6 research outputs found

    Optimization of Access to CDMA Networks

    Get PDF
    Cílem dizertační práce je optimalizace přístupu do sítí CDMA (Code Division Multiple Access). Práce se konkrétně zabývá algoritmy pro řízení přístupu do sítě pro systém UMTS (Universal Mobile Telecommunication System). V úvodní části je pozornost zaměřena na popis dosavadního vývoje dané problematiky a následně je provedena analýza řízení přístupu do sítě UMTS. V programu MATLAB byl vytvořen vlastní model systému UMTS, který umožňuje implementovat vybrané algoritmy přístupu do sítě. Pozornost byla zaměřena na algoritmy, které využívají činitel zatížení, fuzzy logiku a genetické algoritmy. Všechny algoritmy byly s pomocí vytvořeného simulačního programu vzájemně porovnány. Cílem práce je vytvořit vhodný simulační program, prozkoumat vlastnosti jednotlivých algoritmů a případně provést jejich optimalizaci.The aim of this dissertation thesis is an optimization of access to CDMA networks. To be more specific, this thesis deals with an optimization of admission control in UMTS network. The first part of the thesis deals with the present progress of the particular topic. Thereinafter there is an analysis of admission control in UMTS system. An own UMTS simulation program was created in MATLAB. This program enables implementation and simulation of the selected admission control algorithms. The thesis is focused on load factor based, fuzzy logic based and genetic algorithms. The created UMTS simulator was used for the mutual comparison of all algorithms. The aims of this thesis are the suitable UMTS model design, evaluation and possible optimization of selected algorithms.

    Optimization of the interoperability and dynamic spectrum management in mobile communications systems beyond 3G

    Get PDF
    The future wireless ecosystem will heterogeneously integrate a number of overlapped Radio Access Technologies (RATs) through a common platform. A major challenge arising from the heterogeneous network is the Radio Resource Management (RRM) strategy. A Common RRM (CRRM) module is needed in order to provide a step toward network convergence. This work aims at implementing HSDPA and IEEE 802.11e CRRM evaluation tools. Innovative enhancements to IEEE 802.11e have been pursued on the application of cross-layer signaling to improve Quality of Service (QoS) delivery, and provide more efficient usage of radio resources by adapting such parameters as arbitrary interframe spacing, a differentiated backoff procedure and transmission opportunities, as well as acknowledgment policies (where the most advised block size was found to be 12). Besides, the proposed cross-layer algorithm dynamically changes the size of the Arbitration Interframe Space (AIFS) and the Contention Window (CW) duration according to a periodically obtained fairness measure based on the Signal to Interference-plus-Noise Ratio (SINR) and transmission time, a delay constraint and the collision rate of a given machine. The throughput was increased in 2 Mb/s for all the values of the load that have been tested whilst satisfying more users than with the original standard. For the ad hoc mode an analytical model was proposed that allows for investigating collision free communications in a distributed environment. The addition of extra frequency spectrum bands and an integrated CRRM that enables spectrum aggregation was also addressed. RAT selection algorithms allow for determining the gains obtained by using WiFi as a backup network for HSDPA. The proposed RAT selection algorithm is based on the load of each system, without the need for a complex management system. Simulation results show that, in such scenario, for high system loads, exploiting localization while applying load suitability optimization based algorithm, can provide a marginal gain of up to 450 kb/s in the goodput. HSDPA was also studied in the context of cognitive radio, by considering two co-located BSs operating at different frequencies (in the 2 and 5 GHz bands) in the same cell. The system automatically chooses the frequency to serve each user with an optimal General Multi-Band Scheduling (GMBS) algorithm. It was shown that enabling the access to a secondary band, by using the proposed Integrated CRRM (iCRRM), an almost constant gain near 30 % was obtained in the throughput with the proposed optimal solution, compared to a system where users are first allocated in one of the two bands and later not able to handover between the bands. In this context, future cognitive radio scenarios where IEEE 802.11e ad hoc modes will be essential for giving access to the mobile users have been proposed

    Call admission policies based on calculated power control setpoints in SIR-based power-controlled DS-CDMA cellular networks

    No full text
    Abstract. In this paper, we develop call admission control algorithms for SIR-based power-controlled DS-CDMA cellular networks. We consider networks that handle both voice and data services. When a new call (or a handoff call) arrives at a base station requesting for admission, our algorithms will calculate the desired power control setpoints for the new call and all existing calls. We will provide necessary and sufficient conditions under which the power control algorithm will have a feasible solution. These conditions are obtained through deriving the inverse of the matrix used in the calculation of power control setpoints. If there is no feasible solution to power control or if the desired power levels to be received at the base station for some calls are larger than the maximum allowable power limits, the admission request will be rejected. Otherwise, the admission request will be granted. When higher priority is desired for handoff calls, we will allow different thresholds (i.e., different maximum allowable power limits) for new calls and handoff calls. We will develop an adaptive algorithm that adjusts these thresholds in real-time as environment changes. The performance of our algorithms will be shown through computer simulation and compared with existing algorithms

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations
    corecore