table 18), we find the theoretical best solutions 

at the beginning and this does not change with revised estimates; thus there is no value to these 

revised estimates. In contrast, if there is a large reduction in the estimate from period 1 to period 

2 (column 3 in Table 18) the situation is different. Figure 7 illustrates the solution to problem TS-

MIP-1 for the first period, with six clinics scheduled via five outreach trips covering 1, 2, (3, 9), 

5, 6 respectively. Note that clinics at 2, 9 and 6 also cover the populations at locations 7, 8 and 4, 

respectively in this solution. As displayed in Table 18, this solution has a total cost of 1003.68. 
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Now, consider period 2 where we are constrained to maintain outreach clinics at these same 

six locations, but use the updated information on the worst-case demand to solve problem TS-

MIP-2. This yields the updated solution shown in Figure 8 with two outreach trips (0, 1, 5, 9, 0) 

and (0, 3, 6, 2, 0) to cover the six clinics, and a total cost of 817.49. Locations 7, 8 and 4 are 

covered by the clinics at 2, 9 and 6, respectively. Note that the very loose initial upper bound for 

demand caused the robust solution to the first period to have more trips because a much larger 

demand could cause vehicle capacity constraints to be violated if the period 2 solution is adopted. 

In both solutions we have facility costs of 435.75 for the six open mobile clinics, but operating 

costs of 567.93 in the first period as opposed to 381.74 in the second. 

 

 

Figure 8 Updated solution in period 2: large reductions in demand estimates  
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Finally, note that if we had had the updated information prior to period 1, we would have 

obtained the best overall robust solution (shown in Figure 6), which is 24.26% better than the one 

from TS-MIP-2; this is the value of information in this instance.  

Next we look at travel time; Figure 9 is for the case where upper bounds on travel times 

are tightened slightly or moderately, i.e., when the initial upper bound estimates were either 20% 

or 80% larger on average than their updated values in period 2 (columns 4 and 5 in Table 18). The 

robust solutions for both periods are identical in both cases, and the reductions from 𝑍1 to 𝑍2 

(651.29 to 630.32, and 714.19 to 630.32, respectively) are only because 𝑡𝑖𝑗
′ <  𝑡𝑖𝑗 . Also, the only 

difference between Figure 9 and the theoretical best design for period 2 shown in Figure 6 is that 

a clinic is located at 8 instead of 5. This is because 𝑡05 happens to be larger than 𝑡08, and thus in 

period 1, location 8 is preferable to location 5 in the solution to TS-MIP-1. When in period 2 the 

clinic is fixed at location 8 and we use 𝑡05
′  and 𝑡08

′  in Problem TS-MIP-2, the cost (𝑍2=630.32) is 

11.15 units higher than it would have been (𝑍0=619.17) with the optimal location (i.e., 𝑉 =1.77%).  
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Figure 9 Solutions in periods 1 & 2: small/moderate reductions in travel time estimates 

 

Figure 10 depicts the case where there is a large reduction (column 6 in Table 18) in the 

initial estimates of travel time (𝑡𝑖𝑗  exceeds 𝑡𝑖𝑗
′  by 150% on average). Again, the solutions are 

identical in both periods, and in contrast with the case when reductions in the bounds are small or 

moderate, a clinic is now assigned to location 7 instead of location 2. Using these locations as 

opposed to the optimal ones in Figure 6 yield a period 2 cost of 𝑍2=642.03 that is 22.86 units 

higher than the theoretical best value of 𝑍0 (with 𝑉 =3.56%). 
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Figure 10 Solutions in period 1 & 2: large reductions in travel time estimates 

 

With simultaneous changes in demand and travel times parameter estimates (columns 7, 8 

and 9 in Table 18) similar types of results are obtained; figures are omitted in the interest of brevity.  

We now present results from a larger set of instances across all four countries using the 

same methodology. The results for the value of information (𝑉) are summarized in Tables 19, 20 

and 21 based upon the demographic characteristics of the region. Table 19 shows results for 

examples from Country B and regions of Countries A, C, and D with high population densities 

(e.g., around their capital cities). Table 20 has instances from Countries A, C, and D where 

populations are moderately dense, while Table 21 covers larger, often remote regions in the same 

countries, with relatively sparse populations. Note that the examples in Table 21 have fewer 

population centers that are more sparsely distributed on a larger graph, while the examples in Table 

19 have more population centers on a relatively small graph; the examples in Table 20 are in 

between these two extreme cases. Also note that smaller values for 𝑉 in the tables indicate worst-
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case solutions that are relatively robust with our approach, while larger values indicate that having 

tighter, more accurate initial estimates of parameter bounds can result in more significant savings 

over the solutions from our approach. Insights that can be drawn from the computational results in 

these tables are discussed in detail in the following section. 

 

Table 19 Value of information for examples in smaller, densely populated regions  

 b t b & t 
 Small Moderate Large Small Moderate Large Small Moderate Large 

A1 9.72% 17.71% 32.47% 0.00% 0.00% 0.00% 9.72% 17.71% 32.47% 

B1 0.00% 22.87% 50.99% 0.38% 1.96% 1.96% 0.38% 23.35% 50.99% 

B2 0.00% 15.47% 47.88% 0.05% 0.05% 0.05% 0.05% 15.47% 47.88% 

B3 0.00% 19.76% 49.24% 0.00% 1.09% 2.22% 0.00% 20.02% 49.24% 

B4 31.22% 31.70% 48.00% 0.00% 0.00% 31.87% 31.22% 31.70% 58.58% 

B5 0.00% 17.45% 30.35% 0.26% 0.26% 0.26% 0.26% 17.51% 30.87% 

B6 0.00% 15.54% 26.85% 0.00% 0.00% 1.14% 0.00% 15.63% 36.13% 

C1 24.57% 38.75% 68.49% 0.00% 0.00% 0.00% 24.51% 38.82% 68.49% 

C2 0.58% 24.08% 39.33% 0.58% 1.75% 2.04% 0.58% 25.19% 50.24% 

D1 20.05% 41.38% 65.20% 0.27% 0.27% 2.62% 20.05% 42.57% 65.20% 

Mean 8.61% 24.47% 45.88% 0.15% 0.54% 4.22% 8.68% 24.80% 49.01% 

Median 0.29% 21.32% 47.94% 0.02% 0.15% 1.55% 0.48% 21.68% 49.74% 
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Table 20 Value of information for examples in moderately populated regions  

 𝑏 𝑡 𝑏 & 𝑡 
 Small Moderate Large Small Moderate Large Small Moderate Large 
A2 0.00% 17.98% 26.23% 0.01% 30.98% 26.23% 0.01% 26.23% 26.23% 

A3 0.00% 0.00% 16.21% 0.00% 0.00% 0.00% 0.00% 0.00% 16.21% 

A4 0.00% 0.14% 30.88% 0.00% 0.00% 0.00% 0.00% 10.83% 30.88% 

C3 0.30% 0.30% 10.84% 0.30% 1.73% 2.02% 0.30% 0.30% 18.59% 

C4 0.00% 9.52% 9.52% 0.00% 0.00% 8.95% 0.00% 9.52% 19.79% 

D2 0.00% 11.69% 20.94% 0.00% 0.00% 0.00% 0.00% 12.12% 35.22% 

D3 0.00% 0.00% 24.26% 1.77% 1.77% 3.56% 0.03% 1.29% 32.97% 

D4 11.52% 11.52% 20.67% 0.00% 0.00% 20.67% 11.52% 11.52% 39.95% 

D5 0.00% 13.14% 22.51% 0.00% 0.00% 0.00% 0.00% 13.14% 31.45% 

D6 0.00% 0.00% 12.19% 1.69% 0.00% 2.58% 2.58% 0.00% 34.67% 

Mean 1.18% 6.43% 19.42% 0.38% 3.45% 6.40% 1.44% 8.49% 28.60% 

Median 0.00% 4.91% 20.80% 0.00% 0.00% 2.30% 0.00% 10.17% 31.16% 

 

Table 21 Value of information for examples in larger, sparsely populated regions  

 b t b & t 
 Small Moderate Large Small Moderate Large Small Moderate Large 
A5 0.00% 0.00% 0.00% 2.42% 2.02% 2.02% 2.42% 2.02% 17.99% 

A6 0.00% 0.12% 0.12% 0.12% 8.42% 8.42% 0.12% 8.42% 8.42% 

A7 0.00% 6.98% 14.29% 0.00% 14.29% 14.29% 0.00% 14.29% 14.29% 

A8 0.00% 0.00% 16.00% 0.00% 0.00% 0.00% 0.00% 0.00% 16.00% 

C5 6.81% 6.81% 6.81% 0.28% 0.00% 0.00% 6.56% 6.56% 17.78% 

C6 0.00% 0.00% 7.97% 0.00% 0.00% 0.00% 0.00% 7.97% 15.40% 

C7 0.00% 5.51% 5.51% 0.00% 0.00% 5.51% 0.00% 5.51% 11.57% 

C8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

D7 0.00% 0.00% 4.91% 2.05% 4.91% 4.91% 2.05% 4.91% 11.25% 

D8 0.00% 0.00% 0.00% 0.66% 0.96% 0.96% 0.00% 0.96% 0.96% 

Mean 0.68% 1.94% 5.56% 0.55% 3.06% 3.61% 1.11% 5.06% 11.37% 

Median 0.00% 0.00% 5.21% 0.06% 0.48% 1.49% 0.00% 5.21% 12.93% 
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4.7 Discussion and Conclusions 

Tables 19, 20 and 21 show results for three different demographic characteristics: for each 

we list the mean as well as median values for each of the nine cases studied. We separately 

highlight instances with 𝑉 values over 20% and those with values under 5% to indicate “large” 

and “small” values, respectively for the value of information. The entries not highlighted may be 

thought of as being in between. First, consider changes in estimates of only 𝑏 or only 𝑡 (the first 

two columns in each of the tables). Although exceptions do exist, we can draw the general 

conclusion that our approach is quite robust (i.e., 𝑉 is small) in the following situations: 

• Revisions are only in the travel time estimates, regardless of whether they are small, moderate 

or large: the value of information is under 5% in 79, and over 20% in only 4 out of the 90 

instances corresponding to this situation (the nine columns - across the three tables - under 

“𝑡”). 

