
On the Parallel Complexity of Bisimulation on
Finite Systems
Moses Ganardi1, Stefan Göller2, and Markus Lohrey1

1 University of Siegen, Germany
ganardi@eti.uni-siegen.de

2 Laboratoire Specification et Verification (LSV), ENS de Cachan, France; and
CNRS, France
goeller@lsv.ens-cachan.fr

3 University of Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract
In this paper the computational complexity of the (bi)simulation problem over restricted graph
classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is
complete for logarithmic space or NC1, respectively. This solves an open problem from Balcázar,
Gabarró, and Sántha. We also show that the simulation problem is P-complete even for graphs
of bounded path-width.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases bisimulation, computational complexity, tree width

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.12

1 Introduction

Courcelle’s theorem states that every problem definable in monadic second-order logic (MSO)
is solvable in linear time on graphs of bounded tree-width. In recent works by Elberfeld,
Jakoby, and Tantau, techniques have been developed to transfer this famous result to low
space and circuit complexity classes [6, 7]. In particular, the following logspace (resp., NC1)
version of Courcelle’s theorem was shown (see Section 2 for the necessary definitions):

I Theorem 1 ([6, 7]). For a fixed MSO-sentence ψ and a fixed constant k one can check in
logspace whether a given structure A of tree-width at most k satisfies ψ. If a tree decomposition
of A of width k is given in term representation, then one can check in DLOGTIME-uniform
NC1 whether A satisfies ψ.

This result is a very powerful metatheorem, which can be applied to many computational
problems. On the other hand, there are important problems solvable in logspace on graphs
of bounded tree-width that are not covered by Theorem 1. One example is the graph
isomorphism problem. Graph isomorphism is not MSO-definable even over finite paths since
two finite paths are isomorphic if they have the same length, but one cannot express in MSO
that two finite sets have the same size. Lindell [17] has shown that isomorphism of trees is in
logspace, and only very recently Elberfeld and Schweitzer [8] extended this result to graphs
of bounded tree-width.

In this paper, we are concerned with the complexity of simulation and bisimulation,
which are of fundamental importance in the theory of reactive systems, see e.g. [1] for more

© Moses Ganardi, Stefan Göller, and Markus Lohrey;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 On the Parallel Complexity of Bisimulation on Finite Systems

background. It is known that on finite state systems simulation and bisimulation are both
P-complete [2], and hence have no efficient parallel algorithm unless P = NC. Surprisingly, no
results on the complexity of (bi)simulation on natural subclasses of finite state systems are
known (whereas there exists an extensive literature on (bi)simulation problems for various
classes of infinite state systems, like pushdown systems or Petri nets). The authors of [2]
pose this open question and suggest to consider the bisimulation problem on trees. The
above remark that tree isomorphism cannot be expressed in MSO applies to bisimulation on
trees as well (two finite paths are bisimilar if and only if they are isomorphic). Moreover, it
is not clear, whether there is a natural reduction of the bisimulation problem on trees to the
logspace-solvable isomorphism problem for trees (or even bounded tree-width graphs).

In this paper, we determine the complexity of the bisimulation problem on trees. More
precisely, we show the following results:

On trees the (bi)simulation problem is complete for logarithmic space (resp., NC1) if the
trees are given as pointer structures (resp., in term representation).
The simulation problem is P-hard (and hence P-complete) already for graphs of bounded
path-width.

Whether the bisimulation problem on graphs of bounded tree-width is in NC remains open.
We prove our results for the bisimulation problem by a reduction to the evaluation

problem for a new class of Boolean circuits that we call tree-shaped circuits. These are
circuits that are composed in a tree-like fashion of smaller subcircuits. We define the width
of such a circuit as the maximal number of different paths from the root to an input in
one of the above mentioned subcircuits. The main technical contributions of this paper
are logspace- and NC1-evaluation algorithms (depending on the input representation) for
tree-shaped circuits of bounded width. These circuits should not be confused with circuits
of bounded tree-width, which are known to have logspace- and NC1-evaluation algorithms
(depending on the representation) by the above Theorem 1. We show how to partially unfold
tree-shaped circuits of bounded width into circuits of bounded tree-width. This unfolding
is possible in TC0 (assuming the right representation of the circuit). Finally, the resulting
bounded tree-width circuit can be evaluated using Theorem 1. For the above logspace result
we actually prove a stronger statement: A given tree-shaped circuit of size N and width m
can be evaluated in space O(logN · logm).

One should also mention the paper [10], where a logic LREG (which extends classical
first-order logic) is introduced. It is shown that LREG captures logspace on directed trees.
Hence, bisimulation for trees is expressible in LREG. Due to the very technical definition
of LREG we think that it is not easier to express the bisimulation problem in LREG than
giving a direct logspace algorithm. Moreover expressibility in LREG does not imply that
bisimulation for trees in term representation is in NC1.

2 Preliminaries

Graphs and trees. A (directed) graph G = (V,E) consists of a set of nodes V (G) = V and
a set of edges E(G) = E ⊆ V × V . If (u, v) ∈ E, we call v a successor of u. A path (of
length n from v0 to vn) in G is a node sequence v0, v1, . . . , vn such that (vi, vi+1) ∈ E for all
0 ≤ i < n. A graph is acyclic if there is no path of length ≥ 1 from a node to itself. We say
that two nodes u, v ∈ V are connected if there exists a path from u to v in the underlying
undirected graph (V,E ∪ {(v, u) | (u, v) ∈ E}). A set of nodes U ⊆ V is connected if any two
nodes in U are connected. The size |G| of a graph G is the number of nodes |V (G)|.

A graph T is a (rooted) tree if there exists a node r ∈ V (T), called the root of T , such
that for all v ∈ V (T) there exists exactly one path from r to v. The depth of a node u,

M. Ganardi, S. Göller, and M. Lohrey 12:3

denoted by depth(u), is the length of the unique path from the root to u. A node u is an
ancestor (resp., proper ancestor) of v, briefly u � v (resp., u ≺ v), if there exists a path
(resp., a path of length ≥ 1) in T from u to v.

A node-labelled graph (V,E, β) is a graph (V,E) together with a labelling function
β : V → A into a finite set A. An edge-labelled graph (V,E) consists of a set of nodes V
and a labelled edge relation E ⊆ V ×A× V . We also write u a−→ v instead of (u, a, v) ∈ E.
Unlabelled graphs are also regarded as labelled graphs over a singleton label set. An edge-
labelled tree is an edge-labelled graph (V,E) where the sets Ea = {(u, v) | (u, a, v) ∈ E} are
pairwise disjoint for a ∈ A and (V,

⋃
a∈AEa) is a directed tree.

