540 research outputs found

    Magnetotransport properties of a polarization-doped three-dimensional electron slab

    Full text link
    We present evidence of strong Shubnikov-de-Haas magnetoresistance oscillations in a polarization-doped degenerate three-dimensional electron slab in an Alx_{x}Ga1−x_{1-x}N semiconductor system. The degenerate free carriers are generated by a novel technique by grading a polar alloy semiconductor with spatially changing polarization. Analysis of the magnetotransport data enables us to extract an effective mass of m⋆=0.19m0m^{\star}=0.19 m_{0} and a quantum scattering time of τq=0.3ps\tau_{q}= 0.3 ps. Analysis of scattering processes helps us extract an alloy scattering parameter for the Alx_{x}Ga1−x_{1-x}N material system to be V0=1.8eVV_{0}=1.8eV

    Interband electron Raman scattering in a quantum wire in a transverse magnetic field

    Full text link
    Electron Raman scattering (ERS) is investigated in a parabolic semiconductor quantum wire in a transverse magnetic field neglecting by phonon-assisted transitions. The ERS cross-section is calculated as a function of a frequency shift and magnetic field. The process involves an interband electronic transition and an intraband transition between quantized subbands. We analyze the differential cross-section for different scattering configurations. We study selection rules for the processes. Some singularities in the Raman spectra are found and interpreted. The scattering spectrum shows density-of-states peaks and interband matrix elements maximums and a strong resonance when scattered frequency equals to the "hybrid" frequency or confinement frequency depending on the light polarization. Numerical results are presented for a GaAs/AlGaAs quantum wire.Comment: 8 pages, 5 figure

    Effective Electronic Structure of Monoclinic ÎČ−(AlxGa1−x)2O3\beta-(Al_xGa_{1-x})_2O_3 alloy semiconductor

    Full text link
    In this article, the electronic band structure ÎČ−(AlxGa1−x)2O3\beta-(Al_xGa_{1-x})_2O_3 alloy system is calculated with ÎČ−Ga2O3\beta-Ga_2O_3 as the bulk crystal. The technique of band unfolding is implemented to obtain the effective bandstructure \textit{(EBS)} for aluminium fractions varying between 12.5\% and 62.5\% with respect to the gallium atoms. A 160 atom supercell is used to model the disordered system that is generated using the technique of special quasirandom structures which mimics the site correlation of a truly random alloy and reduces the configurational space that arises due to the vast enumeration of alloy occupation sites. The impact of the disorder is then evaluated on the electron effective mass and bandgap which is calculated under the generalized gradient approximation \textit{(GGA)}. The EBS of disordered systems gives an insight into the effect of the loss of translational symmetry on the band topology which manifests as band broadening and can be used to evaluate disorder induced scattering rates and electron lifetimes. This technique of band unfolding can be further extended to alloy phonon dispersion and subsequently phonon lifetimes can also be evaluated from the band broadening

    Design, Growth, and Characterization of III-Sb and III-N Materials for Photovoltaic Applications

    Get PDF
    abstract: Photovoltaic (PV) energy has shown tremendous improvements in the past few decades showing great promises for future sustainable energy sources. Among all PV energy sources, III-V-based solar cells have demonstrated the highest efficiencies. This dissertation investigates the two different III-V solar cells with low (III-antimonide) and high (III-nitride) bandgaps. III-antimonide semiconductors, particularly aluminum (indium) gallium antimonide alloys, with relatively low bandgaps, are promising candidates for the absorption of long wavelength photons and thermophotovoltaic applications. GaSb and its alloys can be grown metamorphically on non-native substrates such as GaAs allowing for the understanding of different multijunction solar cell designs. The work in this dissertation presents the molecular beam epitaxy growth, crystal quality, and device performance of AlxGa1−xSb solar cells grown on GaAs substrates. The motivation is on the optimization of the growth of AlxGa1−xSb on GaAs (001) substrates to decrease the threading dislocation density resulting from the significant lattice mismatch between GaSb and GaAs. GaSb, Al0.15Ga0.85Sb, and Al0.5Ga0.5Sb cells grown on GaAs substrates demonstrate open-circuit voltages of 0.16, 0.17, and 0.35 V, respectively. In addition, a detailed study is presented to demonstrate the temperature dependence of (Al)GaSb PV cells. III-nitride semiconductors are promising candidates for high-efficiency solar cells due to their inherent properties and pre-existing infrastructures that can be used as a leverage to improve future nitride-based solar cells. However, to unleash the full potential of III-nitride alloys for PV and PV-thermal (PVT) applications, significant progress in growth, design, and device fabrication are required. In this dissertation, first, the performance of ii InGaN solar cells designed for high temperature application (such as PVT) are presented showing robust cell performance up to 600 ⁰C with no significant degradation. In the final section, extremely low-resistance GaN-based tunnel junctions with different structures are demonstrated showing highly efficient tunneling characteristics with negative differential resistance (NDR). To improve the efficiency of optoelectronic devices such as UV emitters the first AlGaN tunnel diode with Zener characteristic is presented. Finally, enabled by GaN tunnel junction, the first tunnel contacted InGaN solar cell with a high VOC value of 2.22 V is demonstrated.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Investigation of advanced GaN HEMTs for digital and high frequency applications

