76 research outputs found

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    Traffic Engineering

    Get PDF

    A scalable heuristic for hybrid IGP/MPLS traffic engineering - Case study on an operational network

    Full text link
    peer reviewedIn current IP networks, a classical way to achieve traffic engineering is to optimise the link metrics. This operation cannot be done too often and can affect the route of a lot of traffic. Multiprotocol Label Switching (MPLS) opens new possibilities to address the limitations of IP systems concerning traffic engineering thanks to explicit label-switched paths (LSPs). This paper proposes a new method based on simulated annealing meta-heuristic to compute a set of LSPs that optimise a given operational objective. The hybrid IGP/MPLS approach takes advantage of both IP and MPLS technologies and provides a flexible method to traffic engineer a network on a day to day basis. We illustrate the capabilities of our method with some simulations and a comparison with other techniques on an existing operational network. The results obtained by setting up a small number of LSPs are nearly optimal and better than by engineering the IGP weights. Moreover, although it could be combined with a static setting of the latter, SAMTE alone gives already the same results as this combination in much less CPU time, which thus allows an administrator to keep its initial and meaningful IGP metrics in his network.DGTRE TOTE

    Signalling of Point to Multipoint Trees in Metro Ethernet and Core Networks

    Get PDF
    Diplomityössä tutustuttiin IPTV-kanavien siirtoon Core-verkosta MetroEthernet-verkon asiakasta lähinnä olevalle laidalle. Tavoitteena oli kehittää nopeampi ratkaisu monilähetyspuiden konfigurointiin laitevalmistajan toteuttamilla protokollilla. Nykyinen ratkaisu, jossa käytetään Resource reSerVation Protocol:ia MultiProtocol Label Switching-tunneleiden signaloimiseen, Internet Group Management Protocol Snooping:ia halukkaiden vastaanottajien kartoittamiseen sekä Protocol Independent Multicast-Source Specific Multicast:ia runkoverkon monilähetykseen on liian työläs. Uudet ratkaisut, joissa yhdistellään RSVP:tä, point-to-multipoint RSVP:tä, Fast ReRoutea ja PIM-SSM:ia testataan TeliaSoneran tietoverkkolaboratoriossa. Tulosten perusteella ei voida sanoa paljoa varmasti, mutta FRR ME-verkossa vaikuttaa helppokäyttöiseltä ja toimivalta ratkaisulta. Lisäksi P2MP RSVP-TE herätti toiveita nopeammin vikatilanteista toipuvasta monilähetysratkaisusta runkoverkosta, kunhan ilmenneiden vikojen syyt saadaan selville.This master's thesis studies the distribution of IPTV channels from a core network to the edges of a MetroEthernet network. The goal is to find a faster solution for configuring multicast trees using protocols implemented by vendors. The current solution which uses Resource reSerVation Protocol for signalling MultiProtocol Label Switched tunnels, Internet Group Management Protocol Snooping for mapping receivers and Protocol Independent Multicast-Source Specific Multicast for core multicast creates too much work. The new solutions combine RSVP, point-to-multipoint RSVP, Fast ReRoute and PIM-SSM and they are tested in the TeliaSonera networking laboratory. Based on test results there is not much certainty about many things but it can be said that FRR seems to be working well and it is easy to use. Furthermore, P2MP RSVP seemed promising for the core network with faster convergence times in failure cases than PIM-SSM. However, there are few problems to be solved before the protocol is ready for use in the production network

    Multi-path BGP: motivations and solutions

    Get PDF
    Although there are many reasons towards the adoption of a multi-path routing paradigm in the Internet, nowadays the required multi-path support is far from universal. It is mostly limited to some domains that rely on IGP features to improve load distribution in their internal infrastructure or some multi-homed parties that base their load balance on traffic engineering. This chapter explains the motivations for a multi-path routing Internet scheme, commenting the existing alternatives and detailing two new proposals. Part of this work has been done within the framework of the Trilogy research and development project, whose main objectives are also commented in the chapter.Part of this work has been done within the framework of the Trilogy research and development project. The different research partners of this project are: British Telecom, Deutsche Telekom, NEC Europe, Nokia, Roke Manor Research Limited, Athens University of Economics and Business, University Carlos III of Madrid, University College London, Universit Catholique de Louvain and Stanford University.European Community's Seventh Framework ProgramEn prens

