11 research outputs found

    Brief Announcement: Almost-Tight Approximation Distributed Algorithm for Minimum Cut

    Full text link
    In this short paper, we present an improved algorithm for approximating the minimum cut on distributed (CONGEST) networks. Let λ\lambda be the minimum cut. Our algorithm can compute λ\lambda exactly in \tilde{O}((\sqrt{n}+D)\poly(\lambda)) time, where nn is the number of nodes (processors) in the network, DD is the network diameter, and O~\tilde{O} hides \poly\log n. By a standard reduction, we can convert this algorithm into a (1+ϵ)(1+\epsilon)-approximation \tilde{O}((\sqrt{n}+D)/\poly(\epsilon))-time algorithm. The latter result improves over the previous (2+ϵ)(2+\epsilon)-approximation \tilde{O}((\sqrt{n}+D)/\poly(\epsilon))-time algorithm of Ghaffari and Kuhn [DISC 2013]. Due to the lower bound of Ω~(n+D)\tilde{\Omega}(\sqrt{n}+D) by Das Sarma et al. [SICOMP 2013], this running time is {\em tight} up to a \poly\log n factor. Our algorithm is an extremely simple combination of Thorup's tree packing theorem [Combinatorica 2007], Kutten and Peleg's tree partitioning algorithm [J. Algorithms 1998], and Karger's dynamic programming [JACM 2000].Comment: To appear as a brief announcement at PODC 201

    A Simple Deterministic Distributed MST Algorithm, with Near-Optimal Time and Message Complexities

    Full text link
    Distributed minimum spanning tree (MST) problem is one of the most central and fundamental problems in distributed graph algorithms. Garay et al. \cite{GKP98,KP98} devised an algorithm with running time O(D+nlogn)O(D + \sqrt{n} \cdot \log^* n), where DD is the hop-diameter of the input nn-vertex mm-edge graph, and with message complexity O(m+n3/2)O(m + n^{3/2}). Peleg and Rubinovich \cite{PR99} showed that the running time of the algorithm of \cite{KP98} is essentially tight, and asked if one can achieve near-optimal running time **together with near-optimal message complexity**. In a recent breakthrough, Pandurangan et al. \cite{PRS16} answered this question in the affirmative, and devised a **randomized** algorithm with time O~(D+n)\tilde{O}(D+ \sqrt{n}) and message complexity O~(m)\tilde{O}(m). They asked if such a simultaneous time- and message-optimality can be achieved by a **deterministic** algorithm. In this paper, building upon the work of \cite{PRS16}, we answer this question in the affirmative, and devise a **deterministic** algorithm that computes MST in time O((D+n)logn)O((D + \sqrt{n}) \cdot \log n), using O(mlogn+nlognlogn)O(m \cdot \log n + n \log n \cdot \log^* n) messages. The polylogarithmic factors in the time and message complexities of our algorithm are significantly smaller than the respective factors in the result of \cite{PRS16}. Also, our algorithm and its analysis are very **simple** and self-contained, as opposed to rather complicated previous sublinear-time algorithms \cite{GKP98,KP98,E04b,PRS16}

    A Faster Distributed Single-Source Shortest Paths Algorithm

    Full text link
    We devise new algorithms for the single-source shortest paths (SSSP) problem with non-negative edge weights in the CONGEST model of distributed computing. While close-to-optimal solutions, in terms of the number of rounds spent by the algorithm, have recently been developed for computing SSSP approximately, the fastest known exact algorithms are still far away from matching the lower bound of Ω~(n+D) \tilde \Omega (\sqrt{n} + D) rounds by Peleg and Rubinovich [SIAM Journal on Computing 2000], where n n is the number of nodes in the network and D D is its diameter. The state of the art is Elkin's randomized algorithm [STOC 2017] that performs O~(n2/3D1/3+n5/6) \tilde O(n^{2/3} D^{1/3} + n^{5/6}) rounds. We significantly improve upon this upper bound with our two new randomized algorithms for polynomially bounded integer edge weights, the first performing O~(nD) \tilde O (\sqrt{n D}) rounds and the second performing O~(nD1/4+n3/5+D) \tilde O (\sqrt{n} D^{1/4} + n^{3/5} + D) rounds. Our bounds also compare favorably to the independent result by Ghaffari and Li [STOC 2018]. As side results, we obtain a (1+ϵ) (1 + \epsilon) -approximation O~((nD1/4+D)/ϵ) \tilde O ((\sqrt{n} D^{1/4} + D) / \epsilon) -round algorithm for directed SSSP and a new work/depth trade-off for exact SSSP on directed graphs in the PRAM model.Comment: Presented at the the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018

