311 research outputs found

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page

    Reconfiguring Graph Homomorphisms on the Sphere

    Get PDF
    Given a loop-free graph HH, the reconfiguration problem for homomorphisms to HH (also called HH-colourings) asks: given two HH-colourings ff of gg of a graph GG, is it possible to transform ff into gg by a sequence of single-vertex colour changes such that every intermediate mapping is an HH-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs HH (e.g. all C4C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever HH is a K2,3K_{2,3}-free quadrangulation of the 22-sphere (equivalently, the plane) which is not a 44-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3K_{2,3}-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 44-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs GG and HH with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for HH-colourings is PSPACE-complete whenever HH is a reflexive K4K_{4}-free triangulation of the 22-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which HH-Recolouring is known to be PSPACE-complete for reflexive instances.Comment: 22 pages, 9 figure

    Isomorphism Checking for Symmetry Reduction

    Get PDF
    In this paper, we show how isomorphism checking can be used as an effective technique for symmetry reduction. Reduced state spaces are equivalent to the original ones under a strong notion of bisimilarity which preserves the multiplicity of outgoing transitions, and therefore also preserves stochastic temporal logics. We have implemented this in a setting where states are arbitrary graphs. Since no efficiently computable canonical representation is known for arbitrary graphs modulo isomorphism, we define an isomorphism-predicting hash function on the basis of an existing partition refinement algorithm. As an example, we report a factorial state space reduction on a model of an ad-hoc network connectivity protocol

    Graph Decompositions

    Get PDF
    corecore