19,458 research outputs found

    Iron abundances derived from RR Lyrae light curves and low-dispersion spectroscopy

    Full text link
    With the aid of the All Sky Automated Survey (ASAS) database on the Galactic field, we compare the iron abundances of fundamental mode RR Lyrae stars derived from the Fourier parameters with those obtained from low-dispersion spectroscopy. We show from a set of 79 stars, distinct from the original calibrating sample of the Fourier method and selected without quality control, that almost all discrepant estimates are the results of some defects or peculiarities either in the photometry or in the spectroscopy. Omitting objects deviating by more than 0.4dex, the remaining subsample of 64 stars yields Fourier abundances that fit the spectroscopic ones with a standard deviation of 0.20dex. Other, more stringent selection criteria and different Fourier decompositions lead to smaller subsamples and concomitant better agreement, down to 0.16dex standard deviation. Except perhaps for two variables among the 163 stars, comprised of the ASAS variables and those of the original calibrating set of the Fourier method, all discrepant values can be accounted for by observational noise and insufficient data coverage. We suggest that the agreement can be further improved when new, more accurate spectroscopic data become available for a test with the best photometric data. As a by-product of this analysis, we also compute revised periods and select Blazhko variables.Comment: 12 pages, 8 figures, to appear in Astronomy and Astrophysic

    Human Perambulation as a Self Calibrating Biometric

    No full text
    This paper introduces a novel method of single camera gait reconstruction which is independent of the walking direction and of the camera parameters. Recognizing people by gait has unique advantages with respect to other biometric techniques: the identification of the walking subject is completely unobtrusive and the identification can be achieved at distance. Recently much research has been conducted into the recognition of frontoparallel gait. The proposed method relies on the very nature of walking to achieve the independence from walking direction. Three major assumptions have been done: human gait is cyclic; the distances between the bone joints are invariant during the execution of the movement; and the articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The method has been tested on several subjects walking freely along six different directions in a small enclosed area. The results show that recognition can be achieved without calibration and without dependence on view direction. The obtained results are particularly encouraging for future system development and for its application in real surveillance scenarios

    HyperLEDA. III. The catalogue of extragalactic distances

    Full text link
    We present the compilation catalogue of redshift-independent distances included in the HyperLEDA database. It is actively maintained to be up-to-date, and the current version counts 6640 distance measurements for 2335 galaxies compiled from 430 published articles. Each individual series is recalibrated onto a common distance scale based on a carefully selected set of high-quality measurements. This information together with data on HI line-width, central velocity dispersion, magnitudes, diameters, and redshift is used to derive a homogeneous distance estimate and physical properties of galaxies, such as their absolute magnitudes and intrinsic size.Comment: accepted to A&

    On the `Semantics' of Differential Privacy: A Bayesian Formulation

    Full text link
    Differential privacy is a definition of "privacy'" for algorithms that analyze and publish information about statistical databases. It is often claimed that differential privacy provides guarantees against adversaries with arbitrary side information. In this paper, we provide a precise formulation of these guarantees in terms of the inferences drawn by a Bayesian adversary. We show that this formulation is satisfied by both "vanilla" differential privacy as well as a relaxation known as (epsilon,delta)-differential privacy. Our formulation follows the ideas originally due to Dwork and McSherry [Dwork 2006]. This paper is, to our knowledge, the first place such a formulation appears explicitly. The analysis of the relaxed definition is new to this paper, and provides some concrete guidance for setting parameters when using (epsilon,delta)-differential privacy.Comment: Older version of this paper was titled: "A Note on Differential Privacy: Defining Resistance to Arbitrary Side Information

    Differential Privacy for Relational Algebra: Improving the Sensitivity Bounds via Constraint Systems

    Get PDF
    Differential privacy is a modern approach in privacy-preserving data analysis to control the amount of information that can be inferred about an individual by querying a database. The most common techniques are based on the introduction of probabilistic noise, often defined as a Laplacian parametric on the sensitivity of the query. In order to maximize the utility of the query, it is crucial to estimate the sensitivity as precisely as possible. In this paper we consider relational algebra, the classical language for queries in relational databases, and we propose a method for computing a bound on the sensitivity of queries in an intuitive and compositional way. We use constraint-based techniques to accumulate the information on the possible values for attributes provided by the various components of the query, thus making it possible to compute tight bounds on the sensitivity.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Analysis of Autoguiding for Exoplanet Transit Research at the UNH Observatory

    Get PDF
    This paper will discuss the proper calibration technique for an autoguider of a CCD camera and the results that follow from successful exoplanet transit observations. A brief background on exoplanets, the transit method, and the analysis of their parent stars through photometry will be examined. The results will be presented in a before and after framework that will visually represent the data improvements from autoguiding as graphical Light Curves (LC). The addition of being able to autoguide at the UNH observatory will work towards providing future students with the possibility of performing follow-up ground-based observations and archiving their work online to aid the entire astronomy community

    Searching Data: A Review of Observational Data Retrieval Practices in Selected Disciplines

    Get PDF
    A cross-disciplinary examination of the user behaviours involved in seeking and evaluating data is surprisingly absent from the research data discussion. This review explores the data retrieval literature to identify commonalities in how users search for and evaluate observational research data. Two analytical frameworks rooted in information retrieval and science technology studies are used to identify key similarities in practices as a first step toward developing a model describing data retrieval
    • …
    corecore