23 research outputs found

    Analysis and Design of Cell-Free Massive MIMO Systems under Spatially Correlated Fading Channels

    Get PDF
    Mención Internacional en el título de doctorWireless communications have become a key pillar in our modern society. It can be hard to think of a service that somehow does not rely on them. Particularly, mobile networks are one of the most necessary technologies in our daily life. This produces that the demand for data rates is by no means stopping from increasing. The cellular architecture is facing a crucial challenge under limited performance by interference and spectrum saturation. This involves cell-edge users experiencing poor performance due to the close vicinity of base stations (BSs) using the same carrier frequency. Based on a combination of the coordinated multi-point (CoMP) technique and traditional massive multiple-input multiple-output (MIMO) systems, cell-free (CF) massive MIMO networks have irrupted as a solution for avoiding inter-cell interference issues and for providing uniform service in large coverage areas. This thesis focuses on the analysis and design of CF massive MIMO networks assuming a spatially correlated fading model. A general-purpose channel model is provided and the whole network functioning is given in detail. Despite the many characteristics a CF massive MIMO system shares with conventional colocated massive MIMO its distributed nature brings along new issues that need to be carefully accounted for. In particular, the so-called channel hardening effect that postulates that the variance of the compound wireless channel experienced by a given user from a large number of transmit antennas tends to vanish, effectively making the channel deterministic. This critical assumption, which permeates most theoretical results of massive MIMO, has been well investigated and validated in centralized architectures, however, it has received little attention in the context of CF massive MIMO networks. Hardening in CF architectures is potentially compromised by the different large-scale gains each access point (AP) impinges on the transmitted signal to each user, a condition that is further stressed when not all APs transmit to all users as proposed in the user-centric (UC) variations of CF massive MIMO. In this document, the presence of channel hardening in this new architecture scheme is addressed using distributed and cooperative precoders and combiners and different power control strategies. It is shown that the line-of-sight (LOS) component, spatially correlated antennas, and clustering schemes have an impact on how the channel hardens. In addition, we examine the existent gap between the estimated achievable rate and the true network performance when channel hardening is compromised. Exact closed-form expressions for both a hardening metric and achievable downlink (DL) and uplink (UL) rates are given as well. We also look into the pilot contamination problem in the UL and DL with different degrees of cooperation between the APs. The optimum minimum mean-squared error (MMSE) processing can take advantage of large-scale fading coefficients for canceling the interference of pilot-sharing users and thus achieves asymptotically unbounded capacity. However, it is computationally demanding and can only be implemented in a fully centralized network. Here, sub-optimal schemes are derived that provide unbounded capacity with much lower complexity and using only local channel estimates but global channel statistics. This makes them suited for both centralized and distributed networks. In this latter case, the best performance is achieved with a generalized maximum ratio combiner that maximizes a capacity bound based on channel statistics only.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Rui Dinis.- Secretario: María Julia Fernández-Getino García.- Vocal: Carmen Botella Mascarel

    Joint Design of Power Control and Access Point Scheduling for Uplink Cell-Free Massive MIMO Networks

    Full text link
    This work proposes a joint power control and access points (APs) scheduling algorithm for uplink cell-free massive multiple-input multiple-output (CF-mMIMO) networks without channel hardening assumption. Extensive studies have done on the joint optimization problem assuming the channel hardening. However, it has been reported that the channel hardening may not be validated in some CF-mMIMO environments. In particular, the existing Use-and-then-Forget (UatF) bound based on the channel hardening often seriously underestimates user rates in CF-mMIMO. Therefore, a new performance evaluation technique without resorting to the channel hardening is indispensable for accurate performance estimations. Motivated by this, we propose a new bound on the achievable rate of uplink CF-mMIMO. It is demonstrated that the proposed bound provides a more accurate performance estimate of CF-mMIMO than that of the existing UatF bound. The proposed bound also enables us to develop a joint power control and APs scheduling algorithm targeting at both improving fairness and reducing the resource between APs and a central processing unit (CPU). We conduct extensive performance evaluations and comparisons for systems designed with the proposed and existing algorithms. The comparisons show that a considerable performance improvement is achievable with the proposed algorithm even at reduced resource between APs and CPU.Comment: 30 pages, 7 Figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Power allocation in cell-free massive MIMO:Using deep learning methods

    Get PDF

    Power allocation in cell-free massive MIMO:Using deep learning methods

    Get PDF

    Distributed Processing Methods for Extra Large Scale MIMO

    Get PDF

    A Tutorial on Extremely Large-Scale MIMO for 6G: Fundamentals, Signal Processing, and Applications

