15,395 research outputs found

    Estimating Epipolar Geometry With The Use of a Camera Mounted Orientation Sensor

    Get PDF
    Context: Image processing and computer vision are rapidly becoming more and more commonplace, and the amount of information about a scene, such as 3D geometry, that can be obtained from an image, or multiple images of the scene is steadily increasing due to increasing resolutions and availability of imaging sensors, and an active research community. In parallel, advances in hardware design and manufacturing are allowing for devices such as gyroscopes, accelerometers and magnetometers and GPS receivers to be included alongside imaging devices at a consumer level. Aims: This work aims to investigate the use of orientation sensors in the field of computer vision as sources of data to aid with image processing and the determination of a scene’s geometry, in particular, the epipolar geometry of a pair of images - and devises a hybrid methodology from two sets of previous works in order to exploit the information available from orientation sensors alongside data gathered from image processing techniques. Method: A readily available consumer-level orientation sensor was used alongside a digital camera to capture images of a set of scenes and record the orientation of the camera. The fundamental matrix of these pairs of images was calculated using a variety of techniques - both incorporating data from the orientation sensor and excluding its use Results: Some methodologies could not produce an acceptable result for the Fundamental Matrix on certain image pairs, however, a method described in the literature that used an orientation sensor always produced a result - however in cases where the hybrid or purely computer vision methods also produced a result - this was found to be the least accurate. Conclusion: Results from this work show that the use of an orientation sensor to capture information alongside an imaging device can be used to improve both the accuracy and reliability of calculations of the scene’s geometry - however noise from the orientation sensor can limit this accuracy and further research would be needed to determine the magnitude of this problem and methods of mitigation

    Robust visual odometry using uncertainty models

    Get PDF
    In dense, urban environments, GPS by itself cannot be relied on to provide accurate positioning information. Signal reception issues (e.g. occlusion, multi-path effects) often prevent the GPS receiver from getting a positional lock, causing holes in the absolute positioning data. In order to keep assisting the driver, other sensors are required to track the vehicle motion during these periods of GPS disturbance. In this paper, we propose a novel method to use a single on-board consumer-grade camera to estimate the relative vehicle motion. The method is based on the tracking of ground plane features, taking into account the uncertainty on their backprojection as well as the uncertainty on the vehicle motion. A Hough-like parameter space vote is employed to extract motion parameters from the uncertainty models. The method is easy to calibrate and designed to be robust to outliers and bad feature quality. Preliminary testing shows good accuracy and reliability, with a positional estimate within 2 metres for a 400 metre elapsed distance. The effects of inaccurate calibration are examined using artificial datasets, suggesting a self-calibrating system may be possible in future work

    Vision-model-based Real-time Localization of Unmanned Aerial Vehicle for Autonomous Structure Inspection under GPS-denied Environment

    Full text link
    UAVs have been widely used in visual inspections of buildings, bridges and other structures. In either outdoor autonomous or semi-autonomous flights missions strong GPS signal is vital for UAV to locate its own positions. However, strong GPS signal is not always available, and it can degrade or fully loss underneath large structures or close to power lines, which can cause serious control issues or even UAV crashes. Such limitations highly restricted the applications of UAV as a routine inspection tool in various domains. In this paper a vision-model-based real-time self-positioning method is proposed to support autonomous aerial inspection without the need of GPS support. Compared to other localization methods that requires additional onboard sensors, the proposed method uses a single camera to continuously estimate the inflight poses of UAV. Each step of the proposed method is discussed in detail, and its performance is tested through an indoor test case.Comment: 8 pages, 5 figures, submitted to i3ce 201

    Multi-camera Realtime 3D Tracking of Multiple Flying Animals

    Full text link
    Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in realtime - with minimal latency - opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behavior. Here we describe a new system capable of tracking the position and body orientation of animals such as flies and birds. The system operates with less than 40 msec latency and can track multiple animals simultaneously. To achieve these results, a multi target tracking algorithm was developed based on the Extended Kalman Filter and the Nearest Neighbor Standard Filter data association algorithm. In one implementation, an eleven camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behavior of freely flying animals. If combined with other techniques, such as `virtual reality'-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals.Comment: pdfTeX using libpoppler 3.141592-1.40.3-2.2 (Web2C 7.5.6), 18 pages with 9 figure

    Cockpit Ocular Recording System (CORS)

    Get PDF
    The overall goal was the development of a Cockpit Ocular Recording System (CORS). Four tasks were used: (1) the development of the system; (2) the experimentation and improvement of the system; (3) demonstrations of the working system; and (4) system documentation. Overall, the prototype represents a workable and flexibly designed CORS system. For the most part, the hardware use for the prototype system is off-the-shelf. All of the following software was developed specifically: (1) setup software that the user specifies the cockpit configuration and identifies possible areas in which the pilot will look; (2) sensing software which integrates the 60 Hz data from the oculometer and heat orientation sensing unit; (3) processing software which applies a spatiotemporal filter to the lookpoint data to determine fixation/dwell positions; (4) data recording output routines; and (5) playback software which allows the user to retrieve and analyze the data. Several experiments were performed to verify the system accuracy and quantify system deficiencies. These tests resulted in recommendations for any future system that might be constructed

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy
    • …
    corecore