(Bi)simulation. A bisimulation on an edge-labelled graph (V,E) is a binary relation R ⊆
V × V such that for all (u, v) ∈ R the following conditions hold:
1. For all u a−→ u′ there exists v a−→ v′ such that (u′, v′) ∈ R.
2. For all v a−→ v′ there exists u a−→ u′ such that (u′, v′) ∈ R.

A relation R that only satisfies condition 1 for all (u, v) ∈ R is called a simulation. A
(bi)simulation on two edge-labelled graphs is a (bi)simulation on their disjoint union. Two
nodes u, v are called bisimilar if there exists a bisimulation R such that (u, v) ∈ R. We say
that u is simulated by v if there exists a simulation R such that (u, v) ∈ R.

It is easy to see that the union of all bisimulations is a bisimulation again and an
equivalence relation, called the bisimulation equivalence. On finite graphs the bisimulation
equivalence can be computed in polynomial time by a partition refinement algorithm [15]. In
fact, the bisimulation problem, i.e., deciding whether two nodes are bisimilar in a given finite
graph, is P-complete [2].

Tree-width and path-width. A tree decomposition (T, β) of a directed graph G is a node-
labelled tree T , where β : V (T) → 2V (G) assigns to each node of T a so called bag such
that

for all v ∈ V (G) the set {t ∈ V (T) | v ∈ β(t)} is non-empty and connected, and
for all (u, v) ∈ E(G) there exists t ∈ V (T) such that u, v ∈ β(t).

The width of (T, β) is maxt∈V (T) |β(t)| − 1 and the tree-width of a graph G is the minimum
width over all tree decompositions of G. A tree decomposition (T, β) is a path decomposition
if T is a path. The path-width of a graph G is the minimum width of all path decompositions
of G. Tree-width and path-width are also defined for node- and edge-labelled graphs via their
underlying unlabelled graph. More background of tree-width can be found for instance in [5].

Circuits. A (Boolean) circuit C = (G, β) is a node-labelled graph, where G is acyclic and
β : V (G)→ {x1, . . . , xn, 0, 1,¬,∧,∨} for some n. Nodes of C are usually called gates. Gates
labelled by 0, 1 (constant gates) or by a variable xi (input gates) have no successors. Gates
labelled by ∧ or ∨ have at least one successor, and gates labelled by ¬ have exactly one
successor. A variable-free circuit is a circuit without input gates. In a variable-free circuit
every gate can be evaluated to either 0 or 1. The question, whether a given gate of a given
variable-free circuit evaluates to 1 is known as the circuit value problem. It is one of the
classical P-complete problems, see [9] for more details.

Complexity classes. In this paper we will use the complexity classes AC0 ⊆ TC0 ⊆ NC1 ⊆
L ⊆ NC ⊆ P. A function f : Σ∗ → Γ∗ is logspace-computable if it can be computed on a
deterministic Turing-machine with a read-only input tape, a write-only output tape and a
working tape whose length is bounded logarithmically in the input length. We denote by Lthe

CSL 2016

12:4 On the Parallel Complexity of Bisimulation on Finite Systems

class of languages which can be decided in logspace, i.e. for which the characteristic function
is logspace-computable. Throughout the paper we will use implicitly that compositions of
logspace-computable functions are logspace-computable again. In the following we denote by
NC1 the class of all languages which are accepted by a DLOGTIME-uniform family of bounded
fan-in Boolean circuits of polynomial size and logarithmic depth [19]. We also use the obvious
generalization of this definition to functions. If we allow unbounded fan-in circuits but require
constant depth, we obtain the class AC0. If we additionally allow threshold gates, we obtain
the class TC0. It can be seen as the extension of AC0 by the ability of counting. Typical
problems in TC0 are the computation of the sum, product and integer quotient of two binary
encoded integers, and the sum and product of an arbitrary number of binary encoded integers
[12]. Note that AC0, TC0, and NC1 always refer to their DLOGTIME-uniform versions in this
paper. For more details on space and circuit complexity we refer to [19].

Tree representations. The complexity of tree problems often depends on how the trees
are represented. Firstly, trees can be given as pointer structures where the edge relation
is given explicitly as a list of pairs consisting of two node names, which is the standard
encoding of graphs in general. Secondly, trees can be given in term representation (or bracket
representation): The string () represents a tree of size 1. If a tree T has a root and direct
subtrees T1, . . . , Tn which have term representations r1, . . . , rn, then the string (r1 · · · rn)
is a term representation of T . Notice that a tree can have multiple term representations.
Thirdly, trees can be represented in ancestor representation where we specify a list of all
pairs (u, v) where u is an ancestor of v. Elberfeld et al. showed that term and ancestor
representations can be converted into each other in TC0 [7]. This is useful since operating on
ancestor representations of trees is technically easier than on term representations.

To represent node-labelled trees (e.g., tree decompositions), in the pointer and ancestor
representation we append a list of pairs consisting of a node name and a node label. In the
term representation node labelled trees can be encoded by introducing for each label a an
opening bracket symbol (a. For instance, (a(b)(a)) encodes a tree with an a-labelled root
and two children which are labelled by b and a. If the set of node labels is not fixed (this is
the case for tree decompositions) we choose an arbitrary binary block code for the opening
brackets (a. To represent an edge-labelled tree we transform it into a node-labelled tree,
e.g. by assigning the label of an edge (u, v) to its end point v and labelling the root by a
special symbol. Let us finally mention that these coding details for labelled trees are only
relevant for our NC1 lower bound in Section 4.1, which refers to AC0-reductions. The reason
is that different codings of labelled trees in term representation can be transformed in TC0,
but not necessarily in AC0, into each other.

3 Bisimulation on Trees

In this section we consider the bisimulation problem on edge-labelled trees, i.e. the question
whether the roots of two given edge-labelled trees are bisimilar. We show that the bisimulation
problem is L-complete if the trees are encoded as pointer structures and NC1-complete if the
trees are given in term representation. We remark that the same complexity bounds hold for
the tree isomorphism problem [4, 13, 17].

3.1 Trees as pointer structures
We start with showing a logspace upper bound for the bisimulation problem for trees in pointer
representation. Bisimilarity between two edge-labelled trees T1 and T2 can be expressed as a

M. Ganardi, S. Göller, and M. Lohrey 12:5

∧

∨∨ ∨ ∨

∧ 0 ∧ 0

∨∨ ∨

1 1

∨∨ ∨

1 1

Figure 1 Two trees T1, T2 and the tree-shaped circuit C(T1, T2) for bisimulation equivalence.