    Get PDF
    The physical features of Gallium nitride (GaN) and the related materials make them very suitable for the fabrication of power semiconductor devices. The large band gap and high electrical breakdown field strength of GaN in combination with high-density two-dimensional electron gases induced by polarization in AlGaN/GaN interface enables the development of transistors with high off-state voltages, low on-state resistances and low switching charges. However the transistors made of conventional GaN HEMTs have already approached their performance limit. In order to meet the future needs of power semiconductor devices, research efforts are being put on nonclassical HEMT concepts e.g. superjunction GaN HEMTs, PNT GaN HEMTs and GaN MIS FETs or on using a new barrier materials such AlScN and AlYN. This work aims to push GaN technology by new approaches in design and characterization of highly-efficient GaN transistors in order to release its full potential. The aim of the present work is the evaluation of different nonclassical GaN HEMT concepts regarding their performance and suitability for logic, power-switching and RF ampflication applications and to define their design space. The investigations are based on numerical device simulations supported by analytical calculations. It is shown that the simple and robust drift-diffusion model is well suited for the simulation of such nonclassical devices. The co-existence of two dimensional- electron and hole gases in GaN-based heterostructures is investigated by means of analytical models, developed in the frame of this work, and self-consistent numerical solutions of the Schrödinger and Poisson equations. It is shown that for certain combinations of bias conditions and layer design coexisting 2DEGs and 2DHGs can be formed in GaN/AlGaN/GaN structures, where the 2DHG is located at the cap/barrier interface and the 2DEG resides at the barrier/bulk interface. Once a 2DHG is created, the effect of the gate voltage on the 2DEG diminishes rapidly and a saturation of the 2DEG density is observed. Furthermore, in structures with thin barriers it is much more difficult to create a 2DHG even for large surface potentials. The formation of second channel in AlGaN/GaN/AlGaN/GaN heterostructures has been investigated. It has been shown that for certain combinations of bias conditions and layer design coexisting two channels can be formed in AlGaN2/GaN2/AlGaN1/GaN1 structures where both channels are located at the AlGaN1/GaN1 and AlGaN2/GaN2. Once a second channel is created, the effect of the gate voltage on the first 2DEG diminishes rapidly and a saturation of the drain current is observed. Special attention was paid to a novel vertical inverter design by employing these two channels. On the other hand, theoretical investigations of AlGaN/GaN HEMT structures for power switch applications focus on the estimation of oxide interface charges in MIS HEMT structures and on two simulation studies dealing with alternative normally-off HEMT concepts. The study on oxide interface charges is based on a comparison of measured and simulated threshold voltages of HEMTs with and without an oxide layer underneath the gate. Moreover, we developed a simple analytical threshold voltage model for the MIS HEMT structure which can be used to estimate the interface charge with a pocket calculator. We propose also a new approach to combine the effect of a p-type doped cap layer with that of a gate oxide for designing and achieving normally-off HEMT. We focus on the structures proposed by Ota et al. using 1D Schrödinger-Poisson simulations and analytical models. In particular, our analytical model shows that the threshold voltage is independent on the thicknesses of both the PNT layer and the strained GaN channel layer. Additionally, we discuss options to increase the electron sheet density in the ungated regions in order to reduce the source/drain resistances. Moreover, gated cubic InGaN/InN heterostructures for application