89 research outputs found

    A Systems Engineering Reference Model for Fuel Cell Power Systems Development

    Get PDF
    This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering \u27roadmap , or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization is generally, quite low. Three major problems plague the fuel cell industry preventing successful commercialization today. Because of the immaturity of FC technology and, the shortage of workers intimately knowledgeable in FC technology, and the lack of FC systems engineering, process developmental knowledge, the necessity for a commercialization process model becomes evident. This thesis presents a six-phase systems engineering developmental reference model for new product development of a Solid Oxide Fuel Cell (SOFC) Power System. For this work, a stationary SOFC Power System, the subject of this study, was defined and decomposed into a subsystems hierarchy using a Part Centric Top-Down, integrated approach to give those who are familiar with SOFC Technology a chance to learn systems engineering practices. In turn, the examination of the SOFC mock-up could gave those unfamiliar with SOFC Technology a chance to learn the basic, technical fundamentals of fuel cell development and operations. A detailed description of the first two early phases of the systems engineering approach to design and development provides the baseline system engineering process details to create a template reference model for the remaining four phases. The NPD reference template model\u27s systems engineering process, philosophy and design tools are presented in great detail. Lastly, the thesi

    A Systems Engineering Reference Model for Fuel Cell Power Systems Development

    Get PDF
    This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering \u27roadmap , or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization is generally, quite low. Three major problems plague the fuel cell industry preventing successful commercialization today. Because of the immaturity of FC technology and, the shortage of workers intimately knowledgeable in FC technology, and the lack of FC systems engineering, process developmental knowledge, the necessity for a commercialization process model becomes evident. This thesis presents a six-phase systems engineering developmental reference model for new product development of a Solid Oxide Fuel Cell (SOFC) Power System. For this work, a stationary SOFC Power System, the subject of this study, was defined and decomposed into a subsystems hierarchy using a Part Centric Top-Down, integrated approach to give those who are familiar with SOFC Technology a chance to learn systems engineering practices. In turn, the examination of the SOFC mock-up could gave those unfamiliar with SOFC Technology a chance to learn the basic, technical fundamentals of fuel cell development and operations. A detailed description of the first two early phases of the systems engineering approach to design and development provides the baseline system engineering process details to create a template reference model for the remaining four phases. The NPD reference template model\u27s systems engineering process, philosophy and design tools are presented in great detail. Lastly, the thesi

    Maps of Lessons Learnt in Requirements Engineering

    Get PDF
    Both researchers and practitioners have emphasized the importance of learning from past experiences and its consequential impact on project time, cost, and quality. However, from the survey we conducted of requirements engineering (RE) practitioners, over 70\% of the respondents stated that they seldom use RE lessons in the RE process, though 85\% of these would use such lessons if readily available. Our observation, however, is that RE lessons are scattered, mainly implicitly, in the literature and practice, which obviously, does not help the situation. We, therefore, present ``maps” of RE lessons which would highlight weak (dark) and strong (bright) areas of RE (and hence RE theories). Such maps would thus be: (a) a driver for research to ``light up” the darker areas of RE and (b) a guide for practice to benefit from the brighter areas. To achieve this goal, we populated the maps with over 200 RE lessons elicited from literature and practice using a systematic literature review and survey. The results show that approximately 80\% of the elicited lessons are implicit and that approximately 70\% of the lessons deal with the elicitation, analysis, and specification RE phases only. The RE Lesson Maps, elicited lessons, and the results from populating the maps provide novel scientific groundings for lessons learnt in RE as this topic has not yet been systematically studied in the field

    NES2017 Conference Proceedings : JOY AT WORK

    Get PDF

    Systems Engineering

    Get PDF
    The book "Systems Engineering: Practice and Theory" is a collection of articles written by developers and researches from all around the globe. Mostly they present methodologies for separate Systems Engineering processes; others consider issues of adjacent knowledge areas and sub-areas that significantly contribute to systems development, operation, and maintenance. Case studies include aircraft, spacecrafts, and space systems development, post-analysis of data collected during operation of large systems etc. Important issues related to "bottlenecks" of Systems Engineering, such as complexity, reliability, and safety of different kinds of systems, creation, operation and maintenance of services, system-human communication, and management tasks done during system projects are addressed in the collection. This book is for people who are interested in the modern state of the Systems Engineering knowledge area and for systems engineers involved in different activities of the area. Some articles may be a valuable source for university lecturers and students; most of case studies can be directly used in Systems Engineering courses as illustrative materials

    Computerized Manufacturing Automation: Employment, Education, and the Workplace

    Get PDF
    An assessment by the Office of Technology Assessment (OTA) that looks "not only at robots but also at related computer-based technologies for design, production, and management" and "the technologies of programmable automation, their uses, and future capabilities" (p. iii)
    • …
    corecore