Boolean circuit C(T1, T2): For all u ∈ V (T1), v ∈ V (T2) such that depth(u) = depth(v) the
circuit contains a gate xu,v, which evaluates to true if and only if u is bisimilar to v. We
define

xu,v =
∧

u
a−→u′

∨
v

a−→v′

xu′,v′ ∧
∧

v
a−→v′

∨
u

a−→u′

xu′,v′ . (1)

As usual we regard an empty conjunction (resp., disjunction) as 1 (resp., 0). In particular,
if both u and v are leaves, then xu,v = 1, and if exactly one of u and v is a leaf, then
xu,v = 0. An example circuit is shown in Figure 1, where T1 and T2 are unlabelled. Note that
the circuit is composed in a tree-shaped form from smaller circuits. These smaller circuits
correspond to the definition in (1) and have the crucial property that there exist exactly two
paths from the root to an arbitrary leaf, which are highlighted in one subcircuit in Figure 1.
This is the case because each gate variable xu′,v′ occurs once in the first conjunction and
once in the second conjunction in (1). In fact, we will show that circuits with such a path
property can be evaluated in logspace.

We use a more syntactic definition of such circuits: A tree-shaped circuit is a sequence
of Boolean equations S = (xi = ϕi)1≤i≤n where ϕ1, . . . , ϕn are Boolean formulas over the
variables x1, . . . , xn such that the graph

TS = ({x1, . . . , xn}, {(xi, xj) | xj occurs in ϕi}) (2)

is a tree with root x1. This implies that there are no cyclic definitions in S and that no
variable xk appears in two different formulas ϕi and ϕj (i 6= j). The size of S is defined as
the sum of the sizes of all formulas ϕi. The width of S is defined as the maximal number of
occurrences of a variable xj in a formula ϕi. An example of a tree-shaped circuit of width two
is given by the formulas (1) for bisimulation. We can view S as an ordinary Boolean circuit
by taking the disjoint union of the formula trees of the ϕi and then merging all xi-labelled
leaves with the root of the formula tree of ϕi. For example, the tree-shaped circuit C(T1, T2)
for bisimulation equivalence can be regarded as a tree-shaped circuit of width 2, which can
be computed in logspace from T1 and T2. The main goal of this section is to show that the
circuit value problem restricted to tree-shaped circuits of bounded width belongs to logspace.

It is interesting to compare tree-shaped circuits of constant width with a class of circuits
that is presented in [10, page 5]. For the latter, the authors require that for every path in
the circuit the product of the fan-outs (i.e., indegrees, since we direct circuits towards the
input gates) of the gates on the path is bounded polynomially by the circuit size. It is shown
that circuits with this property can be evaluated in logspace. Note that tree-shaped circuits
of constant width do not have this path property from [10]. On the other hand, the circuits

CSL 2016

12:6 On the Parallel Complexity of Bisimulation on Finite Systems

from [10] can have nodes with large fan-out, which is not possible for tree-shaped circuits of
constant width. Hence, the two circuit classes are incomparable.

Note that a variable-free Boolean circuit can be represented by a relational structure with
a binary edge relation and unary relations for the labels 0, 1, ¬, ∧, ∨. Moreover, there is a
formula of monadic-second order logic (MSO) expressing that a variable-free Boolean circuit
evaluates to 1. As a consequence, by Theorem 1, we can evaluate variable-free Boolean
circuits of tree-width at most k in logspace for every fixed k. Moreover, the complexity can be
improved to NC1 if we also provide for the input circuit a bounded width tree decomposition
in term representation. For this one stores a tree decomposition (T, β) by an expression for
the node-labelled tree T , where every node t ∈ V (T) is labelled by the bag β(t). Note that
β(t) is a set of gates of the circuit, and these gates are stored by their addresses. To sum up,
we have:
I Theorem 2. For every fixed k ∈ N, the circuit value problem restricted to circuits of
tree-width at most k can be solved in logspace. If in addition to the input circuit C a width-k
tree decomposition of C in term representation is given, then the circuit value problem can be
solved in NC1.
However, we cannot directly apply Theorem 2 to tree-shaped circuits since neither their
tree-width nor clique-width is bounded by the following lemma. Clique-width is another
graph measure defined by so called k-expressions, see e.g. [14] for a survey. It is easy to see
that Theorem 2 can be generalized to circuits of clique-width k, provided a k-expression for
the circuit is part of the input.
I Lemma 3. For n ≥ 1, let Tn be the tree of size n+ 1 whose root has exactly n children.
The set of circuits {C(Tn, Tn) | n ≥ 1} has unbounded tree-width and unbounded clique-width.
Proof. The underlying undirected graph of C(Tn, Tn) contains the complete bipartite graph
Kn,n as a (topological) minor. This can be seen by removing the output gate and dissolving
all constant gates (dissolving a node of degree 2 means deleting it and connecting its two
neighbors. Figure 2 shows an example for n = 3. Since the tree-width of Kn,n is n and the
tree-width of every minor of a graph G is bounded by the tree-width of G, it follows that
the tree-width of C(Tn, Tn) is at least n.

It is known that a set of graphs which has bounded clique-width and for which there exist
only finitely many n such that the bipartite graph Kn,n is contained as a subgraph (not only
minor) also has bounded tree-width [11]. We claim that for each n ≥ 1 the undirected graph
of C(Tn, Tn) does not contain K3,3 as a subgraph, which implies that {C(Tn, Tn) | n ≥ 1}
also has unbounded clique-width (note that C(Tn, Tn) contains a K2,2, i.e., a cycle on four
nodes). Note that in C(Tn, Tn) for every simple path of four nodes, one of the four nodes
has degree 2 (these are the gates in the middle layer of Figure 2). But this is not possible in
a K3,3. J

Before we show how to evaluate tree-shaped circuits of bounded width in logspace, we
introduce some notions. The size |u| of a node u in a tree is the size of the subtree rooted
in u. We say that a node u is heavy if for all siblings v of u we either have (i) |u| > |v|
or (ii) |u| = |v| and u < v (where < denotes some fixed order on the nodes of the tree).
Otherwise a node is called light. Notice that the root is heavy and that every inner node has
exactly one heavy child. We can compute in logspace for each node its size and determine
whether it is heavy. Note that every path in a tree contains at most O(logn) light nodes.

By the following result, tree-shaped circuits of bounded width can be evaluated in logspace
(take m ∈ O(1)). Also note that a tree-shaped circuit of width m = 1 is a tree and therefore
can be evaluated in logspace.

M. Ganardi, S. Göller, and M. Lohrey 12:7

Figure 2 The circuit C(T3, T3) for bisimulation equivalence. Removing the output gate on the
left and dissolving the constant gates in the middle layer shows that K3,3 is a minor of C(T3, T3).

I Theorem 4. A given tree-shaped circuit S = (xi = ϕi)1≤i≤n of width m ≥ 2 can be
evaluated in space O(log s+ logn · logm), where s = max{|ϕi| | 1 ≤ i ≤ n} is the maximal
size of one of the formulas ϕi. In particular, for every fixed m ∈ N, there is a logspace
algorithm which evaluates a given tree-shaped circuit of width at most m.