• Revisions are only in the demand estimates and they are small: 𝑉 is under 5% in 24 and over 

20% in only 3 out of the 30 instances for this case (the three columns under “𝑏” and “Small”).  

• Revisions are only in the demand estimates and they are moderate, but we are in larger areas 

with moderate to sparse population densities: 𝑉 is under 5% in 12 of 20 instances (the two 

columns under “𝑏” and “Moderate” in Tables 20 and 21). 

Conversely, the costs in the worst-case scenario can be higher with our approach than they 

would be if we had perfect information in advance (i.e., 𝑉 is much larger) under the following 

scenarios: 
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• There are large revisions in the bounds on demand: 𝑉 is over 20% in 16 and under 5% in 

only 5 out of the 30 instances for this case, all of the latter for sparsely populated regions (the 

three columns under “𝑏” and “Large”).  

• There are moderate revisions in densely populated regions: 𝑉 is over 20% in 5 of the 10 

instances for this case and never under 5% (column under “𝑏” and “Moderate” in Table 19). 

When we consider simultaneous changes in the estimated bounds for both travel time and 

demand estimate (the columns under “𝑏 & 𝑡”), the results are closely correlated with what happens 

when there are changes in demand alone, leading one to conclude that demand revisions constitute 

the primary factor and their effects overshadow revisions in travel time estimates. 

Next, we conducted a set of separate, nonparametric, Wilcoxon signed-rank tests for each 

of the three different types of regions (𝑑, 𝑚, 𝑠) to see if there were differences in the magnitude of 

the mean effects of the different types of changes (𝐻0: 𝜇∙𝑏 =  𝜇∙𝑡 vs. 𝐻1: 𝜇∙𝑏 >  𝜇∙𝑡 and 𝐻0: 𝜇∙𝑏,𝑡 =

 𝜇∙𝑏  vs. 𝐻1: 𝜇∙𝑏,𝑡 >  𝜇∙𝑏 for each of 𝑑, 𝑚, 𝑠). Note that in each of the six comparison we have 30 

paired instances across which we study difference in means. The null hypotheses were strongly 

rejected (P-values all under 0.001) for five out of these six tests; the only case where there was no 

significant difference in the mean value of 𝑉 was when comparing individual changes in estimates 

of 𝑏 and 𝑡 in sparse regions (𝜇𝑠𝑏  and 𝜇𝑠𝑡) , which had a P-value of 0.66. In other words, (i) in dense 

and moderately populated regions, the value of 𝑉 with changes in only 𝑏 is significantly higher 

than that with changes in only 𝑡, and (ii) in all types of regions 𝑉 is significantly higher with 

changes in both 𝑏 & 𝑡 as compared with changes in only 𝑏.  

Finally, we look at the general demographic characteristics to study their effect. When we 

have large, sparsely populated regions (Table 21), our approach is quite robust: 𝑉 is under 5% in 

62 out of 90 instances, and always under 20%. When the population density is moderate (Table 
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20), our approach is still reasonably robust unless there are large changes in the estimated demand 

(as observed previously), in which case the value of 𝑉  starts to increase. Finally, in smaller, 

densely populated areas (Table 19) the results can be much more sensitive to changes in demand 

and there is significant value to obtaining more precise estimates of demand. Given that there are 

90 instances for each type of region we conducted two simple one-sided Z-tests for equality of 

means (𝐻0: 𝜇𝑑 = 𝜇𝑚 vs. 𝐻1: 𝜇𝑑 > 𝜇𝑚 and 𝐻0: 𝜇𝑚 = 𝜇𝑠 vs. 𝐻1: 𝜇𝑚 > 𝜇𝑠). The null hypothesis is 

strongly rejected in favor of the alternative in both tests (P-values in both cases are under 0.0002), 

confirming that small, dense regions tend to have larger value of information than larger, 

moderately populated regions, and in turn, the latter yield larger value for 𝑉 than large, sparsely 

populated regions.  

Based on our computational study, we can draw two main conclusions. First, larger 

sparsely populated regions tend to have lower value of information, while the opposite is true for 

smaller more densely populated regions. We speculate that this is because when there are fewer 

population centers and they are relatively far apart and can serve relatively fewer neighboring 

population centers, a larger fraction of the locations are selected for outreach, and capacity is less 

of an issue with fewer people being served by each outreach trip. Thus, even with perfect 

information, there is relatively little opportunity to revise the initial plan even when demand and 

travel times estimates change. Conversely, in smaller, denser regions there are more dependencies 

between population centers and more people are served in each trip. Thus changes in population 

estimates, and to a lesser extent, travel times, have a significant effect: often, the best strategy 

could be different from the plan that we obtain because capacities might be exceeded or alternative 

solutions to the set covering problem yield shorter vehicle routes. Thus the value of obtaining 

accurate information is much higher, and the solution with our approach might not be as robust. 
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Second, it is better to focus more on obtaining more accurate population (demand) 

estimates than on travel time estimates. The latter have relatively low value of information and our 

approach is very robust even in smaller, densely populated regions with approximate estimates of 

these times. On the other hand, if demand estimates are too conservative (large) we could arrive at 

a strategy that results in locations that are not cost-effective after we get updated information; thus 

it is important to be able to get good estimates of demand in order for our approach to be robust.  

In summary, this chapter presents a systematic way to plan for economical outreach 

operations by formulating the problem as a mixed integer program. It also studies the issues related 

to the typical uncertainties associated with estimating demand for vaccines and planning individual 

outreach trips and provides insights on where to focus attention if we are to follow a robust 

approach that plans for worst-case scenarios in order to comply with WHO-EPI guidelines to 

provide universal coverage. 
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5.0 Learning Combined Set Covering and Traveling Salesman Problem  

In Chapter 4 we solved a combination of a set covering problem (SCP) and a vehicle 

routing problem with time windows (VRPTW). In this chapter we study a related but different 

combination of a Set Covering Problem and a Traveling Salesman Problem (TSP). The Traveling 

Salesman Problem is one of the most intensively studied combinatorial optimization problems due 

both to its range of real-world applications and its computational complexity. When combined 

with the Set Covering Problem, it raises even more issues related to tractability and scalability. In 

this chapter, we study a combined Set Covering and Traveling Salesman problem and provide a 

mixed integer programming formulation to solve the problem. Motivated by applications where 

the optimal policy needs to be updated on a regular basis and repetitively solving this via MIP can 

be computationally expensive, we propose a machine learning approach to effectively deal with 

this problem by providing an opportunity to learn from historical optimal solutions that are derived 

from the MIP formulation. We also present a case study using the World Health Organization’s 

vaccine distribution chain, and provide numerical results with data derived from four countries in 

sub-Saharan Africa. Our results show that while the novel machine learning based mechanism 

generates high quality solution repeatedly for problems that resemble instances in the training set, 

it does not generalize as well on a different set of optimization problems. These mixed results 

indicate that there are promising research opportunities to use machine learning to achieve 

tractability and scalability. The remainder of this chapter is based this work (Yang & Rajgopal, 

2020b). 
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5.1 Introduction and Literature Review 

The Traveling Salesman Problem (TSP) is among the most intensively studied 

combinatorial optimization problems by both the operations research and the machine learning 

communities. It has been widely applied in areas such as planning, manufacturing, genetics, 

neuroscience, telecommunication, healthcare, supply chains and logistics (Applegate et al., 2011). 

The objective in TSP is to find the shortest route that visits each of a given set of locations and 

returns to the origin. We consider a TSP in combination with the Set Covering Problem (SCP), 

where the goal of the SCP in this context is to select an optimal subset of locations for facilities, 

so as to “cover” all locations in the original set of locations (Berman & Krass, 2002; Church & 

ReVelle, 1974). SCP is also a well-studied problem in the operations research community and has 

been broadly applied in areas such as facility planning, healthcare, and supply chains (Daskin & 

Dean, 2004). 

TSP by itself is a hard problem. Exact algorithms such as branch-and-bound, cutting-plane 

and branch-and-cut methods often slow down when the number of nodes exceeds a few hundred 

(Applegate et al., 2011). Large-scale TSP is thus mainly solved by approximation algorithms and 

heuristics to find high quality solutions that are within 2–3% (say) of the optimum (Johnson et al., 

2007; Johnson & Mcgeoch, 1997; Johnson & McGeoch, 2007; Rego et al., 2011). Some of the 

widely used TSP approximation algorithms and heuristics include Christofides’ algorithm 

(Christofides, 1976), 2-opt moves (Croes, 1958), 3-opt moves (Bock, 1958; Lin, 1965), the Lin–

Kernighan (LK) method (Christofides & Eilon, 1972; Lin & Kernighan, 1973), large-step Markov 

chains (Martin, Otto, & Felten, 1991; 1992), stem-and-cycle method (Pesch & Glover, 1997; Rego, 

1998), and ant colony optimization (Dorigo & Gambardella, 1997). Interested readers can refer to 
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(Applegate et al., 2011; Gutin & Punnen, 2007; Purkayastha et al., 2020; Rego et al., 2011) for 

more details about TSP approximation algorithms and heuristics.  

When combined with SCP, TSP takes on even more complexity. With a given set of facility 

locations, TSP only considers transportation costs and its binary decision variables only determine 

whether or not location 𝑖 is followed by location 𝑗. When combined with SCP, the problem first 

needs to identify locations at which to open facilities, and then come up with a route that visits 

each such location before returning to the origin. In doing this it needs to consider an overall cost 

that is the sum of facility costs, customer assignment costs, and transportation costs. The binary 

decision variables determine whether or not a facility is open at location 𝑖, whether a location 𝑗 is 

assigned to an open facility at location 𝑖, and whether location 𝑘 is followed by location 𝑙 in the 

TSP route. Clearly, the combined SCP and TSP problem raises more issues related to tractability 

and scalability than either SCP or TSP separately. 

In Section 5.2 we formulate the combined Set Covering and Traveling Salesman Problem 

as a mixed integer program (MIP). Solving this MIP can theoretically provide us with the optimal 

solution, but the run time explodes exponentially as the problem size increases. In addition, every 

time we re-solve the MIP model using new inputs and parameters, it typically starts from scratch 

and there is often no obvious method to incorporate information from historical solutions. 

