22 research outputs found

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    The Complexity of Bisimulation and Simulation on Finite Systems

    Full text link
    In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC1^1, respectively. This solves an open problem from Balc\'azar, Gabarr\'o, and S\'antha. Furthermore, if only one of the input graphs is required to be a tree, the bisimulation (simulation) problem is contained in AC1^1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete already for graphs of bounded path-width

    On the Parallel Complexity of Bisimulation on Finite Systems

    Get PDF

    A Framework for In-place Graph Algorithms

    Get PDF
    Read-only memory (ROM) model is a classical model of computation to study time-space tradeoffs of algorithms. A classical result on the ROM model is that any algorithm to sort n numbers using O(s) words of extra space requires Omega (n^2/s) comparisons for lg n <= s <= n/lg n and the bound has also been recently matched by an algorithm. However, if we relax the model, we do have sorting algorithms (say Heapsort) that can sort using O(n lg n) comparisons using O(lg n) bits of extra space, even keeping a permutation of the given input sequence at anytime during the algorithm. We address similar relaxations for graph algorithms. We show that a simple natural relaxation of ROM model allows us to implement fundamental graph search methods like BFS and DFS more space efficiently than in ROM. By simply allowing elements in the adjacency list of a vertex to be permuted, we show that, on an undirected or directed connected graph G having n vertices and m edges, the vertices of G can be output in a DFS or BFS order using O(lg n) bits of extra space and O(n^3 lg n) time. Thus we obtain similar bounds for reachability and shortest path distance (both for undirected and directed graphs). With a little more (but still polynomial) time, we can also output vertices in the lex-DFS order. As reachability in directed graphs (even in DAGs) and shortest path distance (even in undirected graphs) are NL-complete, and lex-DFS is P-complete, our results show that our model is more powerful than ROM if L != P. En route, we also introduce and develop algorithms for another relaxation of ROM where the adjacency lists of the vertices are circular lists and we can modify only the heads of the lists. Here we first show a linear time DFS implementation using n + O(lg n) bits of extra space. Improving the extra space exponentially to only O(lg n) bits, we also obtain BFS and DFS albeit with a slightly slower running time. Both the models we propose maintain the graph structure throughout the algorithm, only the order of vertices in the adjacency list changes. In sharp contrast, for BFS and DFS, to the best of our knowledge, there are no algorithms in ROM that use even O(n^{1-epsilon}) bits of extra space; in fact, implementing DFS using cn bits for c<1 has been mentioned as an open problem. Furthermore, DFS (BFS, respectively) algorithms using n+o(n) (o(n), respectively) bits of extra use Reingold\u27s [JACM, 2008] or Barnes et al\u27s reachability algorithm [SICOMP, 1998] and hence have high runtime. Our results can be contrasted with the recent result of Buhrman et al. [STOC, 2014] which gives an algorithm for directed st-reachability on catalytic Turing machines using O(lg n) bits with catalytic space O(n^2 lg n) and time O(n^9)
    corecore