in InN-based HEMTs are investigated theoretically. The formation of two-dimensional carrier gases in InGaN/InN structures is studied in detail and design issues for the InGaN barrier are investigated. It is shown that for certain surface potentials an undesirable saturation of the sheet density of the electron gas in the InN channel layer may occur. Options to enhance the electron sheet density in the channel and surface potential ranges for proper transistor operation are presented. Finally, the formation of two-dimensional electron gases in lattice-matched AlScN/GaN and AlYN/GaN heterostructures is investigated by numerical self-consistent solutions of the Schrödinger and Poisson equations. The electron concentration profiles and the resulting 2DEG sheet densities in these heterostructures are calculated and compared to those occurring at AlGaN/GaN interfaces. The combined effect of the strong polarization-induced bound charges and the large conduction band offsets at the AlScN/GaN and AlYN/GaN heterojunctions results in the formation of 2DEGs with very high electron sheet densities.about 4 
 5 times as large as those in Al0.3Ga0.7N/GaN. Our results demonstrate the potential of AlScN and AlYN barriers for GaN-based high electron mobility transistors.Die physikalischen Eigenschaften des Galliumnitrid (GaN) und der darauf basierenden Materialien eignen sich besonders zur Herstellung von leistungselektronischen Bauelementen. Die große BandlĂŒcke und hohe elektrische DurchbruchfeldstĂ€rke von GaN in Kombination mit einem zweidimensionalen Elektronengas hoher Dichte durch induzierte Polarisation in der AlGaN/GaN-GrenzflĂ€che ermöglicht die Entwicklung von Transistoren mit hohen Sperrspannungen, niedrigen DurchlasswiderstĂ€nden und niedrigen Schaltladungen. Die aus herkömmlichen GaN-HEMTs hergestellten Transistoren haben jedoch bereits ihre Leistungsgrenze erreicht. Um die zukĂŒnftigen BedĂŒrfnisse von leistungselektronischen Bauelementen zu erfĂŒllen, werden Forschungen zu nichtklassischen HEMT-Konzepten, zum Beispiel Superjunction GaN-HEMT, PNT GaN-HEMTs oder zu neuartigen Barrierematerialien durchgefĂŒhrt. Diese Arbeit will die GaN-Technologie durch neue AnsĂ€tze in Design und Charakterisierung hocheffizienter GaN-Transistoren vorantreiben, um ihr volles Potential zu entfalten. Das Ziel der vorliegenden Arbeit ist es, verschiedene nichtklassische GaN HEMT-Konzepte hinsichtlich ihrer Performance sowie ihrer Eignung fĂŒr zukĂŒnftige Logik, leistungselektronisch und RF Anwendungen zu bewerten und ihren Designspielraum einzugrenzen. Die Untersuchungen basieren auf numerischen Bauelementesimulationen unter Zuhilfenahme analytischer Berechnungen. Es wird gezeigt, dass das einfache und robuste Drift-Diffusionsmodell fĂŒr die Simulation solcher nichtklassischen Bauelemente geeignet ist. Die Koexistenz von zweidimensionalen Elektronen- und Löchergasen in GaN-basierten Heterostrukturen wird mittels analytischer Modelle, die im Rahmen dieser Arbeit entwickelt wurden, und selbstkonsistenten numerischen Lösungen der Schrödinger- und Poisson-Gleichungen untersucht. Es kann gezeigt werden, dass fĂŒr bestimmte Kombinationen von Bias-Bedingungen und Schichtdesign koexistierende 2DEGs und 2DHGs in GaN/AlGaN/GaN-Strukturen gebildet werden können, wobei sich das 2DHG an der GrenzflĂ€che zwischen GrenzflĂ€che und GrenzflĂ€che befindet. Sobald ein 2DHG erzeugt ist, nimmt der Effekt der Gate-Spannung auf das 2DEG schnell ab und eine SĂ€ttigung der 2DEG-Dichte wird beobachtet. Außerdem ist es in Strukturen mit dĂŒnnen Barrieren viel schwieriger, ein 2DHG selbst fĂŒr große OberflĂ€chenpotentiale zu erzeugen. Die Formierung eines zweiten Kanals in AlGaN/GaN/AlGaN/GaN Heterostrukturen wurde untersucht. Es wurde gezeigt, dass fĂŒr bestimmte Kombinationen von Bias-Bedingungen und Schichtdesign koexistierende zwei KanĂ€le in AlGaN2/GaN2/AlGaN1/GaN1-Strukturen gebildet werden können, wobei sich beide KanĂ€le am AlGaN1/GaN1 und AlGaN2/GaN2 befinden. Sobald der