Therefore, in any application where the above combinatorial problem needs to be solved 

repeatedly over time with different input values, an approach that relies on MIP can become 

computationally expensive. For example, in an application that we describe in Section 5.4, the 

problem needs to be solved and the solution needs to be updated every month over hundreds of 

locations.  
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If a training dataset can be derived from a set of historically solved problems, machine 

learning (ML) could be a natural candidate to effectively deal with this repeated combinatorial 

situation. The proposed work aims at providing a tractable and scalable learning-based approach 

to solve the combined SCP and TSP problems. We first formulate this problem as a mixed integer 

programming model and discuss relevant issues in Section 5.2. We then propose a learning-based 

mechanism to efficiently deal with this problem in Section 5.3. In Section 5.4, we provide an 

illustration of our approach with an application to mobile clinics and vaccination outreach that 

arises in the context of the World Health Organization’s (WHO) Expanded Programme on 

Immunization (EPI), and present numerical results using data derived from the WHO and four 

countries in sub-Saharan Africa. Finally, Section 5.5 discusses some related issues and Section 5.6 

summarizes this chapter.  

Several recent studies have been conducted by both the operations research and the 

machine learning communities to try and incorporate machine learning into combinatorial 

optimization problems. Many of these studies aim at end-to-end learning methods that train the 

ML model from discrete optimization problems and directly output solutions from the input 

instance. For instance, Vinyals et al. introduced the pointer network (Vinyals, Fortunato, & Jaitly, 

2015) as a recurrent neural network (RNN) that sequentially takes all the nodes in the graph as 

input and outputs the TSP route using a mechanism that is similar to the graph attention mechanism 

(Veličković et al., 2018) that is normally used to focus only on a subset of the input. Using a similar 

model, Bello et al. trained a reinforcement learning model and defined its reward signals as tour 

lengths (Bello et al., 2016). Instead of using RNN to process the input, Kool and Welling utilized 

graph neural networks (GNN) (Scarselli et al., 2009) after adding attention to establish a similar 

model (Kool & Welling, 2019). GNN can also be derived to learn the node selection policy (Dai 
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et al., 2017). Using a different approach, Nowak et al. approximated a double stochastic matrix 

(Nowak at el., 2018) and Emami and Ranka used Sinkhorn Policy Gradient (Emami & Ranka, 

2018) in the GNN output in order to characterize the permutation. Kaempfer and Wolf developed 

a Multiple Traveling Salesmen Problem solver using Permutation Invariant Pooling Networks 

(Kaempfer & Wolf, 2018). Bronstein et al. overviewed geometric deep learning problems with 

several applications, solutions, difficulties, and future directions (Bronstein et al., 2017). 

Machine learning can also be used to retrieve meaningful properties of optimization 

problems, or even alongside the optimization as part of the optimization algorithm. This class of 

approaches include learning to branch (Alvarez, Louveaux, & Wehenkel, 2017; Balcan et al., 

2018; He, Iii, & Eisner, 2014; Khalil et al., 2016; Khalil et al., 2017; Lodi & Zarpellon, 2017), 

learning to cut (Baltean-Lugojan et al., 2018; Tang, Agrawal, & Faenza, 2019), learning when to 

use Dantzig-Wolf decomposition (Kruber, Lübbecke, & Parmentier, 2017), learning how to 

disaggregate the problem (Yang et al., 2020), learning where to linearize a mixed integer quadratic 

problem (Bonami, Lodi, & Zarpellon, 2018), learning tactical solutions under imperfect 

information (Larsen et al., 2019), and learning as a modeling tool (Lombardi & Milano, 2018). 

These studies, including those end-to-end learning approaches, often face feasibility, modeling, 

scaling, and data generation challenges, and are still mostly in the exploratory stages (Bengio, 

Lodi, & Prouvost, 2018). 

On the other hand, deep learning, as a sub-field of machine learning, has advanced 

dramatically with the growth of large datasets and computational power, and has led to 

breakthroughs on a variety of tasks including speech recognition, machine translation, objective 

detection, and computer vision (Lecun, Bengio, & Hinton, 2015). Deep learning often outperforms 

other learning algorithms when exploring high dimensional spaces and large datasets (Deng & Yu, 
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2014; Goodfellow, Bengio, & Courville, 2016). Many researchers have been using deep learning 

to solve combinatorial optimization problems. In fact, many of the approaches mentioned above 

belong to this category; these include Pointer Networks (Bello et al., 2016; (Vinyals, Fortunato, & 

Jaitly, 2015), GNN (Dai et al., 2017; Kool & Welling, 2019; Nowak at el., 2018; Scarselli et al., 

2009; Veličković et al., 2018), Sinkhorn Policy Gradient (Emami & Ranka, 2018), Permutation 

Invariant Pooling Networks (Kaempfer & Wolf, 2018), Geometric learning (Bronstein et al., 

2017), and others (Baltean-Lugojan et al., 2018; Kruber, Lübbecke, & Parmentier, 2017; Larsen 

et al., 2019; Tang, Agrawal, & Faenza, 2019). This paper aims at providing one of the early 

approaches for an end-to-end learning algorithm for a particular combinatorial optimization 

problem via deep learning. 

5.2 The MIP Formulation 

The Combined Set Covering and Traveling Salesmen Problem can be formulated using the 

following mathematical programming model:  

Parameters:  

𝑛: Total number of targeted population centers  

𝑖: Index of locations. 1 ≤ 𝑖 ≤ 𝑛 for targeted customer locations; 𝑖 = 0, 𝑛+1 for the origin 

𝑓𝑖: Fixed cost of running a facility at location i  

𝑐𝑖𝑗: Variable cost of assigning a location j to a facility at location i;  𝑐𝑖𝑖 = 0 

𝑝: Average transportation cost per unit of distance  

𝑑𝑖𝑗: Distance between location 𝑖 and location 𝑗 (with 𝑑𝑖𝑖 = 0 and 𝑑𝑖𝑗 = 𝑑𝑗𝑖  ) 
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𝐷: Maximal coverage distance (MCD) 

𝑎𝑖𝑗∈{0,1}: 1 if location j is within a distance D from location i 

Variables:  

𝑋𝑖𝑗  ∈ {0,1}: 1 if location j is assigned to facility at location i, 0 otherwise; 

𝑌𝑖 ∈ {0,1}: 1 if there is a facility at location 𝑖, 0 otherwise 

𝑍𝑖𝑗 ∈ {0,1}: 1 if location i is followed by location j on the trip route  

𝑈𝑖: Cumulative number of stops visited during a trip when arriving at facility location i  

 

Program MIP-3: 

 

𝑀𝑖𝑛 ∑ 𝑓𝑖𝑌𝑖

1≤𝑖≤𝑛

+ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗

1≤𝑗≤𝑛𝑖

+ ∑ ∑ 𝑝𝑑𝑖𝑗𝑍𝑖𝑗

𝑗𝑖

 (5-1)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

𝑋𝑖𝑗 ≤ 𝑎𝑖𝑗 𝑓𝑜𝑟 ∀𝑖, 𝑗 (5-2)  

𝑋𝑖𝑗 ≤ 𝑌𝑖  𝑓𝑜𝑟 ∀0 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 (5-3)  

∑ 𝑋𝑖𝑗 = 1

𝑖≤𝑛

 𝑓𝑜𝑟 ∀1 ≤ 𝑗 ≤ 𝑛 (5-4)  

∑ 𝑍0𝑗

𝑗

= 1  (5-5)  

∑ 𝑍𝑗0

𝑗

= 0  (5-6)  

∑ 𝑍𝑖(𝑛+1)

𝑖

= 1  (5-7)  
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∑ 𝑍(𝑛+1)𝑖

𝑖

= 0  (5-8)  

∑ 𝑍𝑖𝑗

𝑗

= ∑ 𝑍𝑗𝑖

𝑗

 𝑓𝑜𝑟 ∀1 ≤ 𝑖 ≤ 𝑛, (5-9)  

∑ 𝑍𝑖𝑗

𝑗

= 𝑌𝑖 𝑓𝑜𝑟 ∀1 ≤ 𝑖 ≤ 𝑛 (5-10)  

𝑈0 = 0  (5-11)  

1 ≤ 𝑈𝑖 ≤ ∑ 𝑌𝑖

𝑖

 𝑓𝑜𝑟 ∀𝑖 ≥ 1 (5-12)  

𝑈𝑖 − 𝑈𝑗 + 𝑀𝑍𝑖𝑗 ≤ 𝑀 − 𝑌𝑗 𝑓𝑜𝑟 ∀𝑖, 𝑗 (5-13)  

𝑍𝑖𝑖 = 0 𝑓𝑜𝑟 ∀𝑖 (5-14)  

𝑋𝑖𝑗 ∈ {0, 1} 𝑓𝑜𝑟 ∀𝑖, 𝑗 (5-15)  

𝑌𝑖 ∈ {0, 1} 𝑓𝑜𝑟 ∀𝑖 (5-16)  

𝑍𝑖𝑗 ∈ {0, 1} 𝑓𝑜𝑟 ∀𝑖, 𝑗 (5-17)  

𝑈𝑖 ≥ 0 𝑓𝑜𝑟 ∀𝑖 (5-18)  

 

Note that the objective function (5-1) minimizes the sum of the facility location, 

assignment, and transportation costs. Constraint set (5-2) ensures that a location can only be 

assigned to a facility that is within the maximal coverage distance (MCD), in which case 𝑎𝑖𝑗 = 1, 

and 0 otherwise. Constraint set (5-3) ensures that the assignment is to an existing facility. 

Constraint set (5-4) ensures that each location is assigned to exactly one facility. These three sets 

of constraints define a typical Set Covering Problem.  

The next few sets of constraints relate to the Traveling Salesman Problem. Note that node 

0 denotes the beginning node of a trip and node (𝑛+1) is the final node of a trip; both represent the 
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origin. Constraint sets (5-5) and (5-6) imply that the trip departs from the origin (0) exactly once, 

while Constraint sets (5-7) and (5-8) imply that the trip enters back into the origin (𝑛+1) exactly 

once. Constraint set (5-9) ensures that the flow that enters and departs any location 𝑖 is balanced. 