Proof. Let S = (xi = ϕi)1≤i≤n be a tree-shaped circuit of width m and let s = max{|ϕi| |
1 ≤ i ≤ n}. Recall the definition of the tree TS with node set {x1, . . . , xn} from (2).

First of all, we label every node xi of TS by (i) the size |xi| of the subtree rooted in xi
and (ii) a single bit indicating whether xi is a heavy node of TS . This information can be
computed in space O(logn) by traversing for each node xi the subtree of TS rooted in xi in
depth-first order and counting the number of nodes in binary representation.

The circuit S is evaluated in a recursive way using a pointer to one of the nodes x1, . . . , xn
(which needs space O(logn)) and a stack of height O(logn · logm) as follows. Initially the
pointer is set to the root x1. Assume that xk is the heavy child of x1 in TS . Then, the
pointer is moved to xk without writing anything on the stack. Next, the subcircuit rooted at
xk is evaluated recursively. By induction, space O(log s+ logn · logm) is used for this. Once
the algorithm returns from the recursion the pointer is back on xk and one can release the
space. The value of xk is stored on the stack, which now contains a single bit. Note that
the algorithm knows (using the labeling computed before) that xk is the heavy child of its
parent node x1. This information now triggers the evaluation of the Boolean formula ϕ1.
This is done by the standard evaluation algorithm that traverses the Boolean formula tree in
depth-first order and stores (i) a pointer to the current node of ϕ1 (this pointer needs space
O(log |ϕ1|) and (ii) a constant number of additional bits, indicating the current direction
of the traversal (up or down), and the value of the current node in case we move upwards.
Each time, this depth-first traversal of ϕ1 arrives at a leaf node, the following is done:

If the leaf is labelled with the variable xk (the heavy child of x1 in TS), then the value of
xk is retrieved from the stack and the algorithm continues the evaluation of ϕ1.
If the leaf is a light child labelled with the variable xi 6= xk, then let 1 ≤ c ≤ m such that
the leaf corresponds to the c-th occurrence of xi in ϕ1. The algorithm stores c on the
stack (which needs space O(logm)) and continues recursively with the evaluation of the
subcircuit rooted at xi. Once it comes back from the recursion, the pointer is back on xi.
The algorithm sees that xi is a light child of x1. Using this information and the number
c stored on the stack, it continues the evaluation of ϕ1 at the right position in ϕ1.

Note that in the second case, we have |xi| ≤ |x1|/2. This implies that the number of bits
stored on the stack is bounded by O(logn · logm). The total space consumption is therefore
O(logn+ log s+ logn · logm) = O(log s+ logn · logm) (since we assume m ≥ 2). J

CSL 2016

12:8 On the Parallel Complexity of Bisimulation on Finite Systems

Note that we do not assume m ∈ O(1) in Theorem 4. In particular, since k, n, and m are
all bounded by the size of the tree-shaped circuit (which is the sum of the sizes of the formulas
ϕi), it follows that a tree-shaped circuit of size N can be evaluated in space O(log2N). For
the special case m ∈ O(1) (which is used for the bisimulation problem) we give an alternative
proof below. This proof prepares our handling of trees in term representation in the next
section (proof of Theorem 6).

Alternative proof of Theorem 4 for constant width. Let N be the size of S and m ∈ O(1)
its width. We will construct from S in logspace an equivalent polynomially sized circuit with
constant tree-width, which can be seen as a partial tree unfolding of the circuit corresponding
to S. By Theorem 2 the resulting circuit can be evaluated in logspace.

As before, we view the Boolean formulas ϕi as labelled trees. For simplicity we assume
that all ϕi have at least size two, which can be ensured by replacing ϕi by ϕi ∧ 1, so that S
contains no “chain rules”. Moreover, we assume that the trees ϕi have disjoint node sets.
Let xi be an inner node of TS whose heavy child is xk. Inductively we define a circuit Ci as
follows: We take the formula ϕi, viewed as a tree, and merge all xk-labelled leaves into a
single node. Note that xj-labelled leaves for j 6= k are not merged. Then we insert into each
leaf labelled by some variable xj a copy of the circuit Cj . Finally let C be C1, which clearly
evaluates to the same truth value as S. Figure 3 shows the circuit resulting from the circuit
C(T1, T2) on the right in Figure 1.

Note that the number of copies of Ci in C is bounded by m`i where `i is the number of
light nodes on the path from x1 to xi in TS . Since `i ≤ logn, C has size at most mlogn ·N ,
which is bounded by nO(1) ·N since m is a constant.

Furthermore C can be computed in logspace from S. To make this explicit, we introduce a
naming scheme for the gates in C. The set Addr(xi) (addresses for the copies of xi) contains
finite words over the alphabet {1, . . . ,m} defined inductively: We set Addr(x1) = {ε} for
the root x1. If xj is the heavy child of xi in TS , we set Addr(xj) = Addr(xi). If xj is a light
child of xi in TS , we set Addr(xj) = Addr(xi) · {1, . . . , k} where k ≤ m is the number of
occurrences of xj in ϕi. The sets Addr(xi) contain words of length O(logn) over the constant
sized alphabet {1, . . . ,m}. Moreover, given a word of length O(logn) over {1, . . . ,m} we
can easily check in logspace whether it belongs to Addr(xi) by traversing the path from xi
to the root of TS . Now we can define the circuit C over the gate set

V (C) =
n⋃
i=1
{(u, a) | a ∈ Addr(xi), u is a non-input node of the tree ϕi}.

For every edge (u, u′) of ϕi (1 ≤ i ≤ n) and a ∈ Addr(xi), we add the following edges to
E(C):
1. If u′ is a non-input gate, add the edge ((u, a), (u′, a)).
2. If u′ is labelled by xj , let v be the root of ϕj and add the edge

a. ((u, a), (v, a · d)) if xj is a light child of xi and u′ is its d-th occurrence of xj in ϕi,
b. ((u, a), (v, a)) if xj is the heavy child of xi.

The labels of the gates in C are inherited from the formula trees ϕi. Note that a pair (u, a)
from V (C) can be stored in logspace. Moreover, whether a pair belongs to V (C) and whether
a pair of nodes from V (C) belongs to E(C) can be checked in logspace. Hence, the circuit C
can be constructed in logspace.

Finally we show that the tree-width of C is at most 2. Consider the subgraph T of C
where edges of type 2b in the above definition of C are removed if u′ is the d-th occurrence
of xj in ϕi for some d > 1. In Figure 3 such edges are drawn as dotted lines. The resulting

M. Ganardi, S. Göller, and M. Lohrey 12:9

∧

∨

00

∨

∧

∨

1

∨∨

11

∨

0∧

∨

1

∨∨

11

∨

0∧

∨

1

∨∨

11

Figure 3 The partial unfolding of the tree-shaped circuit C(T1, T2) from Figure 1.

subgraph T is indeed a tree, on which we define a tree decomposition (T, β) of C. Let u
be a non-input node of ϕi and a ∈ Addr(xi). The bag β(u, a) contains the gate (u, a), its
parent node in the tree T (if existent) and the unique node (v, a) where v is the root of ϕj
and xj is the heavy child of xi (if existent). One can verify that (T, β) is indeed a valid tree
decomposition. J

We can apply Theorem 4 to the tree-shaped circuit defined by (1) to solve the tree
bisimulation problem in logspace:

I Corollary 5. The bisimulation problem for trees given as pointer structures is in L.