    On the Distributed Complexity of Large-Scale Graph Computations

    Full text link
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k2k \geq 2 machines jointly perform computations on graphs with nn nodes (typically, nkn \gg k). The input graph is assumed to be initially randomly partitioned among the kk machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication {\em rounds} of the computation. Our main contribution is the {\em General Lower Bound Theorem}, a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. The General Lower Bound Theorem is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic and this theorem can be used in a "cookbook" fashion to show distributed lower bounds in the context of several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds for the round complexity of two fundamental graph problems, namely {\em PageRank computation} and {\em triangle enumeration}. Our approach, as demonstrated in the case of PageRank, can yield tight lower bounds for problems (including, and especially, under a stochastic partition of the input) where communication complexity techniques are not obvious. Our approach, as demonstrated in the case of triangle enumeration, can yield stronger round lower bounds as well as message-round tradeoffs compared to approaches that use communication complexity techniques

    Distributed Edge Connectivity in Sublinear Time

    Full text link
    We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ\lambda exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes O~(n11/353D1/353+n11/706)\tilde O(n^{1-1/353}D^{1/353}+n^{1-1/706}) time to compute λ\lambda and a cut of cardinality λ\lambda with high probability, where nn and DD are the number of nodes and the diameter of the network, respectively, and O~\tilde O hides polylogarithmic factors. This running time is sublinear in nn (i.e. O~(n1ϵ)\tilde O(n^{1-\epsilon})) whenever DD is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8ϵ)\lambda=O(n^{1/8-\epsilon}) [Thurimella PODC'95; Pritchard, Thurimella, ACM Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a kk-edge connectivity certificate for any k=O(n1ϵ)k=O(n^{1-\epsilon}) in time O~(nk+D)\tilde O(\sqrt{nk}+D). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC'15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the `trivial' ones). Finally, by extending the tree packing technique from [Karger STOC'96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an O~(n)\tilde O(n)-time algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019

    Distributed Weighted Min-Cut in Nearly-Optimal Time

    Get PDF
    Minimum-weight cut (min-cut) is a basic measure of a network's connectivity strength. While the min-cut can be computed efficiently in the sequential setting [Karger STOC'96], there was no efficient way for a distributed network to compute its own min-cut without limiting the input structure or dropping the output quality: In the standard CONGEST model, existing algorithms with nearly-optimal time (e.g. [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]) can guarantee a solution that is (1+ϵ)(1+\epsilon)-approximation at best while the exact O~(n0.8D0.2+n0.9)\tilde O(n^{0.8}D^{0.2} + n^{0.9})-time algorithm [Ghaffari, Nowicki, Thorup, SODA'20] works only on *simple* networks (no weights and no parallel edges). Here nn and DD denote the network's number of vertices and hop-diameter, respectively. For the weighted case, the best bound was O~(n)\tilde O(n) [Daga, Henzinger, Nanongkai, Saranurak, STOC'19]. In this paper, we provide an *exact* O~(n+D)\tilde O(\sqrt n + D)-time algorithm for computing min-cut on *weighted* networks. Our result improves even the previous algorithm that works only on simple networks. Its time complexity matches the known lower bound up to polylogarithmic factors. At the heart of our algorithm are a clever routing trick and two structural lemmas regarding the structure of a minimum cut of a graph. These two structural lemmas considerably strengthen and generalize the framework of Mukhopadhyay-Nanongkai [STOC'20] and can be of independent interest.Comment: Major changes: (i) The fragment decomposition technique is simplified, (ii) Introduction and technical overview have been redone, and (iii) The technical sections have been made simpler for better readabilit

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore