67,002 research outputs found

    A Decision-Theoretic Approach to Resource Allocation in Wireless Multimedia Networks

    Full text link
    The allocation of scarce spectral resources to support as many user applications as possible while maintaining reasonable quality of service is a fundamental problem in wireless communication. We argue that the problem is best formulated in terms of decision theory. We propose a scheme that takes decision-theoretic concerns (like preferences) into account and discuss the difficulties and subtleties involved in applying standard techniques from the theory of Markov Decision Processes (MDPs) in constructing an algorithm that is decision-theoretically optimal. As an example of the proposed framework, we construct such an algorithm under some simplifying assumptions. Additionally, we present analysis and simulation results that show that our algorithm meets its design goals. Finally, we investigate how far from optimal one well-known heuristic is. The main contribution of our results is in providing insight and guidance for the design of near-optimal admission-control policies.Comment: To appear, Dial M for Mobility, 200

    On-board congestion control for satellite packet switching networks

    Get PDF
    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    A resource management architecture for future mobile communications systems

    Get PDF
    This paper presents an overview of a hierarchical Resource Management architecture for future mobile communications systems. The architecture is designed to be generic and can therefore be adopted for a range of Radio Access Methodologies. In particular it provides a mechanism for radio resource management across airinterfaces such as those being defined for use with UMTS. Given the move towards packet-switched technologies both in the Core Network and the Radio Access Network [1], the architecture embraces the concept of statistical QoS applied to individual flows in the form of a commitment level. I

    Statistical Learning in Automated Troubleshooting: Application to LTE Interference Mitigation

    Full text link
    This paper presents a method for automated healing as part of off-line automated troubleshooting. The method combines statistical learning with constraint optimization. The automated healing aims at locally optimizing radio resource management (RRM) or system parameters of cells with poor performance in an iterative manner. The statistical learning processes the data using Logistic Regression (LR) to extract closed form (functional) relations between Key Performance Indicators (KPIs) and Radio Resource Management (RRM) parameters. These functional relations are then processed by an optimization engine which proposes new parameter values. The advantage of the proposed formulation is the small number of iterations required by the automated healing method to converge, making it suitable for off-line implementation. The proposed method is applied to heal an Inter-Cell Interference Coordination (ICIC) process in a 3G Long Term Evolution (LTE) network which is based on soft-frequency reuse scheme. Numerical simulations illustrate the benefits of the proposed approach.Comment: IEEE Transactions On Vehicular Technology 2010 IEEE transactions on vehicular technolog
    • …
    corecore