3.2 Trees in term representation
Next we will show that the tree bisimulation problem belongs to NC1 if the trees are given
as terms. For that we prove an NC1-version of Theorem 4 (for m ∈ O(1)), which uses the
NC1-part of Theorem 2, where a tree decomposition in term representation is part of the input.
Here we require that the tree-shaped circuit S = (xi = ϕi)1≤i≤n must be given together with
the underlying tree TS in term representation. We also assume that the Boolean formulas ϕi
are given in term representation. Recall the ancestor representation of a tree from Section 2
and that it can be transformed into the term representation of a tree in TC0 and vice versa.

I Theorem 6. For every fixed m ∈ N, one can evaluate in NC1 a given tree-shaped circuit
S = (xi = ϕi)1≤i≤n (with all ϕi given in term representation) of width at most m that is
given together with the term representation of the tree TS .

Before we prove Theorem 6, we apply it to the tree bisimulation problem.

I Theorem 7. The bisimulation problem for trees given in term representations is in NC1.

Proof. First we convert the term representations of T1 and T2 into ancestor representations
in TC0. We can compute the tree-shaped circuit S corresponding to the circuit C(T1, T2) and
an ancestor representation of TS in TC0. The set of variables {xu,v | u ∈ V (T1), v ∈ V (T2),
depth(u) = depth(v)} can be clearly computed in TC0 since for a given node of a tree
in ancestor representation one can compute its depth by counting ancestors. The term
representations of the formulas ϕu,v in (1) can then be computed in AC0. The ancestor
representation of TS is also AC0-computable, since xu,v is an ancestor of xu′,v′ if and only if u
is an ancestor of u′ and v is an ancestor of v′. By Theorem 6 we can evaluate S in NC1. J

CSL 2016

12:10 On the Parallel Complexity of Bisimulation on Finite Systems

Proof of Theorem 6. Let S = (xi = ϕi)1≤i≤n be a tree-shaped circuit of width at most m,
where every ϕi is given in term representation. Moreover, we assume to have the term (or
ancestor) representation of the tree TS . We will show how to compute in TC0 the partial
unfolding C of S and the tree decomposition of C in ancestor representation from the
alternative proof of Theorem 4 on page 12:8.

Let N be the size of S. For each node xi of TS we can compute in TC0 its depth (by
counting ancestors) and the size of the subtree below xi (by counting descendants). Hence,
we can also compute the heavy child of every inner node xi in TS . Additionally, if xi has a
parent node xj , we can compute the number d(xi) ∈ {1, . . . ,m} of occurrences of xi in ϕj .
We transform all formulas ϕi of S into ancestor representation in TC0 where we can assume
that the encodings of all nodes have length O(logN). Also we can ensure that all formulas
have at least size two.

Recall that every node u of a formula ϕi has multiple copies (u, a) in C where a ∈ Addr(xi)
is an address of length O(logn) defined on page 12:8. Given a string a ∈ {1, . . . ,m}∗ of
length O(logn) and a node xi we can verify in TC0 whether a ∈ Addr(xi): From the ancestor
representation of TS we can compute the sequence of all light nodes xi1 ≺ xi2 ≺ · · · ≺ xik in
TS on the path from the root to xi. This can be done by sorting all light ancestors of xi by
their depth in ascending order. It is known that sorting n numbers with n bits each is in
TC0 [19]. Then we have a1 · · · ak ∈ Addr(xi) if and only if aj ≤ d(xij) for all j ∈ {1, . . . , k}.
Hence, we can also encode all gates of the partial unfolding C by strings of length O(logN)
and can compute V (C) in TC0. With the previous preparation the edge relation E(C) can
be computed in AC0 using the definition on page 12:8.

It remains to show that we can compute in TC0 the ancestor representation of the width-2
tree decomposition (T, β) of C from page 12:9. We set V (T) = V (C). Let (u, a), (u′, a′) ∈
V (T) be nodes where u (resp., u′) belongs to ϕi (resp., ϕj). Then (u, a) is an ancestor of
(u′, a′) in T if and only if xi � xj in TS , a is a prefix of a′ and the following holds:
1. If xi = xj , then a = a′ and u � u′ in ϕi.
2. If xi ≺ xj in TS , let xk be the unique child of xi which is an ancestor of xj .

a. If xk is a light node, let d ∈ {1, . . . ,m} be the number in a′ at position |a|+ 1. Then
the d-th occurrence of xk in ϕi is a descendant of u.

b. If xk is a heavy node, then the first occurrence of xk in ϕi is a descendant of u.
The last condition forbids those edges that were deleted when constructing the tree T from
the partial unfolding C (the dotted edges in Figure 3). The bag-function β can be computed
straightforward in TC0 using its definition on page 12:9. By Theorem 2 we can evaluate C
in NC1, which concludes the proof. J

Equality of hereditarily finite sets. The bisimulation problem on trees in term representa-
tion arises in a very natural way. A hereditarily finite set is either the empty set {} or a set
{a1, . . . , an} containing finitely many hereditarily finite sets a1, . . . , an. Hereditarily finite
sets have a natural string representation over the bracket symbols { and }. By counting
brackets, one can check in TC0, whether a string over { and } is well-bracketed [3]. As before,
such a well-bracketed string corresponds to a tree. By induction over the height of trees, one
can easily show that two well-bracketed strings over { and } represent the same set if and only
if the corresponding trees are bisimilar. Hence, the tree bisimulation problem for (unlabelled)
trees in term representation is equivalent to the set equality problem, which asks whether two
such string representations represent the same set. For example {{}{}} and {{}} represent
the same set. From Theorem 7 we obtain the NC1 upper bound in the following result. The
NC1 lower bound follows from the NC1-hardness of the bisimulation problem for unlabelled
trees in term representation, which is shown in the next section (Theorem 9).

M. Ganardi, S. Göller, and M. Lohrey 12:11

a b a b

Figure 4 From labelled to unlabelled trees.

I Corollary 8. The set equality problem is NC1-complete with respect to AC0-reductions.

4 Lower Bounds

In this section we prove several lower bounds. In Section 4.1 we prove matching lower bounds
for the upper bounds from Corollary 5 and Theorem 7. Finally, in Section 4.2 we show that
the simulation problem becomes already P-complete for graphs of bounded path-width.