    Full text link
    Extremely large-scale multiple-input-multiple-output (XL-MIMO), which offers vast spatial degrees of freedom, has emerged as a potentially pivotal enabling technology for the sixth generation (6G) of wireless mobile networks. With its growing significance, both opportunities and challenges are concurrently manifesting. This paper presents a comprehensive survey of research on XL-MIMO wireless systems. In particular, we introduce four XL-MIMO hardware architectures: uniform linear array (ULA)-based XL-MIMO, uniform planar array (UPA)-based XL-MIMO utilizing either patch antennas or point antennas, and continuous aperture (CAP)-based XL-MIMO. We comprehensively analyze and discuss their characteristics and interrelationships. Following this, we examine exact and approximate near-field channel models for XL-MIMO. Given the distinct electromagnetic properties of near-field communications, we present a range of channel models to demonstrate the benefits of XL-MIMO. We further motivate and discuss low-complexity signal processing schemes to promote the practical implementation of XL-MIMO. Furthermore, we explore the interplay between XL-MIMO and other emergent 6G technologies. Finally, we outline several compelling research directions for future XL-MIMO wireless communication systems.Comment: 38 pages, 10 figure

    Digital and Mixed Domain Hardware Reduction Algorithms and Implementations for Massive MIMO

    Get PDF
    Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity. Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for elements. The number of ADCs is the key deterministic factor for the power consumption of an antenna array system. The digital hardware consists of fast Fourier transform (FFT) cores with a multiplier complexity of (N log2N) for an element system to generate multiple beams. It is required to reduce the mixed and digital hardware complexities in MIMO systems to reduce the cost and the power consumption, while maintaining high performance. The well-known concept has been in use for ADCs to achieve reduced complexities. An extension of the architecture to multi-dimensional domain is explored in this dissertation to implement a single port ADC to replace ADCs in an element system, using the correlation of received signals in the spatial domain. This concept has applications in conventional uniform linear arrays (ULAs) as well as in focal plane array (FPA) receivers. Our analysis has shown that sparsity in the spatio-temporal frequency domain can be exploited to reduce the number of ADCs from N to where . By using the limited field of view of practical antennas, multiple sub-arrays are combined without interferences to achieve a factor of K increment in the information carrying capacity of the ADC systems. Applications of this concept include ULAs and rectangular array systems. Experimental verifications were done for a element, 1.8 - 2.1 GHz wideband array system to sample using ADCs. This dissertation proposes that frequency division multiplexing (FDM) receiver outputs at an intermediate frequency (IF) can pack multiple (M) narrowband channels with a guard band to avoid interferences. The combined output is then sampled using a single wideband ADC and baseband channels are retrieved in the digital domain. Measurement results were obtained by employing a element, 28 GHz antenna array system to combine channels together to achieve a 75% reduction of ADC requirement. Implementation of FFT cores in the digital domain is not always exact because of the finite precision. Therefore, this dissertation explores the possibility of approximating the discrete Fourier transform (DFT) matrix to achieve reduced hardware complexities at an allowable cost of accuracy. A point approximate DFT (ADFT) core was implemented on digital hardware using radix-32 to achieve savings in cost, size, weight and power (C-SWaP) and synthesized for ASIC at 45-nm technology

    Cell-Free Massive MIMO and Millimeter Wave Channel Modelling for 5G and Beyond

    Get PDF
    Huge demand for wireless throughput and number of users which are connected to the base station (BS) has been observed in the last decades. Massive multiple-input multiple-output (MIMO) is a promising technique for 5G for the following reasons; 1) high throughput; 2) serving large numbers of users at the same time; 3) energy efficiency. However, the low throughput of cell-edge users remains a limitation in realistic multi-cell massive MIMO systems. In cell-free massive MIMO, on the other hand, distributed access points (APs) are connected to a central processing unit (CPU) and jointly serve distributed users. This thesis investigates the performance of cell-free Massive MIMO with limited-capacity fronthaul links from the APs to the CPU which will be essential in practical 5G networks. To model the limited-capacity fronthaul links, we exploit the optimal uniform quantization. Next, closed-form expressions for spectral and energy efficiencies are presented. Numerical results investigate the performance gap between limited fronthaul and perfect fronthaul cases, and demonstrate that exploiting a relatively few quantization bits, the performance of limited-fronthaul cell-free Massive MIMO closely approaches the perfect fronthaul performance. Next, the energy efficiency maximization problem and max-min fairness problems are considered with per-user power and fronthaul capacity constraints. We propose an iterative procedure which exploits a generalized eigen vector problem and geometric programming (GP) to solve the max-min optimization problem. Numerical results indicate the superiority of the proposed algorithms over the case of equal power allocation. On the other hand, the performance of communication systems depends on the propagation channel. To investigate the performance of MIMO systems, an accurate small scale fading channel model is necessary. Geometry-based stochastic channel models (GSCMs) are mathematically tractable models to investigate the performance of MIMO systems
    corecore