zweite Kanal erzeugt ist, nimmt die Wirkung der Gate-Spannung auf das erste 2DEG schnell ab und eine SĂ€ttigung des Drain-Stroms wird beobachtet. Besondere Aufmerksamkeit wurde auf einen neuartigen Inverter mit vertikalem Aufbauen gelegt, indem diese zwei KanĂ€le verwendet wurden. Andererseits konzentrieren sich theoretische Untersuchungen von AlGaN/GaN-HEMT-Strukturen fĂŒr leistungselektronische Anwendungen auf die AbschĂ€tzung von OxidgrenzflĂ€chenladungen in MIS-HEMT-Strukturen, und es werden zwei Simulationsstudien zu alternativen selbstsperrenden HEMT-Konzepten vorgestellt. Die Untersuchung von OxidgrenzflĂ€chenladungen basiert auf einem Vergleich von gemessenen und simulierten Schwellenspannungen experimenteller HEMTs mit und ohne Al2O3-Schicht unter dem Gate. Wir finden, dass in beiden FĂ€llen die geschĂ€tzte OxidgrenzflĂ€chenladung die gleiche ist. DarĂŒber hinaus entwickelten wir ein einfaches analytisches Schwellenspannungsmodell fĂŒr die MIS HEMT Struktur, mit dem die GrenzflĂ€chenladung mit einem Taschenrechner abgeschĂ€tzt werden kann. Wir schlagen auch einen neuen Ansatz vor, bei dem die Wirkung einer p-dotierten Deckschicht mit der eines Gateoxids kombiniert wird, um einen selbstsperrenden HEMT zu erreichen. Wir konzentrieren uns auf die von Ota et al. mit 1D-Schrödinger-Poisson-Simulationen. Insbesondere zeigt unser analytisches Modell, dass die Schwellenspannung unabhĂ€ngig von der Dicke sowohl der PNT-Schicht als auch der gespannten GaN-Kanalschicht ist. DarĂŒber hinaus diskutieren wir Optionen zur Erhöhung der Elektronendichte in den ungesteuerten (ungated) Bauelementbereichen, um die Source/Drain-WiderstĂ€nde zu reduzieren. DarĂŒber hinaus werden gated kubische InGaN/InN-Heterostrukturen fĂŒr die Anwendung in InN-basierten Transistoren mit hoher ElektronenmobilitĂ€t theoretisch untersucht. Die Bildung zweidimensionaler TrĂ€gergase in InGaN/InN-Strukturen wird im Detail untersucht und Designprobleme fĂŒr die InGaN-Barriere untersucht. Es wird gezeigt, dass fĂŒr bestimmte OberflĂ€chenpotentiale eine unerwĂŒnschte SĂ€ttigung der Schichtdichte des Elektronengases in der InN-Kanalschicht auftreten kann. Optionen zur Verbesserung der Elektronendichte in den Kanal- und OberflĂ€chenpotentialbereichen fĂŒr einen geeigneten Transistorbetrieb werden vorgestellt. Abschließend wird die Bildung zweidimensionaler Elektronengase (2DEGs) in gitterangepassten AlScN/GaN- und AlYN/GaN-Heterostrukturen durch numerische selbstkonsistente Lösungen der Schrödinger- und Poisson-Gleichungen untersucht. Die Elektronenkonzentrationsprofile und die resultierenden 2DEG-Schichtdichten in diesen Heterostrukturen werden berechnet und mit denen verglichen, die an AlGaN/GaN-GrenzflĂ€chen auftreten. Die kombinierte Wirkung der stark polarisationsinduzierten gebundenen Ladungen und der großen Leitungsbandoffsets an den AlScN/GaN- und AlYN/GaN-HeteroĂŒbergĂ€ngen fĂŒhrt zur Bildung von 2DEGs mit sehr hohen Elektronendichtedichten. FĂŒr die AlScN/GaN- und AlYN/GaN-Heterostrukturen werden 2DEG-Schichtdichten von etwa 4 bis 5-mal so groß wie fĂŒr Al0,3Ga0,7N/GaN-Strukturen berechnet. Unsere Ergebnisse demonstrieren das Potenzial von AlScN- und AlYN-Barrieren fĂŒr GaN-basierte Transistoren mit hoher ElektronenmobilitĂ€t

    Large phonon-drag enhancement induced by narrow quantum confinement at the LaAlO3/SrTiO3 interface

    Full text link
    The thermoelectric power of the two-dimensional electron system (2DES) at the LaAlO3/SrTiO3 interface is explored below room temperature, in comparison with that of Nb-doped SrTiO3 single crystals. For the interface we find a region below T =50 K where thermopower is dominated by phonon-drag, whose amplitude is hugely amplified with respect to the corresponding bulk value, reaching values ~mV/K and above. The phonon-drag enhancement at the interface is traced back to the tight carrier confinement of the 2DES, and represents a sharp signature of strong electron-acoustic phonon coupling at the interface
    • 

    corecore