Constraints (5-5) – (5-9) thus ensure that the trip is indeed a (0)-(𝑛+1) path. 

 Constraint set (5-10) states that the trip enters and departs a location 𝑖 exactly once if there 

is a facility at this location (i.e., 𝑌𝑖 = 1). Constraint set (5-11) – (5-13) is the MTZ subtour 

elimination constraints introduced by Miller, Tucker, and Zemlin (Miller, Zemlin, & Tucker, 

1960). Note that if 𝑗 follows 𝑖  in the TSP route, 𝑍𝑖𝑗 = 1 implies 𝑌𝑗 = 1 and 𝑈𝑗 ≥ 𝑈𝑖 + 𝑌𝑗 > 𝑈𝑖 . 

Suppose there exists a subtour ( 𝑖 , 𝑗 , … 𝑖 ), with 𝑖 ≠ 0, 𝑛 + 1 . Then, 𝑈𝑗 > 𝑈𝑖 > 𝑈𝑗  leads to a 

contradiction. Note that if location 𝑖 is not a part of the trip (in which case 𝑌𝑖 = 0 by Constraint set 

(5-10)), the values of 𝑈𝑖  are irrelevant to the problem as long as they satisfy the constraints. 

Constraint sets (5-14) – (5-18) are self-explanatory. 

Having to solve this MIP on a regular basis can be computationally expensive or even 

impossible when n is large. In the next section, we introduce a machine learning approach that 

leverages the MIP to solve this problem. 

5.3 Proposed Learning Mechanism 

We start by formally defining the learning models to solve the combined SCP and TSP, 

and discuss how we iteratively update the model parameters. Suppose the optimal solution to MIP-

3 is given by the vector (𝑿∗, 𝒀∗, 𝒁∗). The proposed framework is to establish two supervised 

machine learning models that can be trained to find this vector given a set of problem parameters. 

In particular, given a graph 𝑮 along with its associated location and cost information, Model 1 will 
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be used to derive (𝑿∗, 𝒀∗). That is, Model 1 is trained to provide the portion of the optimal solution 

corresponding to the set covering problem, while also accounting for the TSP cost that this results 

in (in addition to the location and assignment costs). Recall that 𝑌𝑗, as a component of 𝒀, is a binary 

variable that represents whether the facility in a particular location 𝑗 is open or not. Model 1 is 

trained to generate each component 𝑌𝑗 of the vector 𝒀 as a value between 0 and 1 that corresponds 

to the probability that in the optimum solution, the facility at location 𝑗 is open. Denoting this 

vector of probabilities by 𝒈(𝒀) we could define Model 1 via the following map:  

Model 1 (SCP predictor): 𝑮 → 𝒈(𝒀) 

Note that 𝒈(𝒀) is used to derive a vector 𝒀̂ that is a prediction of 𝒀, and also a vector 𝑿̂ that is a 

prediction of assignments given by 𝑿. We will discuss this later in Section 5.3.4. 

On the other hand, Model 2 establishes the relationship between (𝑮, 𝒀) and (𝒁), i.e., it is 

trained to use the graph described by 𝑮 and the facility locations defined by 𝒀∗ to determine the 

optimal TSP sequence in 𝒁∗. In particular, given 𝒀, Model 2 is trained to generate a set of values 

between 0 and 1 for each 𝑍𝑖𝑗  that correspond to the probability that location 𝑖  is followed by 

location 𝑗 in the optimal sequence. Defining these probabilities by matrix 𝒑(𝒁), we could define 

Model 2 via the following map: 

Model 2 (TSP predictor): (𝑮, 𝒀) → 𝒑(𝒁) 

In the following sections we provide the detailed methodology to train each of Model 1 

and Model 2, and discuss how the models can be used to derive a combined solution that is 

guaranteed to be feasible. 
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 Data Generation and Labeling 

To begin with, we generate a data set Train with graph information 𝑮  that contains 

candidate facility locations and all relevant cost information. We also generate an example data 

set Test with graph information 𝑮′. For evaluation purposes, the data sets 𝑮′ and 𝑮 should be 

drawn from the same overall pool, i.e., the elements of these two data sets, although different, 

resemble each other in some sense. Finally, we generate another data set Testnew with graph 

information 𝑮𝒏𝒆𝒘  that represents significantly different problems that are unseen in data sets 

Train and Test.  

We then use the MIP formulation that is proposed in Section 5.2 to solve the optimization 

problem on each of the instances in 𝑮, 𝑮′, and 𝑮𝒏𝒆𝒘. For each instance, we use the optimal solution 

(𝑿∗, 𝒀∗, 𝒁∗) to generate the corresponding vectors 𝒈(𝒀∗) and 𝒑(𝒁∗); note that for these instances 

𝒈(𝒀∗) and 𝒑(𝒁∗) have values of 0 or 1 for all components since the “probabilities” from our 

optimal solutions are either 0 or 1. We also document each of the individual cost components in 

the optimal solution, namely, the optimal facility location cost, assignment cost, and TSP cost. 

 Training Machine Learning Model 1 (SCP Predictor) 

In this step, we establish a Neural Network on Train that maps 𝑮 to 𝒈(𝒀), where the 𝑗𝑡ℎ 

element of 𝒈(𝒀) is the probability that 𝑌𝑗
∗ = 1. From a pure optimization perspective, we would 

ideally like this value to be 1 or 0, depending on whether the facility at 𝑗 is open or closed. Our 

model is trained via back propagation, and the hyperparameters in the learning process, such as 

the network architecture, the number of hidden layers and hidden units, the learning rate, the mini-

batch size, activation functions and the number of epochs are tuned iteratively. To accomplish this, 
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we further split dataset Train into a training set that comprises 90% of the elements in Train and 

a validation set that comprises the remaining 10% of the data set. Within an iteration, the 

hyperparameters are fixed and the model is trained using the training set with a pre-set number of 

epochs (one of the hyperparameters). At the end of each iteration, we obtain a model corresponding 

to the current set of hyperparameters. We then evaluate this model on the validation set. The 

hyperparameters are then altered for the next iteration based on how the model performs on the 

validation set. If overfitting is observed, i.e., the model performs significantly better on the training 

set and worse on the validation set, then regularization layers (typically Dropout layers) are added, 

and the number of activations and layers are reduced. On the other hand, if underfitting is observed, 

i.e., the model performs poorly on both sets, then more layers and activations are added. This 

process is repeated until no significant improvements are observed. 

It is important to note that in general, there is no guarantee that the integer values obtained 

by directly rounding the fractional 𝒈(𝒀) will lead to the optimal solution of MIP-3. In fact, these 

integer values might not even lead to feasible solution. In Section 5.3.4 we will present a detailed 

discussion on how to convert 𝒈(𝒀) into a feasible Combined SCP and TSP solution. 

 Training Machine Learning Model 2 (TSP Predictor) 

We train another Neural Network on Train that maps (𝑮, 𝒀) to 𝒑(𝒁), where element (𝑖, 𝑗) 

of 𝒑(𝒁) is the probability that 𝑍𝑖𝑗
∗ = 1. That is, it uses the graph information described by 𝑮 and 

the facility locations defined by 𝒀 to generate a matrix of probabilities 𝒑(𝒁) corresponding to the 

optimal TSP solution. The training process for Model 2 also follows the same approach described 

in Section 5.3.2 for Model 1 of dividing Train into a training and validation set with similar 

hyperparameter tuning over a predetermined number of epochs. In the training process, we use the 
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optimal vector 𝒀∗ with its associated TSP path since the objective here is to train this model to find 

the optimal path for a given set of locations on a given graph. In the next section we discuss how 

to utilize Model 2 to generate a TSP route from 𝒑(𝒁) that visits each open location. 

 Obtaining a Feasible Solution to MIP-3 

In Section 5.3.2 and Section 5.3.3, we developed probability vectors 𝒈(𝒀) and probability 

matrix 𝒑(𝒁). In this section, we use these results to derive a feasible solution to the combined 

SCP/TSP. Recall that 𝒈(𝒀) corresponds to the probabilities associated with opening a facility at 

each location. For each example, we define a threshold 𝛼 and let 𝑌̂𝑖 = 1 if 𝑔(𝑌𝑖) ≥  𝛼 and 𝑌̂𝑗 = 0 

for all 𝑗 with 𝑔(𝑌𝑖) <  𝛼, i.e., we use 𝛼 to convert the vector of probabilities 𝒈(𝒀) into the discrete 

estimator 𝒀̂ for use as the SCP solution. Note that in order to ensure that 𝒀̂ is feasible, we need to 

ensure that (i) every location 𝑖 either has an open facility, or (ii) is assigned to a location 𝑗 with an 

open facility that is within a distance 𝐷 from it, i.e., 𝑌̂𝑗 = 1 with 𝑎𝑖𝑗 = 1. We use traversal search in 

Algorithm 4 to go over all examples and locations to check if either of these two conditions is 

meet and force any location 𝑖 that does not meet either to have an open facility. Note that all 

locations with open facilities are obviously assigned to the facility there, i.e., 𝑋̂𝑖𝑖 = 1 if 𝑌̂𝑖 = 1, and 

any location where there is no open facility is assigned to the feasible open facility location that 

leads to the smallest assignment cost. The algorithm is summarized in Table 22. 
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Table 22 Algorithm 4 to obtain SCP solution 

Input:  

