17,364 research outputs found

    Gaze-based teleprosthetic enables intuitive continuous control of complex robot arm use: Writing & drawing

    Get PDF
    Eye tracking is a powerful mean for assistive technologies for people with movement disorders, paralysis and amputees. We present a highly intuitive eye tracking-controlled robot arm operating in 3-dimensional space based on the user's gaze target point that enables tele-writing and drawing. The usability and intuitive usage was assessed by a “tele” writing experiment with 8 subjects that learned to operate the system within minutes of first time use. These subjects were naive to the system and the task and had to write three letters on a white board with a white board pen attached to the robot arm's endpoint. The instructions are to imagine they were writing text with the pen and look where the pen would be going, they had to write the letters as fast and as accurate as possible, given a letter size template. Subjects were able to perform the task with facility and accuracy, and movements of the arm did not interfere with subjects ability to control their visual attention so as to enable smooth writing. On the basis of five consecutive trials there was a significant decrease in the total time used and the total number of commands sent to move the robot arm from the first to the second trial but no further improvement thereafter, suggesting that within writing 6 letters subjects had mastered the ability to control the system. Our work demonstrates that eye tracking is a powerful means to control robot arms in closed-loop and real-time, outperforming other invasive and non-invasive approaches to Brain-Machine-Interfaces in terms of calibration time (<;2 minutes), training time (<;10 minutes), interface technology costs. We suggests that gaze-based decoding of action intention may well become one of the most efficient ways to interface with robotic actuators - i.e. Brain-Robot-Interfaces - and become useful beyond paralysed and amputee users also for the general teleoperation of robotic and exoskeleton in human augmentation

    A laser tracking dynamic robot metrology instrument

    Get PDF
    Research work over several years has resulted in the development of a laser tracking instrument capable of dynamic 3-D measurements of robot end-effector trajectories. The instrument characteristics and experiments to measure the static and dynamic performance of a robot in an industrial manufacturing environment are described. The use of this technology for space applications is examined

    Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    Full text link
    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber buttons between observing configurations within ~300 s and to an accuracy ~25 microns. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph operating at R~1000-2000. Another high dispersion bench spectrograph offering R~5,000, Hectochelle, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at \sim17%. Hectospec has proven to be a workhorse instrument at the MMT. Hectospec and Hectochelle together were scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned \~60,000 reduced spectra for 16 scientific programs during its first year of operation.Comment: 68 pages, 28 figures, to appear in December 2005 PAS

    Using a 3DOF Parallel Robot and a Spherical Bat to hit a Ping-Pong Ball

    Get PDF
    Playing the game of Ping-Pong is a challenge to human abilities since it requires developing skills, such as fast reaction capabilities, precision of movement and high speed mental responses. These processes include the utilization of seven DOF of the human arm, and translational movements through the legs, torso, and other extremities of the body, which are used for developing different game strategies or simply imposing movements that affect the ball such as spinning movements. Computationally, Ping-Pong requires a huge quantity of joints and visual information to be processed and analysed, something which really represents a challenge for a robot. In addition, in order for a robot to develop the task mechanically, it requires a large and dexterous workspace, and good dynamic capacities. Although there are commercial robots that are able to play Ping-Pong, the game is still an open task, where there are problems to be solved and simplified. All robotic Ping-Pong players cited in the bibliography used at least four DOF to hit the ball. In this paper, a spherical bat mounted on a 3-DOF parallel robot is proposed. The spherical bat is used to drive the trajectory of a Ping-Pong ball.Fil: Trasloheros, Alberto. Universidad Aeronáutica de Querétaro; MéxicoFil: Sebastián, José María. Universidad Politécnica de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Torrijos, Jesús. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin
    corecore