4.1 Bisimulation on Trees
I Theorem 9. The bisimulation problem for unlabelled trees is L-hard if the trees are given
as pointer structures and NC1-hard if they are given in term representation (both with respect
to AC0-reductions).

Before we prove Theorem 9 let us first show the following lemma:

I Lemma 10. The bisimulation problem for edge-labelled trees in term representation (resp.,
pointer representation) is AC0-reducible to the bisimulation problem for unlabelled trees in
term representation (resp., pointer representation).

Proof. We only show the lemma for the term representation; the same construction also
works for the pointer representation. In [18] Srba presents a reduction from the bisimulation
problem for edge-labelled graphs to the bisimulation problem for unlabelled graphs. In fact,
this construction transforms trees into trees. We slightly modify the reduction to ensure
AC0-computability and assume that there are only two labels, say a and b (which is the case
for the trees constructed in the proof of Theorem 9).

Consider a tree T with edge labels a and b. First every labelled edge of T is subdivided
into two edges. In Figure 4 (middle tree), the new node added for an x-labelled edge
(x ∈ {a, b}) is labelled with x. To distinguish the original nodes from the new nodes, we
attach to each original node two paths of length 3. To each new node we attach one of two
small trees depending on the label of the original edge that is represented by the new node,
see the right tree in Figure 4. Let us denote the resulting unlabelled tree with ul(T). It is
not hard to prove that two labelled trees T1 and T2 are bisimilar if and only if ul(T1) and
ul(T2) are bisimilar. The proof is basically given in [18].

It remains to prove that the term representation of ul(T) can be computed in AC0 from
the term representation of T . Consider the term representation t of T . Recall that we identify
the opening brackets in t with the nodes of T . We assume that the term representation t

CSL 2016

12:12 On the Parallel Complexity of Bisimulation on Finite Systems

contains the following three opening bracket types: (a and (b, which represent nodes with an
incoming a-labelled (resp. b-labelled) edge, and (for the root. For example, t = ((a)(b)) is
a term representation for the left tree in Figure 4. The transformation T 7→ ul(T) can be
described by two isometric homomorphisms. A homomorphism h : Σ∗ → Γ∗ is isometric
if there is an ` ≥ 1 such that |h(c)| = ` for all c ∈ Σ. In [16] it is shown that for a given
isometric homomorphism h : Σ∗ → Γ∗ and a word w ∈ Σ∗ one can compute h(w) in AC0.1

We will proceed in two steps. Define the isometric homomorphism h1 : {(a, (b,)}∗ →
{(a, (b, (,),]}∗ by:

(a 7→ (a((b 7→ (b() 7→)]

Let u ∈ {(a, (b,)}∗ be the word such that t = (u) and consider the string (h1(u)). Formally,
it is not a term representation (since we have two types of closing brackets). Nevertheless,
it describes the tree obtained from T by subdividing every edge and labelling each new
node with the former edge label. For example t = ((a)(b)) is transformed into (h1(u)) =
((a()](b()]), which describes the node-labelled tree in Figure 4. The second isometric
homomorphism h2 : {(a, (b, (,),]}∗ → {(,)}∗ is defined by:

(7→ (((())) (an opening bracket followed by a path of length 3)
) 7→ ((()))) (a path of length 3 followed by a closing bracket)
] 7→ ()()()) (3 leaves followed by a closing bracket)
(a 7→ (()()() (an opening bracket followed by 3 leaves)
(b 7→ ((()()) (an opening bracket followed by the tree)

Then, the string h2((h1(u))) is indeed a term representation for the desired unlabelled tree
ul(T). J

Proof of Theorem 9. By Lemma 10 it suffices to show the lower bounds for edge-labelled
trees. We reuse the proofs from [13], where it is shown that the tree isomorphism problem is
L-hard (NC1-hard, respectively) with respect to AC0-reductions if the the trees are given as
pointer structures (in term representation, respectively). Let us start with the bisimulation
problem for trees given in pointer representation. Here, Jenner et al. reduce from the
L-complete reachability problem on paths, i.e., the question whether for a given directed
path graph G and two nodes vi, vj ∈ V (G), there is a path from vi to vj . Without loss of
generality, vi and vj are distinct and have successors vi+1 and vj+1, respectively.

Consider the tree with a root node which has two copies of G as direct subtrees. We refer
to nodes of the two copies by v1, . . . , vn and v′1, . . . , v′n, respectively. Additionally we replace
the edge (vi, vi+1) by the new edge (v′i, vi+1). Now let T1 (resp., T2) be the tree where the
edge (vj , vj+1) (resp., (v′j , v′j+1)) is labelled by a symbol a (all unlabelled edges are assumed
to be labelled with a symbol b 6= a). Clearly, T1 and T2 can be computed in AC0 from G.
There is a path from vi to vj in G if and only if T1 and T2 are bisimilar. See Figure 5 for an
illustration of the reduction.

Secondly, Jenner et al. present in [13] an AC0-reduction from the NC1-complete eval-
uation problem of balanced Boolean expressions to the isomorphism problem for trees in
term representation. They use the AND-gadget T∧(G1, G2, H1, H2) and the OR-gadget
T∨(G1, G2, H1, H2) which are depicted in Figure 6. Notice that for all trees G1, G2, H1, H2
the following holds, where ∼ can both mean bisimilarity and isomorphism:

1 If the homomorphism is fixed, this is even possible in NC0. Moreover, if the homomorphism is not
isometric then the problem is TC0-complete [16].

M. Ganardi, S. Göller, and M. Lohrey 12:13

vi

v′
i

vj

v′
j

a

vi

v′
i

vj

v′
j

a

(a) T1 and T2 are bisimilar.

vj

v′
j

vi

v′
i

a

vj

v′
j

vi

v′
i

a

(b) T1 and T2 are not bisimilar.

Figure 5 The two possible forms of T1, T2 depending on whether vj is reachable from vi or not.

H2H1

a

G2G1

a

a

G2G1

a

H2H1

a

a

(a) AND-gadget T∧

H2H1

a

G2G1

a

G2H1

a

H2G1

a

(b) OR-gadget T∨

Figure 6 The trees for the NC1 lower bound.

G1 ∼ H1 and G2 ∼ H2 ⇐⇒ T∧(G1, G2, H1, H2) ∼ T∧(H1, H2, G1, G2), and
G1 ∼ H1 or G2 ∼ H2 ⇐⇒ T∨(G1, G2, H1, H2) ∼ T∨(G1, H2, H1, G2).

Using the fact that the AND-gadget and the OR-gadget have the same tree structure
(if we ignore labels), one can show that the term representations for the resulting trees can
be computed in AC0 from the balanced Boolean expression; see the arguments in [13]. This
yields an AC0-reduction from the evaluation problem of balanced Boolean expressions to the
bisimulation problem for trees in term representation. J

4.2 Simulation on Graphs of Bounded Path-Width
The results from Corollary 5 and Theorem 7 also hold for the simulation problem. The proof
is in fact much easier, since the simulation problem for trees reduces to the evaluation of the
Boolean circuit obtained from (1) by removing the second conjunction over all edges v a−→ v′;
in fact, this circuit is a tree. In this section we show that the simulation problem is P-complete
on graphs of bounded path-width, and hence also on graphs of bounded tree-width. It remains
open, whether the bisimulation problem for graphs of bounded tree-width belongs to NC or
remains P-complete. For integers i, j we use the abbreviation [i, j] = {k ∈ N | i ≤ k ≤ j}.

I Theorem 11. There is a number k such that the following problem is P-complete: Given
a graph G of path-width at most k and two nodes u, v ∈ V (G), does u simulate v?

Proof. Fix a P-complete language L ⊆ {0, 1}∗ and a deterministic polynomial time bounded
Turing machine M = (Q,Γ, {0, 1}, q0, qf , δ) that accepts L. Here Q is the set of states,
Γ ⊇ {0, 1,�} is the tape alphabet (� is the blank symbol), q0 is the initial state, qf is the
final state, and δ : Q × Γ → Q × Γ × {→,←} is the transition function, where → and ←
indicate the head direction. The machine has a single tape, whose cells are indexed with

CSL 2016

12:14 On the Parallel Complexity of Bisimulation on Finite Systems

integers. Initially, the input x is written in cells 0, . . . , |x| − 1 and the tape head scans cell 0.
We can assume that there is a polynomial p(n) such that for every input x ∈ {0, 1}∗ we have:
x ∈ L if and only if after p(|x|) many transitions the machine is in state qf , cell 0 contains
�, and the tape head scans cell 0.

We can view configurations of M as words from Γ∗(Q× Γ)Γ∗. Let Ω = Γ ∪ (Q× Γ). We
define a partial mapping ∆ : Ω3 → Ω as follows, where a, a′, b, c ∈ Γ, p, q ∈ Q.

∆(a, b, c) = b

∆(b, c, (q, a)) = (p, c) if δ(q, a) = (p, a′,←)
∆(b, c, (q, a)) = c if δ(q, a) = (p, a′,→)
∆(b, (q, a), c) = a′ if δ(q, a) = (p, a′, d) for some d ∈ {→,←}
∆((q, a), b, c) = b if δ(q, a) = (p, a′,←)
∆((q, a), b, c) = (p, b) if δ(q, a) = (p, a′,→)

In all other cases, ∆ is undefined. The mapping ∆ computes from the three symbols at
positions i−1, i, i+1 in a configuration the symbol at position i in the successor configuration.

Let us fix an input x = a0a1 · · · an−1 of length n > 0 for the machine M and let
N = p(n) + 1. Then there exists a unique computation of M on input x. We denote with C
the corresponding computation table. Formally, it is a mapping C : [−N,N]× [0, N −1]→ Ω,
where C(i, t) is the symbol at cell i in the t-th configuration. It can be defined by the
following properties:

C(0, 0) = (a0, q0), C(i, 0) = ai for i ∈ [1, n− 1], C(i, 0) = � for i ∈ [−N,N] \ [0, n− 1],
C(−N, t) = C(N, t) = � for all t ∈ [0, N − 1]
C(i, t) = ∆(C(i−1, t−1), C(i, t−1), C(i+1, t−1)) for all t ∈ [1, N−1], i ∈ [−N+1, N−1].

Let us fix the set of edge labels A = {−1, 0, 1, α}] Ω. We define two edge-labelled graphs P
(for position) and T (for time) with edge labels from A and the node sets

V (P) = [−N,N]× {0, 1}, V (T) = [0, N − 1] ∪ [0, N − 1]× Ω ∪ [0, N − 1]× Ω3.

For better readability, we write edges of P (resp., T) as x a−→P y (resp., x a−→T y). Then,
P and T contain the following edges:

(i, 0) α−→P (i, 1) for all i ∈ [−N,N]

(i, 1) δ−→P (i+ δ, 0) for all i ∈ [−N,N], δ ∈ {−1, 0, 1} with i+ δ ∈ [−N,N]

(i, 0) C(i,0)−−−−→P (i, 0) for all i ∈ [−N,N]

(t, a) α−→T (t− 1, b, c, d) for all a ∈ Ω, t ∈ [1, N − 1], (b, c, d) ∈ ∆−1(a)

(t, a−1, a0, a1) δ−→T (t, aδ) for all t ∈ [0, N − 2], a−1, a0, a1 ∈ Ω, δ ∈ {−1, 0, 1}

(t, a) b−→T t for all a, b ∈ Ω, t ∈ [1, N − 1]

(0, a) b−→T 0 for all a ∈ Ω, b ∈ {a, α}

t
a−→T t for all t ∈ [0, N − 1], a ∈ A

An example of the construction is shown in Figure 7, where we assume N = 3 for simplicity.
It is easy to see that both P and T (and hence also the disjoint union of P and T)
have bounded path-width. More precisely, P has path-width 3 (the bags are the sets
{(i, 0), (i, 1), (i + 1, 0), (i + 1, 1)} for −N ≤ i ≤ N − 1), whereas the path-width of T is
bounded by |Ω|3 + |Ω| (the bags are the set {t, (t, a), (t − 1, b, c, d) | a, b, c, d ∈ Ω} for
1 ≤ t ≤ N − 1 and {(t, a), (t, b, c, d) | a, b, c, d ∈ Ω} for 0 ≤ t ≤ N − 2). Recall that |Ω| is a
fixed constant since the machine M is fixed.

M. Ganardi, S. Göller, and M. Lohrey 12:15

(−3, 0)

(−2, 0)

(−1, 0)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(−3, 1)

(−2, 1)

(−1, 1)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

α

α

α

α

α

α

α

0

0

0

0

0

0

0

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

C(−3, 0)

C(−2, 0)

C(−1, 0)

C(0, 0)

C(1, 0)

C(2, 0)

C(3, 0)

(2, a)

(t, a)

(t− 1, b, c, d)

(t− 1, c)(t− 1, b) (t− 1, d)

for (b, c, d) ∈ ∆−1(a)
.

α
α α

0
−1 1

t
Ω

A

(0, a) 0
a, α

A

Figure 7 The edge-labelled graphs P and T , where we assume N = 3 for simplicity.

For nodes u ∈ V (P), v ∈ V (T) we write u v v if u is simulated by v in the disjoint
union of P and T . The following claim proves the theorem, since M accepts x if and only if
C(0, N − 1) = (qf ,�) by our assumptions on M .

I Claim. For all t ∈ [0, N − 1], i ∈ [−N,N] and a ∈ Ω such that i+ t ≤ N and i− t ≥ −N
we have: C(i, t) = a if and only if (i, 0) v (t, a).