Optimization parameters 𝑎𝑖𝑗
𝑒𝑥𝑝

, 𝑑𝑖𝑗
𝑒𝑥𝑝

, 𝑐𝑖𝑗
𝑒𝑥𝑝

, 𝑓𝑖
𝑒𝑥𝑝

 for each example 𝑒𝑥𝑝 and location 𝑖, 𝑗 

Machine learning Model 1 result 𝑔𝑒𝑥𝑝(𝑌𝑖) for each example 𝑒𝑥𝑝 and location 𝑖  

Parameter 𝛼 

for 𝑒𝑥𝑝 in index of 𝑮, 𝑮′, or 𝑮𝒏𝒆𝒘: 

 for 𝑖 in Index of locations: 

  let 𝑋̂𝑖𝑗
𝑒𝑥𝑝

 = 0 for all 𝑗 in index of locations 

  if 𝑔𝑒𝑥𝑝(𝑌𝑖) < 𝛼: 

   if  𝑲 such that  𝑘  𝑲, 𝑎𝑖𝑗
𝑒𝑥𝑝

 = 1 and 𝑔𝑒𝑥𝑝(𝑌𝑖) > 𝛼: 

    let 𝑌̂𝑖
𝑒𝑥𝑝

 = 0 

    let 𝑋̂𝑗𝑖
𝑒𝑥𝑝

 = 1 where 𝑗 = min
𝑙  𝑳

𝑙, and 𝑳 = argmin
𝑘  𝑲

𝑐𝑘𝑖
𝑒𝑥𝑝

 

else: 

    let 𝑌̂𝑖
𝑒𝑥𝑝

 = 1 

    let 𝑋̂𝑖𝑖
𝑒𝑥𝑝

 = 1  

else: 

   let 𝑌̂𝑖
𝑒𝑥𝑝

 = 1 

   let 𝑋̂𝑖𝑖
𝑒𝑥𝑝

 = 1 

Output:  

SCP solution 𝑿̂ and 𝒀̂ with 𝑋̂𝑖𝑗
𝑒𝑥𝑝

, 𝑌̂𝑖
𝑒𝑥𝑝

 for each example 𝑒𝑥𝑝 and location 𝑖, 𝑗 

 

Proposition 6: 𝑿̂ and 𝒀̂ that are generated by Algorithm 4 satisfy Constraint sets (5-2) – (5-4) in 

MIP-3. 

Proof: The outer for loop iterates through each of all examples in our Train, Test, and Testnew 

dataset, which corresponds to an optimization problem. The inner for loop further iterates all 

facility location 𝑖 , whose 𝑔𝑒𝑥𝑝(𝑌𝑖) should be either < 𝛼  or ≥ 𝛼  that are represent by the outer 

if/else conditional statement. In the first part of the inner if/else statement, Constraint set (5-2) and 
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(5-3) are satisfied by the condition, i.e., 𝑋𝑗𝑖
𝑒𝑥𝑝

 = 1 only if 𝑎𝑖𝑗
𝑒𝑥𝑝

 = 1 and 𝑔𝑒𝑥𝑝(𝑌𝑖) > 𝛼 (which leads 

to 𝑌̂𝑖
𝑒𝑥𝑝

 = 1 in the second part of the outer if/else conditional statement). In all other parts, 

Constraint sets (5-2) and (5-3) are also satisfied by ensuring that 𝑋̂𝑖𝑖
𝑒𝑥𝑝

 = 1 with 𝑌̂𝑖
𝑒𝑥𝑝

 = 1 and 𝑎𝑖𝑖
𝑒𝑥𝑝

 

= 1. Additionally, throughout the inner and outer if/else conditional statement, there exists one and 

only one 𝑗 such that 𝑋𝑗𝑖
𝑒𝑥𝑝

 = 1. Note that 𝑗 is the location with smallest assignment cost (and with 

the smallest index if there are multiple such 𝑗), or 𝑗 = 𝑖.  

                      

So far we have obtained 𝑿̂ and 𝒀̂ that constitute a feasible solution to the SCP. Next, we 

input (𝑮, 𝒀̂) (𝑮′ or 𝑮𝒏𝒆𝒘 in Test and Testnew respectively) into Model 2 to obtain 𝒑(𝒁). Note that 

we do not input the true optimal solution 𝒀∗ into Model 2, because 𝒀∗ is assumed to be unknown 

when conducting a valid end-to-end evaluation and comparison. In order to derive from 𝒑(𝒁) a 

feasible set of TSP routes given by 𝒁̂, the routes are required to visit each of the open location in 

𝒀̂ once, and only once. Note that the routes have to start from the origin (indexed by 0) and return 

to the origin (indexed by 𝑛+1). We start the transformation process with node 0, and look at 𝑺𝒆𝒙𝒑, 

the set of open facilities in an instance 𝑒𝑥𝑝 with {𝑖: 𝑌̂𝑖
𝑒𝑥𝑝

 = 1 for all 𝑖 ≤ 𝑛}. We find the node 𝑗 in 

𝑺𝒆𝒙𝒑 with the largest probability 𝑝̂𝑒𝑥𝑝(𝑍0𝑗) (and with the smallest index if there are multiple such 

𝑗), i.e., 𝑗 is the most promising stop to follow node 0 in the optimal TSP route. We let 𝑍̂0𝑗 = 1 and 

remove 𝑗 from 𝑺𝒆𝒙𝒑. We continue with a similar process while adding open facilities to the TSP 

route until 𝑺𝒆𝒙𝒑 is empty. We summarize this algorithm in Table 23. 
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Table 23 Algorithm 5 to obtain TSP solution 

Input:  

Machine learning Model 2 result 𝑝̂𝑒𝑥𝑝(𝑍𝑖𝑗) for each example 𝑒𝑥𝑝 and locations 𝑖, 𝑗 

Set of open facility 𝑺𝒆𝒙𝒑 = {𝑖: 𝑌̂𝑖
𝑒𝑥𝑝

 = 1 for all 𝑖 ≤ 𝑛} 

for 𝑒𝑥𝑝 in index of 𝑮, 𝑮′, and 𝑮𝒏𝒆𝒘: 

 let 𝑍̂𝑖𝑗
𝑒𝑥𝑝

 = 0 for all 𝑖 and 𝑗 in index of locations 

 let 𝑖 = 0 

 let 𝑺𝒆𝒙𝒑 = 𝑺𝒆𝒙𝒑 − {𝑖} 

 while 𝑺𝒆𝒙𝒑   : 

  let 𝑍̂𝑖𝑗
𝑒𝑥𝑝

 = 1 where 𝑗 = min
𝑙  𝑳

𝑙, and 𝑳 = argmax
𝑘  𝑺𝒆𝒙𝒑

𝑝̂𝑒𝑥𝑝(𝑍𝑖𝑘) 

  let 𝑺𝒆𝒙𝒑 = 𝑺𝒆𝒙𝒑 – {𝑗} 

  let 𝑖 = 𝑗  

 let 𝑍̂𝑖(𝑛+1)
𝑒𝑥𝑝

 = 1  

Output:  

TSP solution 𝒁̂ with 𝑍̂𝑖𝑗
𝑒𝑥𝑝

 for each example 𝑒𝑥𝑝 and location 𝑖, 𝑗 

 

Proposition 7: 𝒁̂ that are generated by Algorithm 5 satisfy Constraint sets (5-5) – (5-14) in MIP-

3. 

Proof: The outer for loop iterates through each of the examples in our Train, Test, or Testnew 

dataset, which corresponds to an optimization problem. Lines 1, 2 and 3 in the for loop ensures 

that Constraint sets (5-5) and (5-6) are satisfied, and the last line ensures that Constraint set (5-7) 

and (5-8) are satisfied. Note that we have 𝑍̂0𝑗
𝑒𝑥𝑝

 = 1 and 𝑍̂𝑖(𝑛+1)
𝑒𝑥𝑝

 = 1 where 𝑗 is the node selected by 

the first line in the first iteration in the while loop, while 𝑖 is the last node selected when the while 

loop terminates. Constraint sets (5-9) and (5-10) are ensured by iteratively selecting one, and only 

one 𝑗 throughout the iterations in the while loop and assign 𝑍̂𝑖𝑗
𝑒𝑥𝑝

 = 1; the 𝑗 then becomes the next 

𝑖 and the next 𝑗 is then selected similarly until all node in 𝑺𝒆𝒙𝒑 are visited. Therefore, ∀1 ≤ 𝑖 ≤ 𝑛, 
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we have at iteration 𝑘, if 𝑖 in 𝑺𝒆𝒙𝒑 = {𝑖: 𝑌̂𝑖
𝑒𝑥𝑝

 = 1 for all 𝑖 ≤ 𝑛}, ∑ 𝑍𝑖𝑗𝑗  = 𝑍𝑖𝑗 = 1 = 𝑌𝑖, and in the 

previous iteration, ∑ 𝑍𝑗𝑖𝑗  = 𝑍𝑖𝑘−1𝑗𝑘−1 = 𝑍𝑖𝑘−1𝑖 = 1, where 𝑖𝑘−1 and 𝑗𝑘−1 are the previous 𝑖 and 𝑗. 

On the other hand, if 𝑖 ∉ 𝑺𝒆𝒙𝒑, ∑ 𝑍𝑖𝑗𝑗  = ∑ 𝑍𝑗𝑖𝑗  = 𝑌𝑖 = 0. Recall that Constraint sets (5-11) – (5-13) 

is the MTZ constraints that ensure that no subtour is present in the solution, where a subtour is 

defined as a (0)-(n+1) path that does not visit all of the open facilities in 𝑺𝒆𝒙𝒑. Note that according 

to the definition of 𝑺𝒆𝒙𝒑, node (n+1) can never be inside 𝑺𝒆𝒙𝒑. Thus, the while loop will never set 

𝑍̂𝑖(𝑛+1)
𝑒𝑥𝑝

 = 1 if there exists another node in 𝑺𝒆𝒙𝒑. Constraint set (5-14) is also ensured because we 

set 𝑺𝒆𝒙𝒑 = 𝑺𝒆𝒙𝒑 – {𝑗} in previous iteration, and the next 𝑖 (precious 𝑗) is already excluded from the 

selection.                       

                      

We conclude this section with the following result: 

Proposition 8: 𝑿̂, 𝒀̂, and 𝒁̂ together constitute a feasible solution to the Combined Set Covering 

and Traveling Salesman Problem that is formulated as MIP-3. 

Proof: From Proposition 6 and Proposition 7, Constraint sets (5-2) – (5-14) are satisfied, and 

Constraint sets (5-15) – (5-18) are satisfied because 𝑿̂, 𝒀̂, and 𝒁̂ only contains binary values. Note 

that the convenience variable 𝑈𝑖 in MIP-3 is not given here and is unnecessary. 