    Equal cost multipath routing in IP networks

    Get PDF
    IP verkkojen palveluntarjoajat ja loppukäyttäjät vaativat yhä tehokkaampia ja parempilaatuisia palveluita, mikä vaatii tuotekehittäjiä tarjoamaan hienostuneempia liikennesuunnittelumenetelmiä verkon optimointia ja hallintaa varten. IS-IS ja OSPF ovat standardiratkaisut hoitamaan reititystä pienissä ja keskisuurissa pakettiverkoissa. Monipolkureititys on melko helppo ja yleispätevä tapa parantaa kuorman balansointia ja nopeaa suojausta tällaisissa yhden polun reititykseen keskittyvissä verkoissa. Tämä diplomityö kirjoitettiin aikana, jolloin monipolkureititys toteutettiin Tellabs-nimisen yrityksen 8600-sarjan reitittimiin. Tärkeimpiä kohtia monipolkureitityksen käyttöönotossa ovat lyhyimmän polun algoritmin muokkaukseen ja reititystaulun toimintaan liittyvät muutokset ohjaustasolla sekä kuormanbalansointialgoritmin toteutus reitittimen edelleenkuljetustasolla. Diplomityön tulokset sekä olemassa oleva kirjallisuus osoittavat, että kuormanbalansointialgoritmilla on suurin vaikutus yhtä hyvien polkujen liikenteen jakautumiseen ja että oikean algoritmin valinta on ratkaisevan tärkeää. Hajakoodaukseen perustuvat algoritmit, jotka pitävät suurimman osan liikennevuoista samalla polulla, ovat dominoivia ratkaisuja nykyisin. Tämän algoritmityypin etuna on helppo toteutettavuus ja kohtuullisen hyvä suorituskyky. Liikenne on jakautunut tasaisesti, kunhan liikennevuoiden lukumäärä on riittävän suuri. Monipolkureititys tarjoaa yksinkertaisen ratkaisun, jota on helppo konfiguroida ja ylläpitää. Suorituskyky on parempi kuin yksipolkureititykseen perustuvat ratkaisut ja se haastaa monimutkaisemmat MPLS ratkaisut. Ainoa huolehdittava asia on linkkien painojen asettaminen sillä tavalla, että riittävästi kuormantasauspolkuja syntyy.Increasing efficiency and quality demands of services from IP network service providers and end users drive developers to offer more and more sophisticated traffic engineering methods for network optimization and control. Intermediate System to Intermediate System and Open Shortest Path First are the standard routing solutions for intra-domain networks. An easy upgrade utilizes Equal Cost Multipath (ECMP) that is one of the most general solutions for IP traffic engineering to increase load balancing and fast protection performance of single path interior gateway protocols. This thesis was written during the implementation process of the ECMP feature of Tellabs 8600 series routers. The most important parts in adoption of ECMP are changes to shortest path first algorithm and routing table modification in the control plane and implementation of load balancing algorithm to the forwarding plane of router. The results of the thesis and existing literature prove, that the load balancing algorithm has the largest affect on traffic distribution of equal cost paths and the selection of the correct algorithm is crucial. Hash-based algorithms, that keep the traffic flows in the same path, are the dominating solutions currently. They provide simple implementation and moderate performance. Traffic is distributed evenly, when the number of flows is large enough. ECMP provides a simple solution that is easy to configure and maintain. It outperforms single path solutions and competes with more complex MPLS solutions. The only thing to take care of is the adjustment of link weights of the network in order to create enough load balancing paths

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    PCE prototype with segment routing and BGPLS support

    Get PDF
    This project presents two contributions to the PCE implementation in Telefonica I+D: Segment Routing and the upgrade of the BGP-LS protocol to the 3rd version of the draft to support MPLS and GMPLS scenarios. Regarding the first contribution, this document is intended to assess the use of Segment Routing in centralised traffic-engineering scenarios. It will attempt to make a validation of such technology using the available IETF drafts and publications and trying, at all time, to back-up the use cases with experimental demonstrations. Moreover, the 3rd version of the BGP-LS protocol draft was implemented. This protocol opens the possibility to export the network’s topology and its Traffic Engineering parameters to external entities. The BGP-LS extensions developed enables to retrieve the TE parameters for MPLS and GMPLS networks. The development of the project was done in Telefonica R&D’s facilities within the Core Network Evolution group. The code extends Telefonica’s PCE and network protocols to support Segment Routing and the new version for BGP-LS. As such, both the PCEP and the BGP-LS protocols were enhanced with the latest IETF drafts that define the technology. Once the code was developed and debugged, a series of tests were run in order to validate that the format used followed all the proposed standards. These tests have been defined following the sections that constitute each draft in an attempt to proof the use of each protocol in the most exhaustive possible way. It is important to remark that the validation tests are done not only with Telefonica code, but also with external prestigious entities like Cisco, Telecom Italia, Centre Tecnològic Telecomunicacions Catalunya or Consorzio Nazionale Interuniversitario per le Telecomunicazioni.Ingeniería de Telecomunicació
    corecore