Proof of Claim. We prove the claim by induction on t. First, note that for every v ∈ V (P)
and every t ∈ [0, N − 1] ⊆ V (T) we have v v t, since at t we can loop with every a ∈ A. For
t = 0 note that indeed (i, 0) v (0, C(i, 0)): The only outgoing edges for (i, 0) are labelled
with C(i, 0) and α. From (0, C(i, 0)) these labels lead to node 0, which simulates every node
of P . On the other hand, if a 6= C(i, 0), then (i, 0) has a C(i, 0)-labelled outgoing edge,
whereas (0, a) has no such outgoing edge. This implies (i, 0) 6v (0, a).

Now assume that t ∈ [1, N − 1], i ∈ [−N,N], i + t ≤ N , and i − t ≥ −N and that
the claim holds for t − 1. First assume that C(i, t) = a. Since t ≥ 1, we have i + 1 ≤ N

and i− 1 ≥ −N , i.e., i ∈ [−N + 1, N − 1]. We have to show that (i, 0) v (t, a). The edge
(i, 0) C(i,0)−−−−→P (i, 0) can be simulated by the edge (t, a) C(i,0)−−−−→T t (recall that (i, 0) v t).
Now consider the other possible edge (i, 0) α−→P (i, 1). Since C(i, t) = a, there must exist
(b, c, d) ∈ ∆−1(a) such that b = C(i− 1, t− 1), c = C(i, t− 1), and d = C(i+ 1, t− 1). Also
note that i + δ + (t − 1) ≤ N and i + δ − (t − 1) ≥ −N for all δ ∈ {−1, 0, 1}. Hence, by
induction (i− 1, 0) v (t− 1, b), (i, 0) v (t− 1, c), and (i+ 1, 0) v (t− 1, d). But this implies
that (i, 1) v (t− 1, b, c, d). Hence, we can choose the edge (t, a) α−→T (t− 1, b, c, d) in order
to simulate the edge (i, 0) α−→P (i, 1).

Finally, assume that C(i, t) 6= a. We have to show that (i, 0) 6v (t, a). Let us choose the
edge (i, 0) α−→P (i, 1). We have to show that for every (b, c, d) ∈ ∆−1(a), (i, 1) 6v (t, b, c, d).

CSL 2016

12:16 On the Parallel Complexity of Bisimulation on Finite Systems

Let us fix a triple (b, c, d) ∈ ∆−1(a). Since C(i, t) 6= a, one of the following three statements
holds: C(i − 1, t − 1) 6= b, C(i, t − 1) 6= c, C(i + 1, t − 1) 6= d. Hence, by induction,
(i− 1, 0) 6v (t− 1, b) or (i, 0) 6v (t− 1, c) or (i+ 1, 0) 6v (t− 1, d). This implies that, indeed,
(i, 1) 6v (t, b, c, d). J

J

It seems to be difficult to modify the above proof so that it shows P-hardness for bisimulation
on graphs of bounded path-width or bounded tree-width. One might try to restrict the
choices of the players in the bisimulation game (see e.g. [1]) so that they are forced to play
as in the simulation game. There is a technique to achieve this (defenders forcing) but the
problem is that it yields grid-like graph structures and hence graphs of unbounded tree-width.

5 Conclusion

We proved the following results:
The bisimulation problem for trees that are given by pointer structures (resp., in term
representation) is complete for deterministic logspace (resp. NC1). These results also
hold for the simulation problem for trees.
Already for graphs of bounded path-width (a subclass of the graphs of bounded tree-width),
the simulation problem becomes P-complete.

As an application of the first result, we showed that equality of hereditarily finite sets
is NC1-complete. For the proofs we introduced the new class of tree-shaped circuits and
proved that the circuit evaluation problem for tree-shaped circuits of bounded width is in
logspace or NC1, depending on the representation of the circuit. It would be nice to find
further applications of these circuits. The main open problem that remains is whether the
bisimulation problem for graphs of bounded tree-width is in NC or P-complete.

References
1 L. Aceto and A. Ingólfsdóttir. Reactive Systems: Modelling, Specification and Verification.

Cambridge University Press, 2007.
2 J. L. Balcázar, J. Gabarró, and M. Santha. Deciding bisimilarity is P-complete. Form. Asp.

Comput., 4(6A):638–648, 1992.
3 D. A. M. Barrington and J. Corbet. On the relative complexity of some languages in NC1.

Inform. Process. Lett., 32:251–256, 1989.
4 S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. In

Kurt Gödel Colloquium 97, pages 18–33, 1997.
5 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in

Computer Science. Springer, 2013.
6 M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender

and Courcelle. In Proceedings of FOCS 2010, pages 143–152. IEEE, 2010.
7 M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes

of constant and logarithmic depth. In Proceedings of STACS 2012, volume 14 of LIPIcs,
pages 66–77. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.

8 M. Elberfeld and P. Schweitzer. Canonizing graphs of bounded tree width in logspace. In
Proceedings of STACS 2016, volume 47 of LIPIcs, pages 32:1–32:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016.

9 R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -
Completeness Theory. Oxford University Press, 1995.

M. Ganardi, S. Göller, and M. Lohrey 12:17

10 M. Grohe, B. Grußien, A. Hernich, and B. Laubner. L-recursion and a new logic for
logarithmic space. Log. Meth. Comput. Sci., 9(1), 2012.

11 F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without Kn,n.
In Proceedings of WG 2000, volume 1928 of Lecture Notes in Computer Science, pages
196–205. Springer, 2000.

12 W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65:695–716, 2002.

13 B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph isomorph-
ism. J. Comput. Syst. Sci., 66(3):549–566, 2003.

14 M. Kaminski, V. V. Lozin, and M. Milanic. Recent developments on graphs of bounded
clique-width. Discrete Appl. Math., 157(12):2747–2761, 2009.

15 P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Inform. Comput., 86(1):43–68, 1990.

16 K.-J. Lange and P. McKenzie. On the Complexity of Free Monoid Morphisms. In Pro-
ceedings of ISAAC’98, volume 1533 of Lecture Notes in Computer Science, pages 247–256.
Springer, 1998.

17 S. Lindell. A logspace algorithm for tree canonization (extended abstract). In Proceedings
of STOC 1992, pages 400–404. ACM, 1992.

18 J. Srba. On the power of labels in transition systems. In Proceedings of CONCUR 2001,
volume 2154 of Lecture Notes in Computer Science, pages 277–291. Springer, 2001.

19 H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

CSL 2016

	Introduction
	Preliminaries
	Bisimulation on Trees
	Trees as pointer structures
	Trees in term representation

	Lower Bounds
	Bisimulation on Trees
	Simulation on Graphs of Bounded Path-Width

	Conclusion