 

 Evaluating the End-to-end Mechanism 

We use the overall cost that is defined by the objective function (5-1) in MIP-3 as the basis 

for evaluating the performance of our end-to-end ML-based mechanism to solve the Combined 

SCP and TSP problem. In the next section, we provide a detailed demonstration of how our 
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approach performs by using a case study that is based upon the World Health Organization’s 

vaccine distribution chain, and provide numerical results with data derived from four countries in 

sub-Saharan Africa. 

5.4 An Illustration: Mobile Clinics and Outreach Operations 

As we saw in Chapter 4, residents in remote locations in many low- and middle-income 

countries often have no (or limited) direct access to clinics and hospitals, and outreach is typically 

utilized to raise immunization rates. A set of these remote population centers are chosen for 

locating mobile clinics and a team of clinicians and support personnel set up these mobile clinics 

periodically to vaccinate people in the immediate surrounding area. As discussed in Chapter 4 

there are a limited number of mathematical programming models to help determine optimal 

outreach strategies (e.g., Lim et al., 2016; Mofrad, 2016), but none of these models looks at the 

problem on an ongoing basis even though outreach in practice is done at regular intervals of time, 

and the underlying mathematical models are required to be solved repeatedly because the same 

plan is not followed each time. In Chapter 4 we presented a quantitative model that considers 

updated model parameters and obtains revised plans for subsequent planning periods using a two-

period Robust approach. We presented a method to economically plan for outreach and provided 

management insights on where to focus more attention, but when solving the mathematical model, 

our approach starts from scratch every time that the MIP needs to be solved. Thus, there are no 

mechanisms to learn from historical optimization solutions. We now discuss a variation of the 

outreach problem of Chapter 4, but with slightly different assumptions, and use this as the basis 

for a combined SCP and TSP formulation. 
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 Problem Development 

We consider a version of the outreach problem from the previous chapter, with the main 

difference being that we only have a single outreach trip. For example, one may think of this as 

covering a subset of the population centers for a monthly outreach trip. A medical team departs 

from an existing clinic at a district center in a truck or van, while carrying vaccines in cold boxes 

along with related supplies. The team then sets up at one or more mobile clinic location(s) to 

vaccinate residents in that area as well as residents from nearby areas that are within the maximum 

coverage distance. In the outreach trip, the team goes to each of the locations sequentially and 

eventually returns to the original depot.  

We take three sets of decisions into consideration: 1) choosing locations of mobile clinics 

as a subset of all targeted population centers to be covered; 2) assigning population centers to 

mobile clinics that are within the maximum coverage distance to that mobile clinic (each mobile 

clinic could serve multiple population centers, but a population center can only be assigned to one 

mobile clinic); and 3) vehicle trips that ensure that all mobile clinic locations are visited once and 

only once within some suitable planning horizon (e.g., 1 month). Within each planning horizon, 

only one vehicle trip is assumed to be undertaken and the vehicle must depart from a fixed depot 

and return to that depot after it visits all mobile clinic locations. The vehicles utilized in outreach 

trips are typically trucks or vans with several coolers or cold boxes, and since our target 

populations are in remote and sparsely populated area, we assume that these vehicles are not 

capacitated in terms of how much vaccine can be carried. Therefore, we assume that each trip 

could carry necessary clinical and support personnel along with the sufficient amount of vaccine 

for the location(s) that are served by the trip. In cases that the required vaccine volume is larger 



 125 

than the capacity, a larger vehicle is acquired or a shorter planning horizon can be leveraged to 

conduct more outreach trip throughout the year.  

As opposite to the problem discussed in Chapter 4 that only consider two components of 

cost, three components of costs are considered in planning the outreach operation. First, we 

consider direct cost associated with running a mobile clinic at a particular location that includes 

the setup at the outreach site, labor costs for vaccination operations onsite, the cost of renting or 

obtaining space and storage devices, energy consumptions cost, and any other local cost. We also 

consider the cost of assigning population centers to a mobile clinic. This cost includes the cost of 

moving targeted newborns from other population centers without a mobile clinic, incentives paid 

to them to have them visit a mobile clinic, and estimated social and healthcare cost associated with 

people not visiting mobile clinics due to relative long travel distances. The assignment cost can be 

formulated as a linear function of distance from population centers to mobile clinic, although this 

is not crucial. Lastly, we consider trip-related cost that includes vehicle depreciation or vehicle 

rental costs, fuel costs, hourly wages/allowances paid to the team and driver. Note that this cost is 

assumed to be proportional to the duration of the trip, and we thus utilize an average cost per hour 

based on the trip duration to quantify it. In summary, the total cost is determined by the selected 

mobile clinics locations, distance from population centers to mobile clinics, and the route taken by 

the vehicle on the outreach trip. 

This process can be viewed as an example of a combination of the Set Covering Problem 

and the Traveling Salesman Problem as discussed in Section 5.1. The selection of mobile clinics 

can be viewed as the selection of facility locations in 𝒀, assigning population centers to the selected 

mobile clinics can be considered via assignment variables 𝑿, and the route to visit mobile clinics 

can be viewed as the TSP route 𝒁. Moreover, because the demand, traffic and road conditions in 
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these targeted zones are typically unstable, it can be challenging to obtain an accurate set of 

estimates for these problem parameters ahead of time. This situation was discussed in detail in 

Section 4.4 and it would be ideal to determine a flexible strategy over every successive planning 

period. The outreach model thus needs to be solved periodically with similar parameter and inputs, 

where each instance corresponds to a graph with one depot and multiple population centers. The 

learning-based mechanism described in Section 5.3 therefore constitutes a promising direction 

from which to approach this problem, and we thus apply the methodology illustrated in Section 

5.3 to solve this problem and present the numerical results using data derived from the WHO and 

four countries in sub-Saharan Africa. 

 Numerical Results 

To present numerical results using the mobile clinic and outreach operations example, we 

selected 30 unique sets of targeted populations across different parts of four countries in sub-

Saharan Africa, and for each such set, we generated the node set of locations and 1,000 different 

examples using different combinations of cost data. This generated a total of 30,000 different 

instances. We ran these 30,000 examples on MIP-3 using Gurobi over a period of several weeks, 

and obtained the optimal solution vector (𝑿∗, 𝒀∗, 𝒁∗) for each instance. We also documented each 

cost component (facility location cost, assignment cost, and TSP cost) in each of the optimal 

solutions.  

We then randomly picked 5 distinct sets of population centers from the 30 we started with 

and assigned all of the corresponding 5,000 examples associated with the 5 graphs in this set to 

dataset Testnew. For the remaining 25 sets of population centers and the corresponding 25,000 

instances, we randomly split these into 22,500 examples for dataset Train and 2,500 examples for 
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dataset Test. Note that instances in Train and Test are drawn from the same pool of locations, so 

that the same population center and its associated graph could appear in both datasets, albeit with 

different cost information. However, the graphs in Testnew are all different from those in Train 

and Test. In other words, the instances in Train and Test bear some resemblance to each other, 

unlike Testnew, whose instances come from a completely different set of population centers and 

their graphs. After utilizing the method introduced in Section 5.3.2 and 5.3.3 to train the two 

machine learning models on Train with the data set split into training and validation sets and 

parameter tuning after each iteration, we obtain the final model parameters. Given any instance, 

we then use machine learning Model 1 to obtain 𝒈(𝒀) followed by Algorithm 4 in Section 5.3.4 

to obtain SCP solution 𝑿̂ and 𝒀̂. We then feed 𝑿̂ and 𝒀̂ into machine learning Model 2 to obtain 

𝒑(𝒁) followed by Algorithm 5 to obtain TSP solution 𝒁̂.  

We use the datasets Test and Testnew to evaluate how well the machine learning models 

(along with the two algorithms for obtaining a final solution) perform on data that is distinct from 

the data used to train. To evaluate the end-to-end performance of the approach, we compare the 

total cost of the solution obtained with the minimum cost obtained by solving MIP-3. We started 

with a value of 0.5 for the threshold 𝛼 described in Section 5.3.4 since this would appear to be a 

natural value for it if we interpret each element of 𝒈(𝒀) as the probability that the corresponding 

variable is equal to 1. We summarize the numerical results for each component of cost in Table 

24. For each component and data set, the entry in Table 24 is the ratio of the sum of the costs for 

that component across all instances in the data set obtained from our approach, and the sum of the 

optimal costs for that component across the same instances obtained by solving the MIP (expressed 

as a percentage). 
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Table 24 Cost comparison of each component in Train, Test and Testnew 

 # examples Facility cost Assignment cost TSP cost Total Cost 

Train 22,500 100.09% 100.25% 102.02% 101.20% 

Test 2,500 100.34% 100.42% 102.36% 101.49% 

Testnew 5,000 147.56% 58.77% 158.80% 146.33% 

 

Since examples in Train and Test are drawn from a common pool of population centers, 

while examples in Testnew are from a completely different set of population centers, it is natural 

that the approach will yield better results with instances in Test than with instances in Testnew. The 

numerical results from data set Test should give us a fair measurement of the performance of the 

mechanism on future examples from node sets that have been solved before albeit with different 

cost parameters. On the other hand, data set Testnew presents a more “tough” test to measure the 

model’s generality, because these instances use node sets that were never part of the training 

process and thus no actual information on historical solutions is given to the learning mechanism.  

As shown in Table 24, with instances in Train and Test our approach is able to generate 

heuristic solutions that are on average about 1% more expensive than the optimal solution from 

solving MIP-3. Because the mechanism utilized a train-validation splitting procedure within the 

backend training and hyperparameter tuning process, overfitting is not observed, and the 

mechanism preforms similarly on both data sets.  

On the other hand, when dealing with optimization problems with a different pool of 

population centers that are not part of the training process, the model is not able to generate 

solutions that are as good. In particular, it appears that the machine learning approach performs 

notably worse on the Testnew set, and leads to facility costs that are 47.56% higher than the optimal 

cost. When it comes to new datasets that it has never seen, Model 1 is not as good at identifying 
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the correct combination of facility locations to cover all population centers, and consequently 

Algorithm 4 turn out to be more “conservative” and opens a number of additional locations to 

ensure complete coverage, leading to higher facility costs. However, since more mobile clinics are 

selected, the corresponding total assignment costs are only 41.23% of what they are at the 

optimum, because on average, with more clinic locations there are fewer population centers 

assigned to each clinic and population centers now get assigned to clinics that are closer. More 

clinics also lead to outreach trip costs that are 58.80% higher, since there are now more stops to 

visit in the final solution. Overall, the cost is around 46% higher than the optimal total cost on 

average. Note that in this study, it is more common to have higher facility and transportation cost, 

because vaccine has to be transported and stored in a very narrow range of temperature, and often 

times special types of storage devices and vehicles have to be used. In the optimal solution, MIP-

3 thus tries to select fewer clinic locations, with each serving more population centers, as opposed 

to having more clinic locations serving fewer population centers. If the mechanism would be used 

in a scenario with more balanced cost components, we might expect it to perform better with the 

Testnew data set.  

One observation in solving via this mechanism that needs to be mentioned is run time. 

Although the training procedure can take several hours with the 22,500 observations, when it 

actually comes to predicting probabilities and translating these into a feasible solution for a specific 

instance, the time is negligible. On the other hand, solving the problem via MIP-3 can take much 

more time, and in applications where an immediate solution is desirable, the proposed mechanism 

is more favorable over MIP-3 once training has been completed. Overall, the mechanism is able 

to generate high quality results repeatedly for problems that resemble instances in the training set, 
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but when it encounters totally new problems, it generates more expensive heuristic solutions but 

that are guaranteed to be feasible. 

 Selecting a Value for the Parameter 𝜶 

In Section 5.4.2 we discussed the numerical results when parameter 𝛼 is set to a natural 

value of 0.5 and is consistent throughout the implementation of Algorithm 4 on Train, Test and 

Testnew. However, as illustrated in Table 24, the total cost of our solutions on Testnew is 

significantly higher than the total cost based on the optimal solution. In particular, the facility cost 

in our solutions is higher than the optimum, and more facilities then lead to longer TSP routes, 

which in turn are also higher than the optimum, and these together overwhelm the reductions in 

assignment costs. To further study parameter 𝛼 and its impact on the total cost, we conducted a 

sensitivity analysis on parameter 𝛼. Table 25 reports each component of cost across instances in 

Testnew, similar to what we had in Table 24 for 𝛼 = 0.5, but with different values of parameter 𝛼 

from 0.1 to 0.9 in Algorithm 4. Note that 𝛼 is set to be consistent throughout each of the scenarios 

from 𝛼 = 0.1 to 𝛼 = 0.9.  

 

 

 

 

 

 

 



 131 

Table 25 Sensitivity analysis of parameter 𝜶 on Testnew 

𝛼 Facility cost Assignment cost TSP cost Total Cost 

0.1 158.62% 49.62% 168.46% 154.92% 

0.2 154.35% 52.90% 164.60% 151.51% 

0.3 151.94% 54.97% 162.58% 149.69% 

0.4 149.64% 56.96% 160.50% 147.88% 

0.5 147.56% 58.77% 158.80% 146.33% 

0.6 145.72% 60.52% 157.14% 144.90% 

0.7 143.97% 62.24% 155.67% 143.59% 

0.8 141.60% 64.63% 153.61% 141.79% 

0.9 138.48% 67.75% 151.08% 139.52% 

 

 It can be seen that as 𝛼  increases from 0.1 to 0.9, the predicted total cost in Testnew 

improves from being 54.92% higher to being 39.52% higher than the optimal solution, with a 

decrease in facility cost and TSP cost from 58.62% and 68.46% higher to 38.48% and 51.08% 

higher, respectively. This indicates that Algorithm 4 appears to perform better with higher 𝛼 

values when the initial number of facility locations is relatively small. One possible explanation 

for this is that often times when two population centers are close to each other and also resemble 

each other in terms of their demand, from a machine learning perspective, Model 1 would tend to 

predict similar probabilities for locations at both. In situations where these probabilities are 

relatively large and 𝛼 is relatively small, Algorithm 4 yields a solution with facilities open at both 

locations. However, in practice we would only want a facility to be open at one of these locations; 

the other one could be covered by the open facility if the distance between the two is within the 
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MCD, and many other population centers might be close enough to be served by either location. 

On the other hand, with a higher 𝛼, the likelihood of this happening is smaller because there will 

tend to be fewer open locations overall, thus reducing the likelihood of this type of duplication. 

Furthermore, when the probabilities are on either side of 𝛼, but the difference is small (e.g.,0.89 

vs. 0.91, with 𝛼=0.9), higher values of 𝛼 could prevent both from being opened (in our example, 

only one facility will be opened, whereas both would be open with 𝛼 = 0.8.  

To further study this, we treated 𝛼 as a decision variable, and ran multiple threads of the 

process in Section 5.3.4 with different values of 𝛼 simultaneously. Here, for each specific instance 

in Testnew, we picked the value of 𝛼 that yields the minimum total cost (𝛼𝑒𝑥𝑝
∗ ), and then calculate 

the corresponding cost components. In examining the values of 𝛼𝑒𝑥𝑝
∗  that yielded the lowest total 

costs, we found that in 2,036 of the 5,000 instances (~41%), the choice of a value for 𝛼 made no 

difference at all. This is because the majority of the probabilities in these instances are in the range 

(0, 0.1), or (0.9, 1.0), so that any value of 𝛼 between 0.1 and 0.9 would give the same solution. In 

many other instances, there was a range of values for 𝛼𝑒𝑥𝑝
∗  that yielded the same solution; in fact, 

in over 75% of the instances there were at least three (consecutive) values for 𝛼𝑒𝑥𝑝
∗  that were 

optimal.   

To understand this better, Figure 11 shows the count of different values of 𝛼 that are 

optimal across the 5,000 instances in Testnew, noting again that in general we have multiple optimal 

of 𝛼𝑒𝑥𝑝
∗  for almost all instances. Figure 11 also shows that our solutions improve as 𝛼 increases 

and in 4,577 instances (~92%) the value of 𝛼=0.9 yielded the best solution from using our 

approach. In Table 26 we further compare each individual component of cost to the optimum, 

similar to what we had in Table 26. The first row in Table 26 summarizes costs when we pick 𝛼 =

𝛼𝑒𝑥𝑝
∗  for each instance. Overall, our results indicate that simply picking a value of 𝛼=0.9 provides 
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us with virtually the same result (139.52% from the last row of Table 25) as picking the best 

possible value for 𝛼 (=𝛼𝑒𝑥𝑝
∗ ) for each instance (138.75% from the first row of Table 26).   

As a matter of interest we also show in each subsequent row of Table 26 cost comparisons 

from different values of 𝛼 from 0.1 to 0.9, but only for those instances for which 𝛼 = 𝛼𝑒𝑥𝑝
∗ . Again, 

comparing the last row of Table 25 with the first and last rows of Table 26 shows that a value of 

0.9 for 𝛼 yields the best results for the vast majority of instances. 

 

 

 
Figure 11 Count of examples in Testnew for which 𝜶𝒆𝒙𝒑

∗  is best 
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Table 26 Cost comparison of each component in Testnew with different 𝜶𝒆𝒙𝒑
∗  

𝛼 Facility cost Assignment cost TSP cost Total Cost 

Overall 138.79% 66.82% 149.63% 138.75% 

0.1 143.48% 58.94% 155.68% 

 

143.79% 

0.2 142.96% 59.64% 

 

155.15% 

 

143.20% 

0.3 142.77% 

 

60.55% 

 

154.76% 

 

142.87% 

0.4 142.61% 

 

61.08% 

 

154.31% 

 

142.56% 

 

0.5 142.17% 

 

61.83% 

 

153.86% 

 

142.16% 

 

0.6 141.58% 

 

62.54% 

 

153.19% 

 

141.67% 

 

0.7 140.75% 

 

63.67% 

 

152.47% 

 

141.00% 

 

0.8 139.94% 

 

64.99% 

 

151.73% 

 

140.30% 

 

0.9 138.80% 

 

66.86% 

 

150.57% 

 

139.32% 

 

 

Note that in theory, 𝛼𝑒𝑥𝑝
∗  could also be treat as a component of the dependent variables and 

can thus be modeled and predicted via a machine learning model. We will discuss this along with 

some other future research directions in Section 5.5. 

5.5 Discussion  

There are several limitations from this initial work that provide us with future research 

directions. First, as discussed at the end of Section 5.4.3, we could learn the optimal threshold 

parameter 𝛼𝑒𝑥𝑝
∗  in Algorithm 4 via machine learning, and include it as a component of the output 

in Model 1: Model 1′: 𝑮 → 𝒈(𝒀), 𝛼, i.e., Model 1′ not only establishes the probability that in the 
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optimum solution, the facility at location 𝑗 is open, but also the threshold to consider opening the 

facility at location 𝑗 in Algorithm 4. Note that the training process of Model 1′ must be iterative, 

because the 𝛼∗ is unknown until the different threads of the whole mechanism including Model 2 

is completed in parallel.  

 Second, as discussed in Section 5.4.3, Model 1 tends to predict similar probability when 

two nearby population centers resemble each other. With a small 𝛼, we could end up with both 

having open facilities, and this results in much higher facility costs then necessary. This leads to 

another promising direction in the future to utilize techniques such as Convolutional Neural 

Networks (CNN) to ensure that the Set Covering model considers the correlation between 

population centers. 

 Third, there could be a mechanism with feedback between the models, as opposed to 

training each independently. As a new direction, we could leverage the information that is available 

within each machine learning model to help with improvement across both models. For example, 

the TSP cost that is calculated from Model 2 can be viewed as a function of the output of Model 

1 (which is the SCP solution). If the TSP cost that is incurred by a particular SCP solution can be 

utilized as intermediate information when training Model 1, it is possible that Model 1 could 

generate better SCP solutions that leads to smaller overall cost. One way of doing this might be to 

initially use an approximation of the TSP cost to help speed up the learning process. Overall, this 

direction requires a more sophisticated methodology to implement. 

Fourth, in Section 5.4, because all examples considered in the demonstration have a similar 

number of population centers (around 10), we utilized a standard, fully connected neural network 

in the implementation of Model 1 and Model 2. This places some limitations on the generality of 

the mechanism and the possibility of utilizing the mechanism to solve problems with potentially 
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more nodes. In many real-world circumstances, the number of facility locations could vary over a 

wider range and could be unknown before the start of the training process. This points to the 

possibility of using more general, sequential neural networks whose dimension of input is not fixed 

(unlike with the standard version we used). For example, using Recurrent Neural Networks (RNN) 

such as Long Short Term Memory (LSTM) networks could potentially alleviate this problem. In 

developing RNN, we can use a structure similar to LSTM that is widely used in Natural Langrage 

Processing and time-series analysis. Information that is related to a particular node in our graph 

can be fed into the RNN sequentially, and the predicted probabilities related to this node along 

with the information of the next node are then fed into the next unit of the RNN, until the 

information across all nodes is fed into the model and all prediction results are obtained.  

 Fifth, in this work the training procedure to establish the machine learning models is 

conducted on the entire training dataset before the prediction process. However, in most situations, 

especially when inputs are coming in as a flow or when optimal solutions may change dynamically 

over time because of changes in parameter values, the machine learning models also need to be 

updated over time. One natural way is to retrain the models on the entire training set over time 

after a given set of planning horizon, but this could be time consuming. Alternatively, we could 

define a preselected number of inputs as a “batch” and once we receive a whole batch of new input, 

we update the parameters of the machine learning models sequentially by batch. This technique is 

often referred to as online learning, or incremental learning, and is widely used when near real-

time inputs are present. 

Lastly, from an implementation standpoint, we would like to seek more real-world 

circumstances that are applicable for the mechanism. There are often two challenges. First, to 

obtain mechanisms that are more consistent and general, it is necessary to have a different number 
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of nodes, and a wider range of different parameter distributions. The historical optimization 

solution should also be available to train the machine learning model. Secondly, there must be a 

need to have the optimization model solved repeatedly and rapidly. 

5.6 Summary  

This chapter aims to provide an early exploration and experiments in leveraging a machine 

learning algorithm to solve a difficult combinatorial optimization problem. We first study the 

combined Set Covering and Traveling Salesmen problem, and formulate this problem as a Mixed 

Integer Program. When the optimization problem needs to be solved on a regular basis with similar 

input values, it starts from scratch as new inputs and parameters are given. This could lead to high 

computational expense as well as tractability issues. To address this, we introduce a machine 

learning based mechanism to solve this problem by leveraging historical optimal solutions. The 

mechanism can be utilized to efficiently generate heuristic solutions via two machine learning 

models that are dedicated to solving the Set Covering Problem and the Traveling Salesmen 

Problem separately, but are aimed at minimizing overall cost. We discuss data generation and 

preprocessing, model training, and how to generate feasible solutions using the machine learning 

results. We also discuss how to compare the overall cost of the machine learning based mechanism 

to the optimal cost that is generated by the optimization formulation. We then present a detailed 

case study for the World Health Organization’s vaccine distribution chain, and provide numerical 

results with data derived from four countries in sub-Saharan Africa after several train-test-

evaluation iterations. Based on the computational performance observed, the machine learning 

based mechanism appears to be a promising way to achieve tractability and scalability without 
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significantly sacrificing solution quality, but it still requires significant further development and 

should supplement the current exploratory approaches of incorporating machine learning with 

optimization. 
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6.0 Summary 

Vaccination has been proven to be the most effective method to prevent illness, disability 

and death from infections. It is estimated that 2 to 3 million deaths are averted each year because 

of vaccines (World Health Organization, 2019b) and over the years, significant levels of coverage 

have been achieved. However, it is estimated that an additional 1.5 million deaths could be avoided 

annually if global vaccination coverage could improve further, and that even in the 21st century 

there are still almost 20 million infants worldwide who lack access to routine immunization 

services and remain at risk for vaccine-preventable diseases (World Health Organization, 2019c). 

This problem is especially pronounced in low and middle-income countries (LMICs) (Gavi, 2019), 

where some of the contributors to the problem include high costs, competing health priorities, lack 

of resources, inadequate infrastructure, poor monitoring and supervision, rigid distribution 

structures, and even vaccine hesitancy such as complacency, convenience and confidence (de 

Oliveira, Martinez, & Rocha, 2014; Gavi, 2019; Hotez, Nuzhath, & Colwell, 2020; Jarrett et al., 

2015; MacDonald et al., 2015; Shen, Fields, & McQuestion, 2014; Yadav, et al., 2014; Zaffran, 

1996).  

The World Health Organization (WHO) established the Expanded Programme on 

Immunization (EPI) in 1974 with the goal of providing universal access to all important vaccines 

for all children (Bland & Clements, 1998). The program was further expanded with the formation 

of the Global Alliance for Vaccines and Immunization (Gavi) in 2000 to accelerate access to new 

vaccines in the poorest countries. EPI and Gavi together have successfully contributed to saving 

millions of lives worldwide by reducing mortality and even largely eliminating some diseases like 

polio and measles (Gavi, 2020; World Health Organization, 2013). 
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With the help of international organizations and new technological developments, many 

vaccines can now be obtained at low cost and in mass quantities. However, shipping, storing and 

delivering vaccines in a cost-efficient fashion while ensuring that vaccines are reliably available 

to end-users remains a major challenge. In particular, in many LMICs vaccines are usually 

distributed via a hierarchical legacy medical network, with locations and shipping routes of this 

network often determined by political boundaries and history. The overarching goal of this 

dissertation is to ensure that every child has access to vaccines, and along with this, in most LMICs 

the objective is to design a system that can be operated without the need for sophisticated logistics 

personnel and at minimum cost. 

We discuss three specific problems. The first focuses on redesigning an improved vaccine 

network. As an alternative to the current structure, the network for vaccine distribution could be 

separated from the current legacy health network, while using some appropriate subset of these 

facilities and with vaccine flows along routes that differ from the current ones. However, the 

operation of the network cannot deviate from established WHO guidelines and needs to be simple 

because of the relative lack of sophisticated vaccine management abilities in LMICs. The main 

consideration in redesigning the vaccine network includes decisions on the choice of the best set 

of intermediate hubs from the set of current distribution center locations, obtaining optimal 

replenish frequencies for each hub, deciding on hub-to-hub connections and the clinic allocations 

to each hub, determining the actual vaccine flow along all connections, and lastly, selecting the 

types of storage and transportation devices to use at each location and along each flow path. The 

redesigned network is not required to follow the three, four or five tiered hierarchical structure that 

is currently the norm, nor are they required to follow the replenishment policy associated with a 

particular tier.  
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In Chapter 2, we present a mixed-integer optimization model and develop a column 

generation based algorithm to solve the MIP model and an iterative heuristic that cycles between 

solving restrictions of the original problem. We also present numerical tests using real data from 

different LMICs to study the performance of the algorithms. Because of the computational expense 

and tractability issues of the optimization model, in Chapter 3 we further present a novel MIP-

based disaggregation-and-merging algorithm that is based on the simple observation that changes 

to the structure in a part of the network are unlikely to have a significant effect on the structure in 

other parts that are far away. The algorithm thus uses a divide-and-conquer approach to 

intelligently generate and solve a sequence of MIPs. Extensive tests based on real-world data 

derived from four different countries in sub-Saharan Africa show that it yields solutions that are 

optimal or within 0.5% of the best cost where optimality can be verified, and for large instances 

that are impossible to solve optimally, it is uniformly robust and yields good solutions in a few 

minutes. 

In addition to the suboptimal structure and operations of a vaccine distribution network, 

another situation that could cause low vaccination rates is when resources are limited and there are 

population centers without access to direct clinic services. In this case, an approach known as 

outreach is typically utilized where a team of clinicians and support personnel is sent from an 

existing clinic to visit one or more of these locations to vaccinate residents in their immediate 

surrounding area. In Chapter 4 we focus on the problem of outreach and present a systematic way 

to plan for economical outreach operations by formulating the problem as a mixed integer program. 

We also study the issues related to the typical uncertainties associated with estimating demand for 

vaccines and planning individual outreach trips and provides insights on where to focus attention 
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if we are to follow a robust approach that plans for worst-case scenarios in order to comply with 

WHO-EPI guidelines to provide universal coverage. 

Finally, we provide an early exploration and experiments in leveraging a machine learning 

algorithm to solve a difficult combinatorial optimization problem. We look at the outreach problem 

in Chapter 4 from a different viewpoint and reformulate it as a problem combining the Set 

Covering Problem and the Traveling Salesmen Problem in Chapter 5, and formulate this problem 

as a Mixed Integer Program. When the optimization problem needs to be solved on a regular basis 

with similar input values, it starts from scratch as new inputs and parameters are given. This could 

lead to high computational expense as well as tractability issues. To address this, we introduce a 

machine learning based mechanism to solve this problem by leveraging historical optimal 

solutions. The mechanism can be utilized to efficiently generate high quality heuristic solution via 

two machine learning models that are dedicated to solving the Set Covering Problem and the 

Traveling Salesmen Problem separately, but are aimed at minimizing overall cost. We then present 

a detailed case study for the World Health Organization’s vaccine distribution chain, and provide 

numerical results with data derived from four countries in sub-Saharan Africa with the outreach 

problem as an example. Based on results observed, the machine learning based mechanism appears 

to be a promising way to achieve tractability and scalability without significantly sacrificing 

solution quality, but it still requires significant further development and should supplement the 

current exploratory approaches of incorporating machine learning with optimization. 

While we have addressed a diverse set of issues in optimizing the design and operations of 

WHO-EPI vaccine distribution chain, there are still open research topics in this area that need to 

be addressed. This includes the incorporation of uncertainty in the network design problem, more 

sophisticated vaccine inventory management policies, improvement of alternative outreach 
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policies that can be standardized in the field, and more sophisticated machine learning based 

mechanisms for enhanced model performance and generality. Please see each chapter for more 

detailed discussions on future research directions. 

In summary, with the encouraging solution quality and computational performance 

observed in extensive tests based on real-world data derived from four different countries in sub-

Saharan Africa, this dissertation has provided additional mathematical models to analyze the issues 

raised and has developed powerful algorithms to solve these problems. 
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